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EXTREME VALUE BEHAVIOR IN THE HOPFIELD MODEL

By Anton Bovier1 and David M. Mason2

Weierstrass Institute and University of Delaware

We study a Hopfield model whose number of patternsM grows to infin-
ity with the system sizeN, in such a way thatM�N�2 logM�N�/N tends to
zero. In this model the unbiased Gibbs state in volumeN can essentially be
decomposed into M�N� pairs of disjoint measures. We investigate the dis-
tributions of the corresponding weights, and show, in particular, that these
weights concentrate for any given N very closely to one of the pairs, with
probability tending to 1. Our analysis is based upon a new result on the
asymptotic distribution of order statistics of certain correlated exchange-
able random variables.

1. Introduction and statements of main results. In recent work, ini-
tiated mainly by Newman and Stein [19, 20, 21, 22, 23, 24, 25], it has emerged
that in the analysis of disordered systems in statistical mechanics an impor-
tant aspect is the probabilistic nature of the convergence of finite volume Gibbs
states to the infinite volume limit. Most of the previous work in the field has
tended to treat a disordered system, for a fixed realization of the disorder, like
a particular deterministic system, ignoring the fact that the Gibbs states are
actually measure valued random variables. In simple situations (dilute Ising
model, random field Ising model, etc.) with only a few infinite volume Gibbs
states, this approach was sufficient, since by fixing suitable boundary condi-
tions, deterministic sequences of infinite volume Gibbs states could be con-
structed that converge almost surely to some infinite volume state. Newman
and Stein have pointed out, however, that this naive approach could be inad-
equate to understand the basic features in systems with a highly complex
phase structure, such as spin glasses. In particular, they argued that a suit-
able probabilistic description in terms of random measures (“metastates” in
their terminology) could be helpful in obtaining some a priori information from
basic principles, such as symmetries, to classify possible scenarios in different
situations. On this basis they argued against the direct applicability of the
mean-field picture in the Sherrington–Kirkpatrick model [26] to short-range
lattice spin glasses and proposed alternative pictures.

Whenever there is some new conceptual framework, it is always important
to have some concrete examples at hand that have been worked out in detail.
This has been done in a number of examples, typically taken from mean-field
models, over the last two years. They cover models with finitely many [16, 17]
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and infinitely many [4, 7] pure states. In the present paper we will consider the
case of the standard Hopfield model with a (not too rapidly) growing number of
patterns; that is, we will deal with a model with countably many pure states.
The construction of the pure states, using symmetry breaking magnetic fields
was achieved some years ago in [5, 6] and many more refined results have
been obtained in recent years [1, 2, 3, 4, 12, 13, 28, 29]. However, the question
of the convergence of the Gibbs state without a symmetry breaking field has
remained unanswered so far. As we will see, this issue is tied to the study
of the order statistics of a class of dependent exchangeable random variables
whose asymptotic distribution is not covered by known results in extreme
value theory. The main technical tool of this paper is a powerful Gaussian
distributional approximation result of Zaitsev [30, 31].

We shall begin by briefly describing the model we study (for more details
and motivation, see, e.g., [1]). Let �N �= �−1�1�N denote the set of functions
σ � �1� � � � �N� → �−1�1�. We call σ a spin configuration and denote by σi
the value of σ at i. Let ���� �P� be an abstract probability space and let
ξ
µ
i , i� µ ∈ �, denote a family of independent identically distributed random

variables on this space. For the purposes of this paper we will assume that
the ξµi are Rademacher random variables, namely, P

{
ξ
µ
i = ±1

} = 1
2 .

We define random maps mµN� �N → �−1�1� through

m
µ
N�σ� �=

1
N

N∑
i=1

ξ
µ
i σi�(1.1)

Naturally, these maps “compare” the configuration σ globally to the random
configuration

ξµ �= �ξµ1 � � � � � ξµN��(1.2)

A Hamiltonian is now defined as the simple negative function of these vari-
ables given by

HN�σ� �= −N
2

M�N�∑
µ=1

�mµN�σ��2 =� −N
2
mN�σ�22�(1.3)

whereM�N� is some, generally increasing, function that will be seen to influ-
ence crucially the properties of the model. We let  · 2 denote the Euclidean
norm in �M, and the vector mN�σ� is always understood to be the M�N�-
dimensional vector with components m

µ
N�σ�. We will always use the

abbreviation

α �= α�N� �= M�N�
N

�(1.4)

Through this Hamiltonian we define in a natural way finite volume Gibbs
measures on �N via

dµN�β�σ� �=
e−βHN�σ�

ZN�β
dPσ�(1.5)
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where Pσ = � 1
2δ−1 + 1

2δ1�⊗N and the probability distribution on �M of the
overlap parameters given by

QN�β �= µN�β ◦m−1
N �(1.6)

where the normalizing factor ZN�β, given by

ZN�β �= 2−N ∑
σ∈�N

e−βHN�σ� �= Eσe−βHN�σ�(1.7)

is called the partition function. We are interested in the large N behavior of
these measures. Note that all the objects defined above are random objects.
It was shown first in [5], and later in [1, 28], with more precise estimates,
that the measure QN�β is concentrated on the union of 2M disjoint balls of
radius ∼ √

α. More precisely, set

Bρ�x� �= �y ∈ �M� x− y2 ≤ ρ��
denote by eµM the µth unit vector in �M and letm∗ �=m∗�β� be the largest solu-
tion of the equation m = tanh�βm�. In [1] the following result was
obtained.

Fact 1.1. There exist 0 < c0�C� γ0 < ∞ such that for all β > 1,
√
α <

γ0�m∗�2, and all ρ satisfying c0�
√
α/m∗ ∧N−1/4� < ρ < m∗/

√
2, we have, with

probability 1, for all but a finite number of indices N,

QN�β

(
M⋃
µ=1

⋃
s=±1

Bρ
(
sm∗eµM

)) ≥ 1 − e−C�M∧N1/2��(1.8)

Since the balls Bρ�sm∗eµM� are disjoint, this result implies that the measure
Qβ�N has the asymptotic decomposition

QN�β =
M∑
µ=1

QN�β
(
Bρ

(
m∗eµM

))(
Q

+� µ
N�β� ρ +Q−� µ

N�β� ρ

)+O(e−C�M∧N1/2�)�(1.9)

where Qs�µN�β� ρ, s = ±1� µ = 1� � � � �M� denote the conditional measures

Q
s�µ
N�β� ρ�·� = QN�β

( · x ∈ Bρ
(
sm∗eµM

))
�

What we want to control are the relative weights of these measures, that is,
QN�β�Bρ�m∗eµM��. In [1, 6] upper bounds on the relative fluctuations of these
weights were proved using concentration of measures techniques which show
that the relative weights differ by no more than a factor of order exp�√N�.
However, this method gives no lower bounds on the fluctuations. Thus we
must try to get some more explicit control on the form of these weights. This
was done, for instance, by Gentz [12, 13] in the course of the proof of a central
limit theorem. The following theorem follows easily from the estimates in
Section 4.2 of [1] and is also implicit in the proof of Theorem 2.6 of [12] (resp.,
Theorem 2.5 in [13]).
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Fact 1.2. With the notation and assumptions of Fact 1.1, for someC�β�>0
we have, with probability 1, for all but a finite number of indices N, for any
µ = 1� � � � �M�N�, ∣∣∣∣ log�ZN�βQN�β�Bρ�m∗eµ��� − βNφ�m∗�

− h�m∗� β� ∑
ν �=µ

(
1√
N

N∑
i=1

ξνiξ
µ
i

)2∣∣∣∣
≤ C�β�

√
M3

N
�

(1.10)

where

φ�m� �=m2/2 − β−1 log cosh�βm�
and

h�m�β� = β m2

2�1 − β�1 −m2�� �

(Note that the condition M3/N → 0 in the statement of the theorems in
[12, 13] is necessary only to assure that the right-hand side in (1.10) vanishes,
which we do not require here).

Fact 1.2 tells us that the fluctuations of the weights are governed by the
explicitly given random variables (we normalize the variables appearing in
(1.10) to have mean zero and variance 1),

Bµ�N�M� �= 1√
2M

∑
ν �=µ

(
1√
N

N∑
i=1

ξνiξ
µ
i

)2

− M− 1√
2M

�(1.11)

provided that their relative fluctuations are large compared toM2/N. We will
in fact establish that the spacing of the largest (smallest) of the Bµ�N�M� is
actually on the scale 1/

√
logM, provided M→ ∞.

To state our first main result, let us denote the standard normal distribution
function by

$�u� �= 1√
2π

∫ u
∞
e−x

2/2dx(1.12)

and its upper tail by

$�u� �= 1 −$�u��(1.13)

Define for M ≥ 1 and x > − logM,

$
(
uM�x�) �= exp�−x�/M�(1.14)
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It is well known that ([18], page 15)

uM�x� = ũM�x� + o
(

1√
logM

)
�(1.15)

where

ũM�x� �= x√
2 logM

+ �2 logM�1/2 − log logM+ log�4π�
2
√

2 logM
�(1.16)

In fact, all the results we state based upon uM�x�, also hold with uM�x�
replaced by ũM�x��

Define the point process on � by

(N �=
M�N�∑
µ=1

δu−1
M �Bµ�N�M���

Theorem 1.1. Whenever M�N� ≤N satisfies M�N� → ∞, the sequence of
point processes �(N�N≥1 converges weakly with respect to the vague topology
to the Poisson point process ( on � with intensity measure e−xdx.

Set for x ∈ �,

mM�x� = #�B1�N�M�� � � � �BM�N�M� > uM�x���(1.17)

Corollary 1.1. Whenever M�N� ≤ N satisfies M�N� → ∞, we have for
all real x and k ≥ 0,

P�mM�N��x� = k� → exp�−kx�
k!

exp�− exp�−x�� as N ↑ ∞�(1.18)

Also, as more or less a corollary of Theorem 1.1, we obtain the next result,
which asserts that the weights in the decomposition (1.9) are indeed concen-
trated on a single (random) value of µ with probability tending to 1.

Theorem 1.2. AssumeM�N� ≤N satisfiesM�N� → ∞ and

M�N�2 logM�N�
N

→ 0�(1.19)

Then with ρ as in Fact 1�1,

lim
N→∞

P

{
∃µ� QN�β�Bρ�m∗eµM�� ≥ 1

2 − e−
√
M/ logM

}
= 1�(1.20)

Remark. Note that it will not be true, with positive probability, that con-
centration on a single pair will hold for all N large enough. Rather, occasion-
ally there will be random values of N for which the decomposition (1.9) will
give positive weight to several pairs of balls.

Moreover, the estimates used in the proof of Corollary 1.1 together with
a law of the iterated logarithm for Bµ�N�M�N�� will allow us to derive [at
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least for M�N� growing fast enough] that the sequence of indices υN of the
pairs of balls on which the measure QN�β concentrates is transient. This is
our next result.

Theorem 1.3. Assume thatM�N� ≤N satisfies �1�19�,
M�N� ≥ �logN�16+τ�(1.21)

for some τ > 0 and, for all large N� both

M�2N� ≤ 2M�N�(1.22)

and

M�N� −M�N− 1� ≤ A�(1.23)

for some A > 0� Then for all β > 1 there is a d�β� > 0 such that for any fixed
µ ≥ 1,

P
{
QN�β�Bρ�±m∗eµM�N��� ≥ e−βd�β�

√
M�N�2 logM�N�i.o.

}
= 0�(1.24)

Remark. This result might at first sight look puzzling. Obviously, for any
value of N, the probability that the pair of balls with index µ has maximal
weight is 1/M�N�. Thus one might be tempted to believe that the maximum
process is recurrent if the sequence 1/M�N� is not summable. But note that
the weights for different N are far from independent, which invalidates this
argument. Indeed what happens is that the weight of a given ball changes
very slowly with N, while the “fresh” patterns that are added as M increases
produce almost independent weights which have a good chance of being larger
than all previous ones. This explains heuristically the phenomenon described
by Theorem 1�3.

Finally, we observe that Theorem 1�1 gives a simple corollary on the fluctu-
ations of the free energy; it will not come as a surprise that these are governed
by the Gumbel distribution.

Corollary 1.2. Under the assumptions of Theorem 1�2, with

aM =
√

logM
M

and

bM = M− 1√
M

√
logM+ 2 logM− log logM

2
− log�4π�

2
�

the sequence of random variables

aM�N�

(
logZN�β −Nβφ�m∗�

h�m∗� β�
)
− bM�N� →d Y as N ↑ ∞�(1.25)

where Y is a Gumbel random variable with distribution function G�x� =
exp�− exp�−x��� x ∈ �.
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The remainder of the paper is organized as follows. In the next section we
provide the analogues of Theorem 1.1 and Corollary 1.1 in an abstract setting
for dependent random variables with permutation invariant joint distributions
under certain asymptotic assumptions. In Section 3 we apply these results to
the random variables Bµ�N�M�� The main task is to show that the appro-
priate factorization assumptions hold in this case. This is done using some
distributional estimates due to Zaitsev [30, 31]. In Section 3.3 we prepare for
the proof of Theorem 1.3 by establishing a law of the iterated logarithm for
the sequence of random variables Bµ�N�M�� as well as an almost sure upper
bound on the maxµ Bµ�N�M�. In the final Section 4 we show that these results
imply Theorems 1.2, 1.3 and Corollary 1.2.

2. Some useful convergence to Poisson process results. We consider
the following setting. Let �XNi �i=1� ����N be a family of random variables defined
on an abstract probability space such that for any fixed N the distribution
of the random variables XN1 � � � � �X

N
N is invariant under the action of the

permutation group acting on the lower indices. Our aim in this section is to
establish a number of Poisson convergence results which we need to prove
the results stated in the Introduction. Toward this end, consider the following
sequence of point processes defined on �:

(N �=
N∑
i=1

δt−1
N �XNi �� N ≥ 1�

where tN is a sequence of strictly increasing measurable functions from
� onto �.

Theorem 2.1. Assume that for any integer k ≥ 1 and any �x1� � � � � xk� ∈ �k,

NkP
{
XN1 > tN�x1�� � � � �XNk > tN�xk�

}
→ exp

(
−

k∑
i=1

xi

)
as N→ ∞�

(2.1)

Then the sequence of point processes (N converges weakly to the Poisson point
process ( on � with intensity measure e−xdx.

LetmN�u� denote the number of the variablesXNi that are greater than u.

Theorem 2.2. Assume that for all x ∈ � and positive integers k ≥ 1,

NkP
{
XN1 > tN�x�� � � � �XNk > tN�x�

} → exp�−xk� as N→ ∞�(2.2)

Then for all x ∈ � and k ≥ 0,

lim
N→∞

P
{
mN�tN�x�� = k

} = e−xk
k!

exp�−e−x��
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Remark. This theorem is completely analogous to standard theorems on
order statistics in the case of stationary sequences. Assumption (2.2) replaces
the usual mixing conditions. For closely related results see [11].

2.1. Proofs of Theorems 2.1 and 2.2. The proof of Theorem 2.1 will follow
from Kallenberg’s theorem [15] (see also [18]) on the weak convergence of
a point process (N to the Poisson process (. Applying his theorem in our
situation, weak convergence holds whenever:

1. For all intervals �c� d� ⊂ �,

E�(N��c� d��� → E�(��c� d��� = e−c − e−d as N→ ∞�

and
2. For all B ⊂ � that are finite unions of disjoint (half-open) intervals,

P
{
(N�B� = 0

} → P
{
(�B� = 0

} = exp
(
−
∫
B
e−xdx

)
as N→ ∞�

To verify (1), observe, trivially, that by (2.1), as N→ ∞�

E�(N��c� d��� =
N∑
i=1

P
{
tN�Xi� ∈ �c� d�} =NP{X1 ∈ �tN�c�� tN�d��

}
=NP{X1 > tN�c�

}−NP{X1 > tN�d�
} → e−c − e−d�

To prove 2, consider first the case when B is a single interval, B = �c� d�,
c < d� Clearly, then, for any integer p ≥ 1 and all N > p,

P
{
(N�B� = 0

}=P{mN�c� =mN�d�}
=

p∑
k=0

P
{
mN�c� =mN�d� = k

}
+P{mN�c� =mN�d� > p}�

(2.3)

But using the permutation invariance,

P
{
mN�c� =mN�d� = k

}
=
(
N

k

)
P
{
XN1 > tN�d�� � � � �XNk > tN�d��XNk+1

≤ tN�c�� � � � �XNN ≤ tN�c�
}
�

The Bonferroni-inequalities (or the inclusion–exclusion principle)[10] provide
the following sequence of alternating upper and lower bounds on this
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probability, namely, for any n ≥ 1:
2n∑
l=0

�−1�l
(
N− k
l

)
P
{
XN1 > tN�d�� � � � �XNk > tN�d��

XNk+1 > tN�c�� � � � �XNk+l > tN�c�
}

≥ P{XN1 > tN�d�� � � � �XNk > tN�d��XNk+1 ≤ tN�c�� � � � �XNN ≤ tN�c�
}

≥
2n+1∑
l=0

�−1�l
(
N− k
l

)
P
{
XN1 > tN�d�� � � � �XNk > tN�d��

XNk+1 > tN�c�� � � � �XNk+l > tN�c�
}

Now by (2.1) for each fixed l,(
N

k

)(
N− k
l

)
P
{
XN1 > tN�d�� � � � �XNk > tN�d��

XNk+1 > tN�c�� � � � �XNk+l > tN�c�
}

=
(
N

k

)(
N− k
l

)
e−dk−clN−k−l�1 + o�1���

which as N→ ∞ converges to

1
k!l!
e−dk−cl�

Since n can be chosen arbitrarily large we readily argue that for each fixed k,(
N
k

)
P
{
XN1 >tN�d������XNk >tN�d��XNk+1≤tN�c������XNN≤tN�c�

}
→ e−dk

k!
exp�−e−c� as N→∞�

(2.4)

Furthermore, notice that for each fixed p ≥ 1,

P
{
mN�c� =mN�d� > p

} ≤ P{mN�d� > p}
≤
(
N

p

)
P
{
XN1 > tN�d�� � � � �XNp > tN�d�

}
�

which by (2.1) converges to

e−pd

p!
as N→ ∞�(2.5)

Thus we readily conclude from (2.3), (2.4) and (2.5) (letting p→ ∞� that

lim
N→∞

P
{
(N�B� = 0

} = exp�e−d − e−c� = exp
(
−
∫ d
c
e−xdx

)
�

The general case where B is a finite union of disjoint intervals is treated in
much the same way and presents, apart from notational complexity, no further
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difficulties and requires no further conditions. We therefore leave the details
to the reader. This completes the proof of Theorem 2.1. Theorem 2.2 has also
been proved. ✷

3. Order statistics for B��N�M�� It is easy to see that the random
variables Bµ�N�M� defined in (1.11) converge individually and even with
respect to the product topology to independent normal variables, provided
that M�N� → ∞. However, this is not sufficient to derive the asymptotic dis-
tribution of their extremes. One of the main problems is that to study extreme
value behavior, one requires control of the convergence in the tails of the dis-
tribution, which conventional central limit theorems and even Berry–Esséen
theorems do not provide. The main tool that will give us the required uniform
control on the convergence is a Gaussian distributional approximation result
that we now describe.

3.1. Gaussian distributional approximation under Bernstein conditions.
For probability measures P and Q on the Borel subsets of �k, k ≥ 1� and

δ > 0, let

λ�P�Q� δ� �= sup
{
P�A� −Q�Aδ��Q�A� − P�Aδ�� A ⊂ �k� Borel

}
�(3.1)

where Aδ denotes the closed δ-neighborhood of A,

Aδ �= {
x ∈ �k� inf

y∈A
x− y2 ≤ δ}

with  · 2 as above being the Euclidean norm on �k. We shall denote �s� t� to be
the usual inner product for vectors s� t ∈ �k� Further, let X1� � � � �XM, M ≥ 1,
be independent mean zero random k−vectors satisfying, for some τ > 0,

E�s�Xi�2�t�Xi�m−2 ≤ 2−1m!τm−2tm−2
2 E�s�Xi�2�

1 ≤ i ≤M�
(3.2)

for every m = 3�4� � � � � and for all s� t ∈ �k�
Denote the distribution of X1 + · · · + XM by PM and let QM be the k-

dimensional normal distribution with mean zero and covariance matrix

cov�X1� + · · · + cov�XM��
The following inequality is contained in Theorem 1.1 of Zaitsev [30] as impro-
ved in [31].

Fact 3.1. For all integers M ≥ 1 and δ ≥ 0,

λ�PM�QM�δ� ≤ c1�k exp�−δ/�c2�kτ���(3.3)

where ci� k ≤ cik2 with c1� c2 being universal finite positive constants.
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3.2. Application to Bµ�N�M�. We want to use Fact 3.1 for random vectors
constructed from a finite collection of the variablesBµ�N�M�. Let us fix I ⊂N
with cardinalityK (and assume thatM is so large that I ⊂ �1� � � � �M�). Then
let us write, for µ ∈ I,

Bµ�N�M� = B̃µ�N�M� + 9µ�K�N��(3.4)

where

B̃µ�N�M� �= 1√
2M

M∑
ν �∈I

[(
1√
N

N∑
i=1

ξ
µ
i ξ
ν
i

)2

− 1

]
(3.5)

and

9µ�K�N� �= 1√
2M

∑
ν∈I� ν �=µ

[(
1√
N

N∑
i=1

ξ
µ
i ξ
ν
i

)2

− 1

]
�(3.6)

We will denote by BI�N�M�, B̃I�N�M� and 9I�N�M� the K-dimensional
vectors, whose components are given in (3.4) to (3.6), respectively.

First we shall control the contribution of 9I�K�N�. To do this we will need
here as well as elsewhere the following special case of Hoeffding’s inequality
[14] applied to sums of i.i.d. Rademacher random variables: for all z ≥ 0,

P

{
1√
N

N∑
i=1

ηi ≥ z
}
≤ exp�−z2/2��(3.7)

where η1� � � � � ηN are i.i.d. Rademacher random variables.

Lemma 3.1. For any δ > 0� M ≥ 1 and K ≥ 1� satisfying

δ
√

2M/K3/2 > 1�(3.8)

we have

P
{9I�K�N�2 > δ

} ≤ 2e−1/2K2 exp
(
−δ

√
2M

2K3/2

)
�(3.9)

Proof. Without loss of generality we may assume that I = �1� � � � �K�.
Note that

P
{9I�K�N�2 > δ

} = P{∑
µ∈I

�9µ�K�N��2 > δ2
}

≤KP
{

1√
2M

K∑
k=2

∣∣∣∣( 1√
N

N∑
i=1

ξki ξ
1
i

)2

− 1
∣∣∣∣ > δ/√K

}
�
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which due to (3.8) is less than or equal to

K2P


(

1√
N

N∑
i=1

ξki ξ
1
i

)2

>
δ
√

2M
K3/2

+ 1


≤ 2K2P

 1√
N

N∑
i=1

ξki >

√
δ
√

2M
K3/2

+ 1

(3.10)

≤ 2e−1/2K2 exp
(
− δ

√
2M

2K3/2

)
�

where we use (3.7) to get the last inequality. ✷

We will see that we can use Lemma 3.1 with δ =M−1/4 to reduce the veri-
fication of the hypothesis of Theorem 2.1 to probabilities involving B̃I�N�M�
only. We will now show that the random variables B̃I�N�M� are suitable
for the application of Fact 3.1. In particular, notice that, conditioned on the
variables ξki , i ∈ �1� � � � �N�� k ∈ I, the summands indexed by ν /∈ I, in (3.5) are
independent. It remains to establish that they satisfy the Bernstein
conditions (3.2).

To simplify the notations we introduce i.i.d. Rademacher random variables
ηi and εki , i ∈ �1� � � � �N� and k ∈ �1� � � � �K�, and the K-dimensional random
vectors X�ε� with components

Xk�ε� �= �2M�−1/2

[(
1√
N

N∑
i=1

εki ηi

)2

− 1

]
�(3.11)

We denote by Pε andEε the conditional law and expectation given the random
variables εki � respectively. Note that the random vectors X�ε� have the same
distribution as the vector summands in (3.5), that is,(

1√
2M

[(
1√
N

N∑
i=1

ξ1
i ξ
ν
i

)2

− 1
]
� � � � �

1√
2M

[(
1√
N

N∑
i=1

ξKi ξ
ν
i

)2

− 1
])
�

(3.12)

Lemma 3.2. For any t� s ∈ �K and positive integer m ≥ 2,

Eε
[�s�X�ε��2�t�X�ε��m−2] ≤m!�2e�m

(
K

2M

)m/2
s22tm−2

2 �(3.13)

Proof. Obviously for any vector x, �s� x�2�t� x�m−2 ≤ s22tm−2
2 xm2 , so that

Eε�s�X�ε��2�t�X�ε��m−2 ≤ s22tm−2
2 EεX�ε�m2 �(3.14)
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Let us define

VN �= 1√
2M

(
1√
N

N∑
i=1

ηi

)2

�

Observe that under Pε, each of the K components of Xk�ε� has the same
marginal distribution asVN−1/�2M�1/2. Therefore, using Jensen’s inequality,
we see that for m ≥ 2,

EεX�ε�m2 ≤Km/2EεX1�ε�m

≤Km/22m/2−1�EVmN + �2M�−m/2��
(3.15)

Now by Khintchine’s inequality (see Theorem 1, [8], page 254) and Stirling’s
formula, we have for any positive integer m ≥ 2,

EVmN ≤ �2M�−m/2mm ≤ �2M�−m/2m!em�(3.16)

Notice also that by a trivial computation,

EV2
N = �2M�−1�3 − 2/N��(3.17)

Combining these estimates gives (3.13). ✷

Next we need a lower bound for Eε�s�X�ε��2.

Lemma 3.3. Define for integers K ≥ 1 and N ≥ 1� the event

CK�N �=
{

sup
1≤k �=k′≤K

(
1
N

N∑
i=1

εki ε
k′
i

)2

≤ 1√
N

}
�(3.18)

then

P�CK�N� ≥ 1 − 2K2e−�√N/2�(3.19)

and conditioned on the event CK�N, for all s ∈ �K,

Eε�s�X�ε��2 ≥ 1
M

s22�1 − 2K/
√
N��(3.20)

Proof. By a simple computation,

2MEε�s�X�ε��2=2
K∑
k=1

s2k+2
∑
k �=k′
sksk′

(
1
N

N∑
i=1

εki ε
k′
i

)2

− 2
N

(
K∑
k=1

sk

)2

�(3.21)

However, on CK�N we have (
K∑
k=1

sk

)2

≤Ks22(3.22)
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and ∣∣∣∣ ∑
k �=k′

sksk′

(
1
N

N∑
i=1

εki ε
k′
i

)2∣∣∣∣ ≤ 1√
N

∑
k�k′

sks′k ≤
1√
N
Ks22�(3.23)

from which we get (3.20).
To prove (3.19), just note that

P

{(
1
N

N∑
i=1

εki ε
k′
i

)2

> 1/
√
N

}

= 2P
{

1√
N

N∑
i=1

ηi > N
1/4

}
≤ 2e−

√
N/2�

(3.24)

where we used (3.7) for the last step, from which (3.19) follows easily. ✷

Putting everything together, from (3.13) and (3.20) we get the proposition.

Proposition 3.1. Whenever K/�√N� ≤ 1
4 , conditioned on the event CK�N,

the random variables X�ε� satisfy the Bernstein conditions, that is, for all
m ≥ 3,

Eε�s�X�ε��2�t�X�ε��m−2

≤m!
(

2e2K
M

)�m−2�/2
tm−2

2 4e2KEε�s�X�ε��2

≤ m!
2
τm−2tm−2

2 Eε�s�X�ε��2�

(3.25)

with

τ =
√

128e6K3

M
�(3.26)

Let Gε denote the Gaussian probability distribution on �K, with mean zero
and covariance matrix

cov�ZI�k� k′ �=
M−K
M

{[
1
N

N∑
i=1

εki ε
k′
i

]2

− 1
N

}
�(3.27)

Combining Proposition 3.1 with Fact 3.1 and computing the conditional covari-
ance matrix of X�ε�, we get, by setting I = �µ1� � � � � µK� and identifying
εki = ξµki , the following corollary.

Corollary 3.1. Whenever K/
√
N ≤ 1

4 , on the event CK�N� for the Gaus-
sian probability distribution Gε on �k as above, Borel set A ⊂ �K� and
δ > 0�M and K satisfy �3�8��

Gε�Aδ� + c1K2 exp
(
− δ

√
M

c2K
7/2

)
≥ Pε{B̃I�N�M� ∈ A}(3.28)
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and

Pε
{
B̃I�N�M� ∈ Aδ} ≥ Gε�A� − c1K2 exp

(
− δ

√
M

c2K
7/2

)
�(3.29)

where c1� c2 are finite constants.

Proof. Under the conditional distributution Pε� the random variable
B̃I�N�M� has the same distribution as

M−K∑
i=1

X�i��ε��

where X�1��ε�� � � � �X�M−K��ε� are i.i.d. random K- vectors with the same dis-
tribution asX�ε�. Thus Proposition 3.1 allows us to apply Fact 3.1 to construct
M−K independent GaussianK-vectorsWl� l ∈ �1� � � � �M�\I with mean zero
and covariance cov�Wl� equal to the covariance of X�ε� under the law Pε. A
simple computation shows that the matrix elements of this covariance matrix
are given by

1
M

[
1
N

N∑
i=1

εki ε
k′
i

]2

− 1
N
�

Now by setting

ZI �=
∑

l∈�1�����M�−I
Wl

and using Fact 3.1 with the Bernstein conditions from Proposition 3.1, we
readily obtain (3.28) and (3.29). ✷

We want to apply this result to Borel sets A�u� of the form

A�u� �= �x ∈ �K� xi > ui� for x = 1� � � � �K��
where u �= �u1� � � � � uK�. Notice that A�u�δ ⊂ A�u−δ� and A�u+δ� ⊂ A�u�δ�
Hence we get from (3.28) and (3.29) that

Gε�A�u − δ�� + c1K2 exp
(
− δ

√
M

c2K
7/2

)
≥ Pε{B̃I�N�M� ∈ A�u�}
≥ Gε�A�u + δ�� − c1K2 exp

(
− δ

√
M

c2K
7/2

)
�

(3.30)

where u + a �= �u1 + a� � � � � uK + a� for any a ∈ R�
It will be convenient to approximate the correlated Gaussian K-vector ZI

by an uncorrelated GaussianK-vector YI. In fact, for any 0 ≤ γ < 1 such that
γ2I+ �cov�ZI� − I� is positive definite, we can write

ZI =� YI + 9ZI�(3.31)
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where YI and 9ZI are independent Gaussian K-vectors with covariances

cov�YI� = �1 − γ2�I� cov�9ZI� = γ2I+ �cov�ZI� − I��(3.32)

Since on CK�N,

 cov�ZI� − I ≤
K√
N

+ K
M
�(3.33)

we may choose γ2 �= 2K/
√
N+K/M.

We recall the tail bound for a standard normal random variable Z: for all
z ≥ 0�

P�Z ≥ z� ≤ 2 exp�−z2/2�(3.34)

and the elementary inequalities

P�Xi +Yi > u for all i ∈ I�
≤ P�Xi ≥ u− δ for all i ∈ I� +∑

i∈I
P�Yi ≥ δ�(3.35)

and
P�Xi +Yi > u for all i ∈ I�

≥ P�Xi ≥ u+ δ for all i ∈ I� −∑
i∈I
P�Yi ≥ δ��(3.36)

Thus using (3.31), (3.34), (3.35), (3.36), we easily get that for any u and δ ≥ 0�

G0

(
A��u − δ�/

√
1 − γ2�

)
+ 2K exp

(
− δ

2

2γ2

)
≥ Gε�A�u��

≥ G0

(
A��u + δ�/

√
1 − γ2�

)
− 2K exp

(
− δ

2

2γ2

)
�

(3.37)

where G0 denotes the K-dimensional standard normal distribution.
Combining these bounds with (3.19), (3.28) and (3.29), we have, of course,

that

P
{
B̃I�N�M� ∈ A�u�}
≤ G0

(
A�u − δ�/

√
1 − γ2�

)
+ 2K exp

(
− δ2

2γ2

)
(3.38)

+ c1K2 exp
(
− δ

√
M

c2K
7/2

)
+ 2K2 exp�−

√
N/2�

and

P
{
B̃I�N�M� ∈ A�u�δ}≥G0

(
A�u + δ�/

√
1 − γ2

)
−2K exp

(
− δ

2

2γ2

)
− c1K2 exp

(
− δ

√
M

c2K
7/2

)
−2K2 exp�−

√
N/2��

(3.39)
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where γ2 �= 2K/
√
N +K/M. Furthermore, we obtain from (3.9), (3.35) and

(3.36) that for δ > 0� M ≥ 1 and K ≥ 1 satisfying (3.8),

P
{
BI�N�M� ∈ A�u�}≤P{B̃I�N�M� ∈ A�u − δ�}

+2e−1/2K2 exp
(
−δ

√
2M

2K3/2

)(3.40)

and

P
{
BI�N�M� ∈ A�u�}
≥ P{B̃I�N�M� ∈ A�u + δ�}− 2e−1/2K2 exp

(
−δ

√
2M

2K3/2

)
�

(3.41)

Now write

pN�M�γ2� δ�=2K exp
(
− δ2

2γ2

)
+ c1K2 exp

(
− δ

√
M

c2K
7/2

)
+2K2 exp

(−√
N/2

)+ 2e−1/2K2 exp
(
−δ

√
2M

2K3/2

)
�

(3.42)

Collecting the estimates (3.38), (3.39), (3.40) and (3.41), (3.42), we get the
following proposition.

Proposition 3.2. For all integers 1 ≤ K, M ≤ N� satisfying K/N ≤ 1/4,
u ∈ �K and δ > 0 so that �3�8� holds, we have

P
{
BI�N�M� ∈ A�u�}
≤ G0

(
A�u − 2δ�/

√
1 − γ2�

)
+ pN�M�γ2� δ�

(3.43)

and

P
{
BI�N�M� ∈ A�u�}
≥ G0

(
A�u + 2δ�/

√
1 − γ2�

)
− pN�M�γ2� δ��

(3.44)

where γ2 �= 2K/
√
N+K/M.

Note, of course, that

G0�A�u�� = �1 −$�u1�� × · · · × �1 −$�uK���(3.45)

The following elementary lemma allows us to finally do away with the different
arguments in the upper and lower bounds u ± 2δ in (3.43) and (3.44).

Lemma 3.4. Let Z be a standard normal variable. There exists a finite pos-
itive constant c such that for all u > 0, δ > 0 and γ satisfying

√
1 − γ2 ≥ 1/2�∣∣∣∣P{√1 − γ2Z > u+ δ

}
−P{Z > u}∣∣∣∣ ≤ c�δ+ uγ2�e−u2/2(3.46)
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and whenever u− δ > 0 and uδ ≤ 1,∣∣∣∣P{√1 − γ2Z > u− δ
}
−P{Z > u}∣∣∣∣ ≤ c�δ+ uγ2�e−u2/2�(3.47)

Proof. We have∣∣∣∣P{√1 − γ2Z > u+ δ
}
−P{Z > u}∣∣∣∣

=
∣∣∣∣P{Z > u+ �u�1 −

√
1 − γ2� + δ�/

√
1 − γ2

}
−P�Z > u�

∣∣∣∣�
(3.48)

Now since
√

1 − γ2 ≥ 1/2 and 1 −
√

1 − γ2 ≤ γ2,

�u�1 −
√

1 − γ2� + δ�
/√

1 − γ2 ≤ 2uγ2 + 2δ�(3.49)

Thus (3.48) is

≤ 1√
2π

∫ u+2uγ2+2δ

u
e−x

2/2dx ≤
√

2
π
�δ+ uγ2�e−u2/2�(3.50)

Similarly, we can argue that∣∣∣∣P{√1 − γ2Z > u− δ
}
−P{Z > u}∣∣∣∣

≤ 1√
2π

∫ u+2uγ2

u−δ
e−x

2/2dx

≤ �δ+ 2uγ2� 1√
2π
e−�u−δ�2/2

≤
√

2
π
�δ+ uγ2�e−�u−δ�2/2�

(3.51)

Next observe that by uδ ≤ 1 we have

− �u− δ�2
2

= −u
2

2
+ uδ− δ

2

2
< −u

2

2
+ 1�(3.52)

Therefore, √
2
π
�δ+ uγ2�e−�u−δ�2/2 < e

√
2
π
�δ+ uγ2�e−u2/2�(3.53)

Setting c = e√2/π completes the proof of the lemma. ✷

Recalling that the random variables Yk are mean zero Gaussian random
variables with variance 1 − γ2, we have under the conditions in Lemma 3.4,∣∣∣∣P{Yk > u+ δ}−$�u�∣∣∣∣ ≤ c�δ+ uγ2�e−u2/2(3.54)
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and ∣∣∣∣P{Yk > u− δ}−$�u�∣∣∣∣ ≤ c�δ+ uγ2�e−u2/2�(3.55)

where $�u� is as in (1.13).
Recall from (1.14) the definition of uM�x�. By (1.15) and (1.16), we get for

some C > 0�

uM�x� = O
(√

logM
)

for x ≤ C
√

logM�(3.56)

Lemma 3.4 allows us to conclude that with uM�x� �= �uM�x1�� � � � � uM�xK��,
G0

(
A�uM�x� ± 2δ�

/√
1 − γ2�

)

=
K∏
i=1

[
e−xi

M
+O

({
δ+

[
K√
N

+ K
M

]
uM�xi�

}
e−u

2
M�xi�/2

)]
�

(3.57)

Now it is well known that for u > 0�

e−u
2/2

u
√

2π

(
1 − u−2) ≤ 1 −$�u� ≤ e−u

2/2

u
√

2π
�(3.58)

and thus for all large M,

e−u
2
M�xi�/2 ≤ 2uM�xi�e−xi/M�(3.59)

Inserting this bound into (3.57), taking into account the estimates in (3.43)
and (3.44) and choosing δ =M−1/4� we get that for some D > 0,∣∣∣∣MKP

{
BI�N�M� ∈ A�uM�x��}− K∏

i=1

e−xi
∣∣∣∣

≤MKpN�M�γ2� δ�

+
K∑
i=1

e−xi
(
D

[
M−1/4 +

√
logM

(
K√
N

+ K
M

)]√
logM

)
�

(3.60)

which after a little analysis is easily shown to converge to zero asM�N� → ∞,
where we use the inequality∣∣∣∣ K∏

i=1

ai −
K∏
i=1

bi

∣∣∣∣ ≤ K∑
i=1

ai − bi�

holding for all 0 ≤ ai, bi ≤ 1�
Clearly this shows that the hypotheses of Theorem 2.1 are satisfied for any

x ∈ �K� Thus Theorem 1.1 follows immediately. ✷

Theorem 1.1 permits us derive the asymptotic distribution of the gap
between the largest and second largest order statistic of the Bµ�N�M�� Let

B̂1�N�M� ≥ B̂2�N�M� ≥ · · · ≥(3.61)

denote the order statistics of the variables Bµ�N�M��
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Proposition 3.3. Under the hypotheses of Theorem 1�1, for any δ ≥ 0�

lim
N→∞

P
{
B̂1�N�M� − B̂2�N�M� ≤ uM�δ�} → 1 − e−δ�(3.62)

Proof. This is a corollary of Theorem 1.1. Namely, the weak convergence
of the point process implies, in particular, that for any x�y ∈ ��

lim
N→∞

P
{
B̂1�N�M� ≤ uM�x�� B̂2�N�M� ≤ uM�y�}

= P
{
(��x�∞�� = 0�(��y�x�� ≤ 1

}
�

(3.63)

and a simple computation shows that for any x ≥ y�
P
{
(��x�∞�� = 0�(��y�x�� ≤ 1

} = e−e−y�e−y − e−x + 1��(3.64)

In particular, the joint distribution of u−1
M

(
B̂1�N�M�) and u−1

M

(
B̂2�N�M�) con-

verges to that of a random 2-vector with joint density

p�x�y� = e−e−ye−x−y

and therefore

lim
N→∞

P
{
B̂1�N�M� − B̂2�N�M� > uM�δ�}

=
∫ ∞

−∞
dx

∫ x−δ
−∞

dye−e
−y
e−x−y = e−δ�

which proves the proposition. ✷

3.3. Some almost sure behavior of Bµ�N�M�N��. We shall show that for
each fixed µ, the sequence of random variables Bµ�N�M�N�� satisfies a law
of the iterated logarithm (LIL), more precisely, the proposition.

Proposition 3.4. AssumeM�N� ≤N is monotone increasing, satisfying

�logN�2+τ ≤M�N��(3.65)

for some τ > 0 and all large N, �1�22� and �1�23� hold. Then for any fixed
index µ,

lim sup
N→∞

± Bµ�N�M�√
2 log logN2M�N� = 1 a.s.(3.66)

Proof. The proof is based upon a martingale version of the Kolmogorov
LIL due to Stout [27] (see also [9]). It states that if ��Xi��i��i≥0 is a martingale
difference sequence satisfying

�i� s2n �=
n∑
i=1

E�X2
i �i−1� → ∞ a.s.,
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and

�ii� Xn ≤ δnsn/
√

log log s2n a.s.�

for δn > 0, with δn → 0� as n→ ∞, then

lim sup
n→∞

±
∑n
i=1Xi√

s2n log log s2n
= 1 a.s.(3.67)

We will apply this result to the following sequence of random variables,
which we will soon prove to be a martingale. Define [for a fixed nonincreasing
function M�N�]

SN �=
M�N�∑
ν=2

[( N∑
i=1

ενi

)2

−N
]
�(3.68)

where ενi are i.i.d. Rademacher r.v.’s. [Set S0 = 0 and SN = 0 if M�N� < 2�]
Clearly, {

SN
}
N≥1 =�

{√
2M�N�N2Bµ�N�M�N��

}
N≥1
�(3.69)

We will first show that
{
SN

}
N≥0 is a martingale with respect to the filtra-

tion ��N�N≥0 where �N, N ≥ 1� denotes the sigma algebra generated by the
random variables

�ενi � 1 ≤ i ≤N�1 ≤ ν ≤M�N��
and �0 = �"���� A straightforward computation shows that

SN+1 −SN= ∑
M�N�<ν≤M�N+1�

[( N∑
i=1

ενi
)2 −N]

+2
M�N�∑
ν=2

ενN+1

N∑
i=1

ενi =� IN+1�

(3.70)

(Empty sums are defined to be 0�) From this one readily checks that
E�IN+1�N� = 0, implying that SN is a martingale.

Next,

s2N �=
N∑
n=1

E�I2
n�n−1�

=
N∑
n=1

[
2n2�1 − 1/n��M�n� −M�n− 1�� + 4

M�n−1�∑
ν=2

( n−1∑
i=1

ενi

)2]
�

(3.71)
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from which one sees immediately that condition (i) holds. To show that condi-
tion (ii) is also satisfied, we will first show that as N→ ∞�

s2N
2M�N�N2

→ 1 a.s.(3.72)

Now it is obvious that Es2N = ES2
N = 2M�N�N2. Thus (3.72) will follow, if we

can show that as N→ ∞,

s2N −Es2N
2M�N�N2

→ 0 a.s.(3.73)

This is the content of the next lemma.

Lemma 3.5. Let �M�N��N≥1 be a nondecreasing positive sequence satisfy-
ing �1�22� and �3�65� for some γ > 0� Then �3�73� holds.

Proof. Write

s2N −Es2N
M�N�N2

= 4
∑N
n=2

∑M�n−1�
ν=2 ��∑n−1

i=1 ε
ν
i�2 − �n− 1��

M�N�N2

= 4
∑N−1
n=1 Sn

M�N�N2
�

(3.74)

We claim that with probability 1,

SN
NM�N� → 0 as N→ ∞�(3.75)

SetNk = 2k� for k = 1�2� � � �� and choose any δ > 0. Now,M�N� nondecreasing
and assumption (1.22),

P
{

max
Nk−1<N≤Nk

SN/�NM�N�� > 4δ
}

≤ P
{

max
Nk−1<N≤Nk

SN > δNkM�Nk�
}
�

(3.76)

which by Doob’s inequality and (3.65) is less than or equal to

ES2
Nk

δ2N2
kM

2�Nk�
≤ 2
δ2M�Nk�

≤ 2
δ2k2+τ�log 2�2+τ �(3.77)

Since
∞∑
k=1

2
δ2k2+γ�log 2�2+γ <∞�(3.78)

we conclude (3.75) by the Borel–Cantelli lemma and the arbitrary choice of
δ > 0�
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Now set

YN = SN
NM�N� � aN = 4NM�N� and AN =N2M�N��(3.79)

We see that expression (3.74) has the form

A−1
N

N−1∑
n=1

anYn�(3.80)

where

0 ≤ A−1
N

N−1∑
n=1

an ≤ 2�(3.81)

Since by (3.75), the YN converge almost surely to zero, and for each fixed
N0 ≥ 1�

A−1
N

N0∑
n=1

anYn → 0 as N→ ∞�(3.82)

it is easy now to conclude (3.73). ✷

Clearly now, condition (ii) will be verified if we can show that for any ε > 0�
almost surely, for all large enough N�

IN ≤ ε
√
M�N�N2

/√
log log

(
M�N�N2

) =� εLN�
By assumption (1.23), it is sufficient to prove that almost surely, as N→ ∞,∣∣∣∣

(
N∑
i=1

ενi

)2

−N
∣∣∣∣/LN → 0(3.83)

and ∣∣∣∣ M∑
ν=2

ενn+1

(
N∑
i=1

ενi

)∣∣∣∣/LN → 0�(3.84)

Clearly, we can apply inequality (3.7) to show that for some c1 > 0 and c2 > 0�

P

{∣∣∣∣
(
N∑
i=1

ενi

)2

−N
∣∣∣∣ ≥ δLN

}
≤ c2e−δc1

√
M/ log log�MN2��(3.85)

Further, since

M∑
ν=2

ενn+1

(
N∑
i=1

ενi

)
=�

N�M−1�∑
i=1

ηi�

we can also apply inequality (3.7) to get for some c3 > 0�

P

{∣∣∣∣ M∑
ν=2

ενn+1

( n∑
i=1

ενi

)∣∣∣∣ ≥ δLN
}
≤ 2e−δ

2c3N/ log log�MN2��(3.86)
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Since we are assuming that M�N� > �logN�2+τ� clearly now, using these
bounds, we can find δ = δn ↓ 0 such that both probabilities are summable in
N� which implies that condition (ii) holds. Therefore we get that with proba-
bility 1,

lim sup
N→∞

± SN√
4M�N�N2 log logN2M�N� = 1�

The proposition now follows from (3.69). ✷

Now Corollary 1.1 certainly suggests that maxµ Bµ�N�M�N�� > √
logM,

for all largeN, almost surely. We can, however, only prove the following some-
what weaker result.

Proposition 3.5. Assume that for some τ > 0, M�N� ≤N satisfies �1�21�.
Then there exists a ρ > 0 such that

P

{
max

1≤µ≤M
Bµ�N�M� <

√
ρ logM� i.o.

}
= 0�(3.87)

Proof. By the Borel–Cantelli lemma, it suffices to show that
∞∑
N=1

P

{
max

1≤µ≤M
Bµ�N�M� <

√
ρ logM

}
<∞�(3.88)

Now, for any function K�N� ≤ �M�N� ∧ √
N�/8, we have

P

{
max

1≤µ≤M
Bµ�N�M� <

√
ρ logM

}
≤ P

{
max

1≤µ≤K
Bµ�N�M� <

√
ρ logM

}
�

(3.89)

Let Z1� � � ��ZK be i.i.d. standard normal random variables. Arguing just as
in the proof of Proposition 3.2, we can show for any 0 < δ < 1/4 so that (3.8)
holds and with γ2 = 2K/

√
N+K/M�

P

{
max

1≤µ≤K
Bµ�N�M� <

√
ρ logM

}

≤ P
{

max
1≤µ≤K

Zµ ≤
√
ρ logM+ 2δ√

1 − γ2

}
+ pN�M�γ2� δ�

=
(
P

{
Z ≤

√
ρ logM+ 2δ√

1 − γ2

})K�N�
+ pN�M�γ2� δ��

(3.90)

Notice that for all large enough M� using 1 − γ2 ≥ 1/2�

P

{
Z ≤

√
ρ logM+ 2δ√

1 − γ2

}
≤ P

{
Z ≤

√
4ρ logM

}
�
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Next using the simple inequality holding for all large enough z,

P�Z > z� ≥ �2πz�−1 exp�−z2/2��
we obtain (

P
{
Z ≤

√
4ρ logM

})K�N�
≤
(

1 − exp�−2ρ logM�
2π

√
4ρ logM

)K�N�
�

which for all large M is less than or equal to

�1 − exp�−4ρ logM��K�N� ≤ exp�−K�N�M−4ρ��
Putting everything together, we get that for all large M,

P

{
max

1≤µ≤K
Bµ�N�M� <

√
ρ logM

}
≤ exp�−K�N�M−4ρ� + pN�M�γ2� δ��

(3.91)

Choosing 0 < 4ρ < 1/16 and letting K�N� =M�N�1/16+4ρ� we see after some
analysis that the right-hand side of (3.91) is, for all largeM, less than or equal
to

2 exp�−M�N�1/16��
Since our assumption on M�N� implies that

∞∑
N=1

exp�−M�N�1/16� <∞�

we have shown (3.88) and thus (3.87). ✷

4. Applications to the Hopfield model. In this last section we apply
the results obtained for the random variables Bµ�N�M� to prove, with the
help of Facts 1.1 and 1.2, Theorems 1.2, 1.3 and Corollary 1.2.

4.1. Proof of Theorem 1�2. Let us denote µ∗ �= µ∗
N to be any index for

which

Bµ∗
N
�N�M� = B̂1�N�M��

Fact 1.2 implies that, with probability 1, for all N large enough, uniformly in
1 ≤ µ ≤M�N��

logQN�β
(
Bρ�m∗eµM�)− logQN�β

(
Bρ�m∗eµ

∗
M�)

= h�β�
√
M

[
Bµ�N�M� −Bµ∗�N�M�]+O(√M3/N

)
�

where h�β� = h�m∗� β�� But by (1.8) and (1.9), we get that

M∑
µ=1

QN�β
(
Bρ�m∗eµM�) = 1

2 +O(e−C�M∧N1/2�)�
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which implies

QN�β
(
Bρ�m∗eµ

∗
M�)

=
1
2 +O

(
e−C�M∧N1/2�)

1+∑
µ �=µ∗�QN�β�Bρ�m∗eµM��/QN�β�Bρ�m∗eµ

∗
M���

≥
1
2

1+Me−h�β�
√
M�B̂1�N�M�−B̂2�N�M��+O

(√
M3/N

) +O(e−C�M∧N1/2�)�
Now if

u−1
N �B̂1�N�M�� − u−1

N �B̂2�N�M�� > δ�
then

B̂1�N�M� − B̂2�N�M� > δ− o�1�√
2 logM

Therefore, by Proposition 3.3, the probability that

QN�β
(
Bρ�m∗eµ

∗
M�) ≥ 1

2

1 +Me−δ
√

�M/2 logMh�β�+O
(√

M3/N
) +O(e−C�M∧N1/2�)

is greater than or equal to e−δ, as N → ∞. Further, by the assumption
M2 logM$N, it follows that for any δ > 0,

lim inf
N→∞

P

{
QN�β

(
Bρ�m∗eµ

∗
M�

)
≥ 1

2
− M

2
e−δ

√
�M/2 logM�h�β�/2

}
≥ e−δ�

Now, since for any arbitrary δ > 0,
M

2
e−δ

√
�M/2 logM�h�β�/2 ≤ e−

√
M/ logM�

for all sufficiently large M, this, in turn, implies that

lim inf
N→∞

P

{
QN�β

(
Bρ�m∗eµ

∗
M�

)
≥ 1

2 − e−
√
M/ logM

}
≥ e−δ�

for all δ > 0, which yields (1.20). ✷

4.2. Proof of Theorem 1�3. As above, letting µ∗ �= µ∗
N to be any index for

which Bµ∗
N
�N�M� = B̂1 �N�M�, we have, almost surely for all large enough

N, for any µ ≥ 1 fixed,

logQN�β
(
Bρ�m∗eµM�

)
− logQN�β

(
Bρ�m∗eµ

∗
M�)

= h�β�
√
M�Bµ�N�M� −Bµ∗�N�M�� +O

(√
M3

N

)
�

Now by Propositions 3.4 and 3.5, almost surely, the inequality for any ε > 0,

Bµ�N�M� −Bµ∗�N�M� ≤
√(

2 + ε) log log�N2M� −
√
ρ logM
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is violated only for finitely many values of N. But since

logN$M and M2/ logM$N�

we have for all large N the bound

logQN�β
(
Bρ�m∗eµM�

)
− logQN�β

(
Bρ�m∗eµ

∗
M�

)
≤ −

√
ρh�β�
2

√
M logM�

Exponentiating gives

QN�β

(
Bρ�m∗eµM�

)
exp

(
ρh�β�

2

√
M logM

)
≤ QN�β

(
Bρ�m∗eµ

∗
M�

)
≤ 1�

which completes the proof of Theorem 1.3. ✷

4.3. Proof of Corollary 1.2. Finally, we prove Corollary 1.2. By (1.9) we
have that

ZN�β =
M∑
µ=1

2ZN�βQN�β
(
Bρ�m∗eµM�

)
+ZN�βO

(
e−C�M∧N1/2�

)
�(4.1)

Bounding the sum over µ by its maximal term from below and M times its
maximal term from above, and using the monotonicity of the logarithm, this
implies

1√
M

logZN�β

≤ 1√
M

max
1≤µ≤M

log
(
ZN�βQN�β

(
Bρ�m∗eµM�))

+ logM√
M

+ 1√
M

log
(

1 + O�e−C�M∧N1/2��
2Mmax1≤µ≤MQN�β

(
Bρ�m∗eµM�)

)(4.2)

and
1√
M

logZN�β≥
1√
M

max
1≤µ≤M

log
(
ZN�βQN�β

(
Bρ�m∗eµM�))

+ 1√
M

log
(

1 + O�e−C�M∧N1/2��
2 max1≤µ≤MQN�β

(
Bρ�m∗eµM�)

)
�

(4.3)

On the other hand, (1.9) also implies that

2 max
1≤µ≤M

QN�β
(
Bρ�m∗eµM�) ≥ 1

M

[
1 −O

(
e−C�M∧N1/2�

)]
�(4.4)

so that in fact
1√
M

logZN�β= max
1≤µ≤M

1√
M

log
(
ZN�βQN�β

(
Bρ�m∗eµM�))

+O
(

log 2M√
M

∨
√
Me−C�M∧N1/2�

)
�

(4.5)
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By Fact 1.2 and definition (1.11),

log
(
ZN�βQN�β

(
Bρ�m∗eµM�))=βNφ�m∗� + h�m∗� β�

× [
M− 1 +

√
2MBµ�N�M�]+O(

√
M3

N

)
�

(4.6)

Combining this with (4.5) gives

1√
M

logZN�β=
[
β
N√
M
φ�m∗� + h�m∗� β�M− 1√

M

]
+ h�m∗� β�

√
2 max

1≤µ≤M
Bµ�N�M�

+O
(√
M2

N
∨ logM√

M
∨
√
Me−C�M∧N1/2�

)
�

(4.7)

Next by (1.19), we have

aM

(
logZN�β −Nβ$�m∗�

h�m∗� β�

)
− bM

= ũ−1
M

(
max

1≤µ≤M
Bµ�N�M�

)

+ O
(√
M2 logM
N

∨ �logM�3/2√
M

∨
√
M logMe−C�M∧N1/2�

)

= ũ−1
M

(
max

1≤µ≤M
Bµ�N�M�

)
+ o�1��

Now (1.18) of Corollary 1.1 with k = 0 and uM�x� replaced by ũM�x� implies
for all x,

lim
N→∞

P
{
ũ−1
M

(
max

1≤µ≤M
Bµ�N�M�

)
≤ x} = e−e−x �(4.8)

[Refer to the comment following (1.16).] This proves Corollary 1.2. ✷
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