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ON THE ERGODICITY OF TAR(1) PROCESSES!

By RonGg CHEN AND RUEY S. Tsay

Texas A & M University and University of Chicago

This paper establishes a necessary and sufficient condition for geomet-
rical ergodicity for the general first-order threshold autoregressive pro-
cesses. This is achieved by investigating the nonlinear dynamic behavior
generated by the delay parameter of a threshold model. The ergodic region
turns out to be unbounded which is different from that of a linear process.

1. Introduction. Several nonlinear time series models have been pro-
posed in recent years to capture various nonlinear phenomena commonly
observed in practice. For example, Ozaki (1981) and Haggan and Ozaki (1981)
used exponential autoregressive models to reproduce amplitude-dependent
frequency. Tong (1983) considered the self-exciting threshold autoregressive
(SETAR) models that are capable of describing time-irreversibility, jump reso-
nances, and limit cycles. It is now evident that nonlinear times series models
will play an important role in modern time series analysis. Unlike the linear
models, however, it is rather hard to obtain a necessary and sufficient condi-
tion for ergodicity or geometrical ergodicity for a given class of nonlinear time
series models [see Nummelin (1984) or Tong (1990), pages 126 and 456 for
definitions of these terms]. Consider, for example, the SETAR models. There
are no general necessary and sufficient conditions available for the ergodicity
of a higher order model, even though interesting results exist for some special
cases. In particular, consider the first-order threshold autoregressive, TAR(1),

model
¢x,_y tg, ifx,_;<0,
& %= box,_ +e, ifx, ;>0
2%t—1 2] t—d ’
where x,_,, ..., x, are real numbers denoting the initial values of the process,
d is a fixed positive integer commonly referred to as the delay parameter of x,
and the ¢,’s are independent and identically distributed (iid) random variables
with absolutely continuous marginal distribution and positive probability den-
sity function over the real line R! and Ele,| < «. Petruccelli and Woolford
(1984) showed that for d = 1, the necessary and sufficient condition for the
ergodicity of x, is

(2) ¢ <1, b, <1 and d1¢s < 1.

This result has several nice features including that (a) it has a neat
geometric interpretation and (b) in contrast with the result of linear models,

t=1,2,...,
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614 R. CHEN AND R. S. TSAY

the ergodic region is unbounded. A question to ask then is to what degree can
the result in (2) be generalized to the other SETAR models.

The main objective of this paper, therefore, is to extend the result of
Petruccelli and Woolford to the general TAR(1) model, that is, to the case of a
general delay parameter d. This is an important extension as (a) it might shed
some light on the condition for the general SETAR models and (b) it provides a
rigorous proof for the geometrical ergodicity of a nonlinear process that clearly
illustrates the difference between linear and nonlinear models. Another objec-
tive is to understand the nonlinear dynamic behavior of a threshold process x,
with respect to the delay parameter d. It turns out that for the general TAR(1)
model in (1), the nonlinear dynamic pattern of x, depends critically on d.
Indeed, the necessary and sufficient condition for geometrical ergodicity of x,
depends on d. Details of the condition are given in the following main result of
the paper.

THEOREM 1. For the first-order threshold autoregressive process x, in (1),
the necessary and sufficient condition for the geometrical ergodicity of x, is
G <1, ¢,<1, P1d,<1, PIDPED <1 and P PPpID < 1,

where s(d) and t(d) are nonnegative integers depending on d, and s(d) and
t(d) are odd and even numbers, respectively.

Ergodic Region of TAR(1) Processes With Unit Delay

<4 ph i1=1
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phi2=1
~ Ergodic
£ oF
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Fic. 1(a).
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Ergodic Region of TAR(1) Processes With Delay d
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phit
F1c. 1(b).

Details of the functions s(d) and ¢(d) will be given in Section 4. Here we
give some of their values. These values were obtained by a computer program
that uses the approach of this paper.

d 12345 6 78 9 10 11 12 13 14 15 16 17 18
sd 113 7 131 6313 3 1 3 15 1 16383 37 1 15
d) 0 2 4 8 2 32 64 2 40 4 2 4 16 2 16384 48 2 16

Obviously, Theorem 1 reduces to that of Petruccelli and Woolford when
d = 1. The ergodic region of (2) is shown in Figure 1(a) whereas that of
Theorem 1 for d = 2 is in Figure 1(b). Comparing these two plots, we see
clearly the effect of the delay parameter d.

The following result of Tweedie (1975) [see also Nummelin (1984)] will be
used throughout the paper.

Lemma 1.1.  Assume that {X,} is an aperiodic ¢-irreducible Markov chain,
and let g be a nonnegative measurable function. Then {X,} is geometrically
ergodic if there exist a small set K with complement K¢, ¢ > 0, M < o, r > 1,
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such that
"E{g(X;+1)|X,=x}sg(x) — &, x € K¢,
E{g(Xt+1)|Xt=x}SM, xeK.

The proof of Theorem 1 also makes use of the following results: (a) By Chan
and Tong (1985), the process {X,} is an aperiodic and wu ;-irreducible Markov
chain where X, = (x,,x,_4,...,x,_4) with x, being the TAR(1) process in (1)
and u, the Lebesgue measure on R?; and (b) by Tjgstheim (1990), we have:

Lemma 1.2. If {X,} is an aperiodic Markov chain and h is a fixed positive
integer, then

recurrent, recurrent,
X,,) is { geometrically ergodic, = {X,} is { geometrically ergodic,
th t
transient, transient.

Following the approach of Petruccelli and Woolford (1984), we also divide
the condition and proof of Theorem 1 into four regions of (¢, #,). Section 2
proves the result for ¢, > 0, ¢, = 0; Section 3 deals with ¢; < 0, ¢, < 0; and
Section 4 considers the case of (¢, > 0, ¢, < 0) or (¢; < 0, ¢, > 0). Combin-
ing all the conditions and results of these three sections, we obtain the general
res..t of Theorem 1.

2. Conditions and proof for ¢, > 0 and ¢, > 0. In this case, the
necessary and sufficient condition for the process x, in (1) to be geometrically
ergodic is ¢; < 1, ¢, < 1. The sufficient condition is based on Lemma 1.1
under the observation that the individual linear models for the two regimes
{x,_4 < 0} and {x,_, > 0} are geometrically ergodic. Now we prove that the
condition is also necessary. This is achieved by showing that when ¢; > 1 or
¢, > 1, the process is explosive. Without loss of generality, we consider the
case ¢, = 1. First, if ¢, > 1, then there exists a real number n such that
1<n <d¢, Given x, =x > 0,x,_;.; > 0, we have, by Chebyshev’s inequal-
ity, that

1+n 1+n
Plx, < Txt X, %y _qr1| = Pldox, + 6,1 < Txt Xer Xe_d+1
1+n
=Pl-¢&,12|dy — g |FFeXi-der
1+
< Pllesyql 2 (s - )xxt’xt—d+1
Ele, .l
<
(¢2 = ((1 +m)/2))x
2Ele, 4|

< -
(1 —m)x
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Choosing an M > 0 such that ¢ = 2El¢,.,|/(1 — )M < 1, then whenever
x,>M, x,_y;,, >0, we have

x, >M,x,_4;.,>0|=1-c.

1+
Plx,,y >Txt

Noting that (1 + n)/2x, > x, > M and by repeating the above argument, we
obtain that given x, > M, x,_;,,> 0, x,_4,.; > 0,

1+n 1+17
Plx, o> Txt+1’xt+1 > Txt X > M, % _3,0>0,%_45,,>0
(3)
>|1- 1-oc¢).
( T47¢ (1-c¢)

Let B =2/(1 + ) < 1 and note that

oo 0 0 kpk(t—1)
L o1 - o) - ¥ ¥ (-]
t=1

t=1k=1
« ok
k=1 k(l_Bk)
« ok
,El(_k(l—m)
log(1 —¢)
1-8
The above result says that for x;, > M and x, > 0 where i = 1,...,d — 1, we
have
1+n
P xt+1>Txt,t=d,...,s+dxd>M,xi>0,i=1,...,d

>[T(1-ep ™) 2(1-c)/""
i=1
Consequently, for any x, € R, k = —-d + 1,...,0,
P(x; > wlx,, k= —-d+1,...,0)
> (1-¢)/"P
XP(xg>M,x;,>0,i=1,...,d — 1|x,, k= —d + 1,...,0)>0.
Hence, {x,} is not geometrically ergodic.

Next, consider the case ¢, = 1. Given x; > 0,i =1,...,d, x, =x,_; + ¢, is
a random walk until the first time x,_; < 0. From well-known results, for
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example, see Karlin and Taylor [(1975), pages 261-263], E(Tlx, > 0,i =
1,...,d) = », where T = inf{t > Olx,_; < 0}. Since P(x; > 0,i =
1,...,dlxy,k=-d+1,...,00 >0 for any x, € R', k=1-4d,...,0, Theo-
rem 7 of Tweedie (1974) implies that {x,} is not geometrically ergodic.

3. Conditions and proof for ¢, < 0, ¢, < 0. In this case the necessary
and sufficient condition for the process x, in (1) to be geometrically ergodic is

d19y < 1.

SurFICIENT CONDITION. Rewriting the TAR(1) model in (1) as
Xpp1 = S X L(%y_g1 <0) + dox, I(x,_yy1>0) +6,,4,

where I(-) is an indicator function which equals unity if its argument holds
and is zero otherwise, we have

Xpvp = G1%e 1 1(X,_gig < 0) + o, 1 I(%,_g10>0) + 6,4y
= ¢t I (%,_g4p < 0)I(%,_4,1 < 0)
+ P1ox, I(%,_ g0 <0)I(x,_5,1>0)
+ ¢1box, I(x,_grg>0)I(x,_y,, <0)
+ &5x I(%,_gig > 0)I(%x,_4,1 > 0)
T b18 1 I(% g < 0) + doe, 1 I(%,_g,2>0) + 6400
= ¢Pyx, + (‘75% - ¢1¢2)xtl(xt—d+2 <0)I(x,_4+1 <0)
+(d3 — b102) 2, (%, g, 5 > 0)I(x,_4,; > 0)
T big  I(%_gig <0) + doe,  I(2,_g,2>0) + 6,05
=T+ Ty, + T3+ Ty,

where T, is the sum of the last three terms. By using the same technique, we
can further expand T, until it becomes a function of x,_,,,I(x, ;. <
0)I(x,_g4,, < 0). More specifically, we have

Ty =f(d1s a2 g plk=0,...,d +3)x,_ g ol(%_g,2 < 0)I(2,_g4,1 <0),

where f(¢,, ¢y, x,_;_,lk =0,...,d + 3) is a function of ¢; and ¢, and some
indicator functions of x,_;_, for £ =0,...,d + 3. For each ¢, let u, 4.,
denote the distribution of the random pair (x,_;,,&,_4.0). Also, let A,
denote the set in R? satisfying

A, ={(x,6):x<0,e < —¢;x}, i=12.
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Then for ¢; < 0 and ¢, < 0,
Elx, g,ol(%,_g40 <0)I(x,_gq:1 < 0)l
=< E[|¢1xt—d+1 + & gioll(D1%—gr1 + €—qr2 < 0)

XI(%,_g41 < 0)I(%;_3442 < 0)]

+ E[ldox, g1+ 8- giall (b2 _gi1 + &_gig < 0)
XI(%,_g1 < 0)I(%,_9q.5 > 0)]

< [ 1% + elu,_gun(dr, de) + [ |§ox + elu, g, o(dx, de)
Al A2

< [ Jelbiara(dr, de) + [ lelu,-q.o(dx, de)
A, A,

<Ele,_giol + Ele,_ gl

<G,
where G is a fixed real number, which only depends on Ele,|, and we have
used the results —¢,x,_;.; < 0and —¢yx,_;,.; <0 when x,_;,, < 0. Conse-
quently, E|T,| is bounded. Similarly, we can prove E|T;| is also bounded.
Furthermore, from the assumption on ¢, in (1), it is easy to see that E|T,| < .
Therefore,

E{x,,llx, = x} < ¢1d,lx| + constant.

From the above result, if 0 < ¢,¢, < 1, then there exist M > 0and 0 <7 <1
such that for |x| > M,

E{lxt+2||xt = x} < 17|x|
Hence, given x,_,;,, > M,...,x, > M,
E(I1X,.5ll1X,) < nllX,l,

where X, = (x,, x,_;). Letting g(X,) = | X,|| and using Lemma 1.1, X, is
geometrically ergodic and by Lemma 1.2, {X,} is geometrically ergodic.

NECEssARY CONDITION. (a) If ¢; < 0, ¢, < 0, ¢, > 1, then there exists an
1 such that 1 < n < ¢,¢,. In what follows, we divide the proof into two cases
depending on whether or not d is an even number.

When d is an even number, by using a similar method to that of Section 2,
we can show that there exist M > 0 and 0 < ¢ < 1 such that given x, > M,
Xi—d+2 > O’ Xt—d+1 < 0’

1+

P(xt+2 > g X% Xi-dr2s Yi-d+1 >1l-c

and, given x, < -M, x,_;,,<0, x,_5,1 > 0,

1+n7
Plx,,s <sz

Xes xt—d+2’xt—d+1) >1-c.
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Therefore, given x; > M > 0, (—1)'x; > 0 for i = 1,...,d — 1, we have
1+7n
Plxy,414a < o Fa-vn+i+a < 0,
1+n
x2,+d>Tx2(,_1)+d>O,t= 1,...,80x4, ..., %,

> T1(1- e
t=1

> (1- 0)2/(1—[3)
where B =2/(1+ ) <1.Thenforx, € R, k= -d +1,...,0,
P(lx,| = ®lxg,...,x_g,1)
2 (1-c)” " PP(xy>M,(—1)'x,> Olxg, ..., x_4,1)>0.
Hence, {x,} is not geometrically ergodic. If d is odd, by choosing x, > M,
X,_g+9 <0and x,_,,, > 0, we can prove the same result.
(b) For ¢, <0, ¢, <0, ¢, = 1, we may assume, by the symmetry of ¢,

and ¢,, that ¢; < — 1. First, consider the case that d is even. Given x,_, < 0,
X,_4<0,...,x,_4; <0, we have

X =¢x,_ 1+ &,
_ 42
=1%o L(%,_q_1 <0) + b1ox, _oI(x,_4_120) +¢,+ dre,_;
S G1box, o I(x g1 <0) + d10ox, _5I(x,_4_120) +&, + d1e,_4
=x,_9gte + ¢, a.s.

(4)

Based on Equation (4), we define y;, = x5, for i = 1,...,d/2;
d
Ye=Yi—1+m fort> 97
where 7, = ¢4, + ¢1€5,_; and
. d
T, = inf{¢|t > E’y’ZO .

Since {n,} is a sequence of iid random variables, y, is a random walk for
t > d/2 and the stopping time T, satisfies E(T,) = «. Let

d
Tl = inf{tlt > E,xm > 0}

Then, given x, <0, x, <O0,...,x; <0, it follows from the inequality in (4)
that {T, > n} c {T, > n} and, hence, E(T,) > E(T,) = . Since for any initial
values x,,i =1 —d,...,0,

P(xy<0,2,<0,...,25 <O0lx;_g4,...,%5) >0,

by Tweedie (1974), the subsequence {x,,} is not ergodic and, by Lemma 1.2,
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neither is the process {x,}. Next, consider the case that d is odd. If d = 1, then
{x,} is not ergodic; see Petruccelli and Woolford (1984). For d > 1 and given
X,_5<0,x,_,<0,...,x,_45_; <0, we have

X, =y, 1 I(x,_3 <0) + dpox,_I(x,_;=0) +¢,
= d1x, o+ &) I(x,_g <O0) + bo(Prx, 5 + &, ) I(%,_420) +¢
(5) <x,_ol(x,_4<0) +x,_oI(x,_3=0) + ¢,
+ [ I(x,_43 <0) + ¢oI(x,_q = 0)]e,_,
=x, gt &+ [¢1(x,_q <0) + PI(x,_45>0)]e,_; as.
Define y;, = x5, i = 1,...,(d + 1)/2 and
d+1
5
where 7, = €5, + £9,_12, With 2z, = ¢;1(x9,_; < 0) + P5I1(xy,_4; = 0). For d >

1, since €,, and &,,_, are independent of y,_; for i > 1 and z,_; for i > 0, it is
easily seen that

Ye=Y-1tm, for t>

E[yly, -1, s51] = [y + iy, 21
=y,_1+ Eleg + o 12dyi_1, - 1)
=Y,-1+ Ele] + Elez1]E[2ly,_1, .-, 71]
=Ye-15
which says that {y,} is a martingale. Let

) d+1 d+1
T, = 1nf{t|t > Y = O}, T, = inf{tlt > 5 X > 0}.

For ¢t < T,,
E[lyt+1 ~¥dlys - 0]
= E[In,llyl,...,yt]
< Elegersl + Elegy 1| E[l¢11(x,_q < 0) + ¢pI(23q = O)llyy, .., %]

< Elegy ol + (161] + ld3l) Eleg, |
<K.

By Corollary 6.3.1 of Karlin and Taylor (1975), if E(T,) < «, we have
E(yz,) = E(y;). This, however, is impossible because, by definition, yr,2 0
and, by assumption, y, = x, < 0. Consequently, E(T,) = ». Given x,; < 0,
i=1,...,(d + 1)/2, by the inequality in (5), we have x,, <y, <0 for i =
1,...,T, — 1. Hence, {Ty, > n} c{T, > n} and E(T,) > E(T,) = «. Again, by
the same argument as that of d being even, {x,} is not ergodic.
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4. The case of ¢, > 0,¢, < 0 or ¢, < 0,d, > 0. In this case, we need
some preliminaries. Let ) be the set of all d-dimensional binary strings, that
is,

Q={a=(ay,...,ay)la;=0o0r1fori=1,...,d}.
Define a mapping f: Q — Q by

k d
(6) f(ay,.--,ay)=|la;+ay4,..., Y a;,+ag..., Y a;+a,
i=1 i=1 (mod 2)
LEmMA 4.1. The mapping f in (6) is one-to-one and onto.
Proor. This lemma follows directly from the fact that
flagy.aq) =(a;+ag_ 1 tag,a;+as,...,84_1 + @) |moan)r O

Lemma 4.2. VY a=1(ay,...,a,) €Q, 3k, such that f*(a) = a.

Proor. Since () is a finite set with 2¢ elements and {a, f(a), f%a),...,
f%(a)} is a subset of Q, we can find %, > k, such that f*(a) = f*x(a). Since
f~! exists, we have f*17*2(a) = f*¥(a) = a, where k =k, — k,. O

For each element a in (), define
(7 I(a) = min{k > 0|f*(a) = a}.

By Lemma 4.2, I(a) exists for every a € (). Next, define a cycle in Q starting
with a by

(8) C(a) = {a, f(a),..., f'® (a)}.
Obviously, /(a) is the number of elements in C(a). Finally, for each element a
of Q, define

d
B(a) = gl% a(a) =d - g(a),
#(a)= Y ab), H(a)= L B(b).

beC(a) beC(a)

Note that «a(a) and B(a) are, respectively, the number of 0’s and 1’s in the
string a.

(9)

LEmMA 4.3. For the mapping f in (6) and elements of Q, the following
results hold:

(i) If there exists a positive integer k such that b = f*(a), then b € C(a).
(ii) A cycle is an equivalence class in ), that is, (a) if a and b are in the
same cycle, so are b and a, (b) if a and b are in the same cycle, b and ¢ are
in the same cycle, so are a and c.
(iii) «(a) = Z(b) and H(a) = ZD) if b € C(a).
(iv) H(a) is an even number for any a € Q.
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Proor. Part (iii) is trivial. For part (i), write £ = m X l(a) + n, where m
is a nonnegative integer and 0 < n < Il(a). Then b = f*(a) = f™(a) € C(a).
For part (ii), if b € C(a), then there exists a %k satisfying 0 < £ < I(a) such
that f*(a) =b. Next, for simplicity, write I(a) as [. Then, a = f!(a) =
L fR(@)] = £~ *(b). By part (i), a € C(b). Furthermore, it is easy to show
that if ¢ € C(b) and b € C(a), then ¢ € C(a). Consequently, a cycle is an
equivalence class. To prove part (iv), let a® = fi(a), then

d
ol =Y a;+a,; (mod2) = B(a) + a, (mod 2)
j=1
and
d
aP = Y af’ + o (mod2) = B(a®) + B(a) + a, (mod2).
j=1

In general, we obtain
m-—1
a =Y p(a®) + B(a) + a, (mod2).
k=1

Again, write l(a) = [. Since f!(a) = a, we have a®”) = a and, in particular,
ag=ay
-1

Y. B(a®) + B(a) + ay (mod 2)
k=1

= %(a) + a, (mod?2).

Therefore, #(a) = 0 (mod 2), which says that #(a) is an even number. O

For the TAR(1) process x, in (1) and an element a = (a,,...,a,) € Q,
define

(10) J(a;t) =I((-1)“"'x,> 0) and L(a,t)=ﬁJ(ai,t—d+i),
i=1

where the I(-) is the usual indicator function defined before. Also, for given
Xpg41s---» Xy, define a mapping

(11) i (% g1 %) >a=(a; -+ ag) with a;=I(x,_g4 > 0).



624 R. CHEN AND R. S. TSAY

LEMmMA 4.4. For the TAR(1) process in (1), given x,_4, q,...,%, and
a=1vy(x,_4.1,---,%,), where y(*) is defined in (11), we have

n—1 1 n-1 i
Xyyna = ¢<1x(a)+):l=1a(f (a))¢g(a)+El= B(f(a))xt + Rl(n, d, X, 5:)

and

n—1

Xy ing = GF@ NI @gp@+ 26 @y TT L( fi(a),t + id)
i=1

+ Ry(n,d, x,,¢,),
where the R.(n, d, x,, ¢,)’s denote the remainders which satisfy
EIR,(n,d,x,, &) <M

with M being a positive real number depending only on n, d and Elg,|.

The implication of the above lemma is as follows. Given x,_;. 4,...,x,,
there is a certain situation in which the values of the x,_;’s could go to infinity
without proper conditions on ¢, and ¢,; for the other situations, the expecta-
tions of the absolute values of the x,,,’s are bounded by a constant that only
depends on i, d and Ele,|. Consequently, we need only consider the first
situation in order to understand the ergodicity of «x,.

ProoF oF LEMMA 4.4. For simplicity, we shall only prove the lemma for
n = 2, but the same method applies to the general n. For any element
a=(ay...,a,) of Q, define

i i
(12) a(0) =0,a(i,0) =0,a(i) = X a, and a(i,j)= Y a
k=1 kE=i—j+1

wherei = 1,...,d and 1 <j < i. By (9), we have a(d) = B(a) and d — a(d) =
a(a). Given x,_;4,4,..., %, and letting a = y(x,_,, 1, ..., x,), some straightfor-
ward algebra shows that

i—1
Xpp; = ¢tl—a(t)¢g(i)xt + Z ¢{'—a(i,j)¢¢2z(z,j)8t+i_j fori =1,2,...,d.
j=0
In particular, we have
d-1
_ i—a(d, j) pa(d, j
Xivd = d’?(a)‘ﬁg(a)xt + Z ot « g J)5t+d—j-
j=0
Similarly, given ¢ = y(x,. 1, ..., %,,4), we have
d-1

- —c(d, ) ped, j
Xpi2q = PTODEn, g+ X @ DGE ey 5y
Jj=0
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Therefore, given a = y(x,_;_1,..., x,) and using the notation in (10), we have
Xyioq = PTVPE® Y $7995Ox, L(e,t + d)

ce()
d—1 ] ] )
+ Z Z ¢¢11(0)+./—a<d,1)¢g(0)+a(d,J)EHd_j
ceN| j=0
d-1 ] ) )
+ L IV | Lie,t + d)
Jj=0
(13) = ¢¢lx(a)+a(f(a))¢g(a)+l3(f(a))xtL( f(a),t + d)
TSI T $19%6Ox,Lic,t +d)
ceQ,c#f(a)
d_l . . .
+ Z Z d,zlx(c)ﬂ—a(d,J)¢,123(c)+a(d,1)£t+d_j
ceQ| j=0
d-1 ) ) )
+ Z ¢{_c(d’1)¢§(d’1)‘€t+2d—j L(ec,t +d)
Jj=0

= @@ @B @)y [(f(a),t +d) + Ry(2,d, x,,¢,).
Alternatively, (13) can also be written as

d)tll(a)"'a( f (a))¢123(a) +B(f (a))xt

+ ¢z{z(a)¢123(a) Z (¢‘f‘°’¢§‘°) - ¢‘1’(f(a»¢g(f(a»)x,L(c, t+ d)

ce,c#f(a)

Xivod =

d-1
—ad, j d.j
+ Z Z ¢,zlx(c)+1 a( J)¢g(c)+a( J)st_j
ceQ| j=0
d-1
j—c(d, j d,j
+ X gy Pe,r0q-j|L(e,t +d)
Jj=0

= ¢,;z(a)+a( f(a))¢123(a)+ﬁ(f(a))xt + R1(2, d, X, 8:) .

Next we prove that E|R,(2,d, x,, ¢,)| is bounded, depending only on d and
Ele,|. Write b = (b,,...,b,) = f(a) and let

A(i) = )y P ®ps®
ceQ,c,#b,,c,=by, k=1,...,i—1
X(S1OBEC — 91E®)x, L(e, t + d),
d

Q(s) = Z Z ¢¢11(0)+j—a(d,j)¢é3(c)+a(d,j)£t+d_j
cel] j=1

d
i—o(d, j) ge(d, j
+ Y ¢{ TIN5y ;| L(e,t +d) + £y p0q-
j=1
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Then
d
Ry(2,d,x,,5) = X A(i) + Q(e).
i=1

Letting Z(c) = ¢2©@pE© — 3P pE®), since p(a) = a(d,d — i) + a(i) and «(a)
= d — B(a) we have
A(i) = ¥ pidDmad d=Dga@ a7 (c)(¢17 D3 Vx,) L(e, ¢ + d)
- ¥ g =g 0z o)z, (e, ¢ + d)
_ Z ¢(1d—i)—a(d,d—i)¢c21(d,d—i)Z(c)

i
x| Y i@ NPge, | L(e,t +d),
Jj=0

where ¥ is summing over ¢ such thatc € Q, ¢; # b;, ¢, = b, k= 1,... ,i— 1.
From the definition of f(-) in (6),

b,= ). a; +ay(mod2)
k=1

= bi—l + ai (modz),
so that c; # b, has four possible cases:
(i) ai = O, bi—l = 0 and Ci = ]..
(ii) ai = 0, bi—l = 1 al'ld ci = 0.
(iii) ai = 1, bi—l = 0 al’ld ci = 0.
Gv) a;=1,b,_;=1land c;= 1.

For case (i), since a, = 0, we have x,_,,, < 0 and, hence,
Xppi = P1%ppio1 T Erui

From b;,_, =0, we have x,,; ; <0, and from ¢, =1, we have x,,; > 0.
Finally, since ¢, > 0 and by the assumption of model (1), we obtain

E[lxt+i|I(xt+i > 0)I( %41 < 0)I(2,1-q < O)]

< [ 613 + elueri(dz, de)
A

< [lelu,.i(dx, de)

= Elg,l,

where A = {(x,£): x <0, ¢ > —¢;x} and p,,; is defined in Section 3.

By using the same argument, we can prove the bounded result for the cases
(ii)—(iv). In other words, we have shown that for any ¢ € &, if ¢, # b;, and
¢, =by, k=1,...,i — 1, then Elx,,;L(c,t + d)| is bounded. Since A(i) is a
linear combination of finite terms of x,,,L(c, ¢ + d), we obtain that E|A(i)| is
bounded. Moreover, it is easy to see that E|Q(¢)| is bounded because @(¢) is a
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linear combination of finite terms of ¢,’s. Hence E|R(2,d, x,, ¢,)| is bounded.
Similarly, we can prove that E|R,(2,d, x,, £,)| is bounded. O

LemMma 4.5. Given x,_4.1,- .-, %,;, define a = y(x,_4.4,...,%,) by (11) and
write | = 1(a) of (7). For 1 <k <ld, write k = id + k; with 0 <k, <d and
define b® = (a4, ..., 0P, af* D, ..., a% D) if by + 0 and b® = a® jfk, =
0, where a) = fi(a) and a'® = a. Then for 1 <k <1d,

-1
Xirk+id = ¢1M(a)¢2g(a)xt+k Ij[lL( fi(b),t+k+ id) + R*(k,d, x,,¢,),

where «/(a) and %(a) are defined in (9) and the remainder R*(k,d, x,, €,)
has a bounded absolute expectation, and f'(b®) = b®,

Proor. Since we can treat ¢ + £ — 1 as ¢, it suffices to prove the lemma for

k=1 Let x,_4,1,...,%, be given, and a = y(x,_4,,...,x,). By Lemma 4.4
and since L(a,¢) = 1 for given x,_4,.1,..., X,
-1
Xevld = ¢f/(a)¢2g(a)xt H L(f'(a),t+ id) + Ry(l,d, x,, ¢,)
i=1
(14) -1

= ¢-ff(a)¢2g(a)x,IJ)L(fi(a), t+id) + Ry(l,d, x,,¢,)

and by the model in (1),

%1400 = P1%erial (Xv1vq-na < 0) + doXial(Xe1va-1ya > 0) +&v14a
Let ¢; = I(x,, 1, —1q > 0)and o, = ¢ + 1 + (I — 1)d. The above equation can
be written as

Xer1+1d = [¢§1¢;—01J(1 —c, @)+ ¢%—01¢§1J(c1, wt)]xt+ld + &41414-

We prove next that one of the first two terms on the right-hand side of the
above equation has a bounded absolute expectation.

Since one of ¢; and 1 — ¢, is not equal to a;, and ¢; and 1 — ¢; play a
symmetric role in determining the dynamic of the process, we can assume,
without loss of generality, that ¢, # a;. We then have

(15) x4 1400 = [d’%_ald’gl'](al’ w,) + d’i_cl‘f’gl‘](cl’ wt)]led t &y1414-

Further, we can expand x,,,,J(c;, ®,) as a linear combination of finite terms
in the form of

xt_,_(l_l)dJ(Cl, w,)J(a(é_l), w; — l)J(a(ll_l), w; — d)

plus a remainder that has a bounded absolute expectation. Using the same
argument as in the proof of Lemma 4.4, we can prove that

Elx,,q_1ad (¢, w,)J(a(é‘l’, w, = 1)d(a{™P, 0, — d)

is bounded under the condition that ¢, # a%™ P + a{~V. Consequently,
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Elx,,,4J(c;, ®,)| is bounded. Let

R*= }_cld’;lxmld'](cl’ ;) + € 4140a-
The above results show that E|R™"| is bounded. By (14) and (15),
Xit1+ld = ¢i_al¢¢lllxt+ld'](a1, wt) +R”

-1
= b1 165107 V67 Wx,J (ay, w,) [T L(f'(a),t +id) + R**,
i=0

where
R** = ¢1" "3 Ry(1,d, 6,)J (ay, 0,) + R™,

which, based on the results shown above, satisfies E|R**| < «. Next, from
Xpp1 = ¢i_a1¢¢2llxt'](al’ t—d+1)+e,,

and by (10), we have

d -1
X101 = OF @SS x, _l_lzJ(aj’t —d +j) I_IIL(fl(a)’t +id)J(a;, w,)
Jj= i=

+ R*(1,d, x,,¢,).
Note that oD+ a{~P = a} = a,. By (10) and rearranging J(a¥), - ) terms,
we obtain

d -1
[1J(a;,t —d +j)TTL(f(a),t +id)J(a,,,)
j=2 i=1

-1 d
= [1J(a;,t —d +/)|TT TTd(aP,t ~ (i = 1)d +j)|J(ay, w,)
j=2 i=1j=1
d
=1 T1d(a;,t —d +j)]|J(a®, ¢t +1)| -
Jj=2
d
x[| TTJd (a0, = (1 -2)d +j))J(a‘1“, wt)]
Jj=2

T

= ]"[lL(fi(b),t +1+id),

i=1
where b = (a,, ..., a4 a). So

-1
Xivid+1 = d’f{(a)d’zg(a)xtﬂ lle(fl(b)’t +1+ id) + R*(1,d,x,,¢,)

and
-1

R*(1,d,x,,¢,) = R** — ¢Z®pF@;  J(a, v, lle(fi(a), t+id),

which has a bounded expectation. O
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Using the previous lemmas, we establish a theorem.

THeOREM 2. Consider the TAR(1) process in (1). Let n be the number of

cycles in Q and a,,...,a, be a set of representatives of the n cycles. Also, let
m be the smallest positive integer satisfying
Z(a,) «(a;)

P(a,) i=§‘,‘.‘?,n{ 2(a,) }
Then the process x, of (1) with ¢, > 0 and ¢, < 0 is geometrically ergodic if
and only if

¢, <1 and ¢FEPLE < 1.

Proor. We begin with the sufficiency. To simplify the notation, write
CG) = C(ay), 1) = l(a,), () = A(a,), B() = #(a,). Let | be the least

common multiplier of (I(1),...,(n)). Then, we have
fl(a)=a, VaeQ.
Given x,_4,,..-,%,, let a € Q such that a = y(x,_4 4, ..., x,) defined in (11).

Suppose a € C(i), then by Lemma 4.4, there exists an M > 0 such that
-1
Xtvid = d’i‘d(l)d’cz"g(l)xt I—IIL( f(a),t +jd) + Ry(l,d,x,;,¢,),
j=

where ¢; = 1/1(i) > 1 and E|R,(l,d,x,,¢,)] <M. By Lemma 4.3, #(i) is an
even number, and since ¢, > 0, we have
Elx, 14l < ¢§‘M(i)¢§’g(i)|xt| + M.
By the definition of m and 0 < ¢, < 1, we obtain that, if ¢F™pF™ <1,
then ¢PPpZ® < 1 for all i. Let n = max,_; 67 PeF); then
¢F™MpPF(™ < 1 implies that 7 < 1 and, hence, ¢5*Dpg?H < n% <n < 1.
Hence, for |x,| large enough,
Elx, 14l < (0 + &)lxyl,

where 7 + &£ < 1. Consequently, given x, o4,15--->%;_q, Xi_gs1r---,%, and
X;_g+1,---s X, large enough, we have

Elxt—i+ld| < (’T] + €)|xt—i| fori=0,...,d — 1.
Thus
ElIX,,4ll” < (n + e)IX,I2,

where X, = (x,,...,%,_q4.1)- By letting g(X,) = | X,|l and using Lemma 1.1,
X,,,q is geometrically ergodic, and by Lemma 1.2, X, is also geometrically
ergodic.

Next, we turn to the necessary condition. If ¢#(™¢pZ™ > 5 > 1, choose
X4 gi1 - %, such that

Y(%X_gi1r---r %) =a€C(m).
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Writing I ='I(m), by Lemma 4.4 we have

- - i
Xyi1q = pef@+Iiz a(f(a))¢ﬁ(f(a))+):, }ﬁ(f(a))x +Ry(l,d,x,¢,)

= ¢pFmpZmx, + R(1,d, x,, ¢,),
where E|R(l,d, x,,¢)| < G w1th G being a constant depending only on I, d
and Ele,|. Therefore,

( 1) - adxt

P((—l)l_a"leds yi=t—d+1,. )

< P(( - l)l_ad(¢‘{”(’"’¢2g(’")xt +Ry(1,d,x,,¢,))

1+
<

( 1)1 adxz

=t—d+1,. )
:P((—l)a“Rl(l,d,xt,st)

x,i=t—d+ 1,...,t)

1+n e
(e

2E|R1(l, d7 Xt Et)l

(1 = m)lx
This shows that there exists an M{® > 0 such that ¢, = 2E|R(,d, x,, €,)|/
(A — M) < 1, and whenever |x,| > M and y(x,_;,1,...,%,) = ais given,

Pl(-1)'"% >1+77 —1)' % >1-
( ) Xtvid 9 ( ) Xe|Xgseoes Xp_gr1 Co

Note that in the above equation with a ; = I(x, > 0), we have (— 1) ~%ax, > 0.
Next, by Lemma 4.5, for 1 < % < Id,

-1

Xivk+id = ¢iv(a)¢2g(a)xt+k lj[lL(fi(b(k))’t +k+ id) + R*(k’d’xwet)’

where E|R*(k,d, x,,¢,)| < M, with M, being finite and f'(b®®) = b‘®. By
the same argument as before, we have that, whenever |x,,,| > M(()k) > 0 and
V(X ph—dgr1r s Xeyp) = b® is given,

1+7n
1-b 1-b(
P{(=1) """ x40 > 2 (1) 7" x, Xpvb—10++1%gtrk—d| > 1-ug¢,

for k=1,...,1d — 1.
By the definition of b® in Lemma 4.5, for &k = id + k, where 0 <k, < d,
P = af+D, if by # 0,
b = a®,  ifk, = 0.
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So, (B¢4+D ..., b4 D) = (af*D,...,al*™ V). Hence, given (x,,q,..., %, ;4)
such that

V(xt+1""’xt+ld) = (f(a)""’ fl(a))

it is easy to show that

b® = y (%, hogitse e Xerr)-
Let M = max(M{?, ..., M{!¢~D); by the property of b shown above, we
have that, given |x,.,l > M, k=1,...,l1d and y(x,.1, ..., %X 9) =
(f(a),..., fia)),
+7

_bk _
Pl(-1? bdxt+k+ld > (_1)1 ngt+k’k =1,...,ld

Xpptseees xt+ld)

o~

> (1 _Ck).

k=1

Let 1 —c=TI4_,1 —¢c,), so that 0 <c <1, and let B = 1/(1 + n). Notice
that if £ = id + &, where 0 <k, <d and

‘Y(xt+1” M "xt+ld) = (f(a)’ crc fl(a))’
then I(fo) >0) =af*P = bfifk’), 50 (— D' %, = lx, 41 20 which says that
if (—1)'"%%,, .., > (=D %%, ,, then x,,,,,, has the same sign as x,_,.

Hence, if

—_p&) _pk)
(_1)1 o Xridvk > (_1)1 b Xtk
holds for 2 =1,...,1ld, then

Y(Xisrde1r- > Xevraria) = Y(Xpwtr o5 Xevia)

=(f(a),..., fi(a)).

By induction, we obtain

+m

1-b 11—
P{(-1) Xgik+ild > (-1) Xgtk+G-1id>

k=0,....,1—1,i=1,...,s8lx,4,...,%;

> ﬁ (1-eB"Y)> (1~ )P,
i-1

Therefore, for any x; € ', j = —d + 1,...,0,
P(lx,] = olx_g41,...,%)
>(1-¢)"" PPyl > M,k =1,...,0d;y(x, ..., %,4)
=(f(@a),..., Fl(a)lx_g41,---5%0)

>0,
and, hence, {x,} is not geometrically ergodic.
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For the case of 0 < ¢, < 1, ¢, < 0 and ¢¥™pF™ = 1, we can use the
same techniques as those of Section 3 to show that x, is not ergodic. For
simplicity, we consider here the case of d = 2, but the same method applies to
general d. For d = 2, the condition is ¢,¢2 = 1. Given x, > 0, the model
implies that

(16) x40y = d1x, I(%x,_1 <0) + dox, I(x, 1 2 0) + 2,44,
(17)  %ppn = d1box, I (x,_1 <0) + &32,1(%x,_1 2 0) + Poe, 1 + €4un,
(18) x4 = 1%, 0I(%, 41 <0) + box o I(%,41 2 0) + 8445
By (16), we have
(19) %01 1(%, <0) = (1%, + £,4.1) I(x,_, <0),
(20) X0 11(%,1 2 0) = (o, + £,41) I(x,1 2 0).
Since ¢,d, < 0, it is easily seen that
b1$2%, 111 (%41 <0) 2 0 2 32, 11(%,,1 <0),
which, by (19), implies that
$18a(b1x, + £,,1) (%, 1 <0)I(x,41 <0)
> ¢3(d1x, + &, 1) I(%,_1 <0)I(x,,1 <0).
Since ¢2 > 0 and ¢,¢, < 0, we have
$3%, 1 I(%,41 2 0) 2 0 2 $1¢5%,11(%,,, 2 0),
which, by (20), shows that
G3(dox, + £,41) I(%,01 2 0)I(%,_; 2 0)
2 ¢1¢o(box, + £,41) (2,41 2 0)I(x,_; 2 0).
Using (17), the fact that ¢,¢2 = 1 and (21), we have
Iy = ¢y, 51(%,,, < 0)
= ¢i[b1ox I(x,_1 < 0) + 3%, I(x,_; 2 0) + bye,iq + £145]I(%,41 < 0)
= pibox, I(x,_1 < 0)I(x,11 <0) + ¢ 132, I(x,_1 = 0)I(x,,, <0)
+ b198, 1 1(%41 < 0) + by, 5 I(%,,; <0)
= ¢102( b1, + &, 1) (%1 < O0)I(2,4 4 <O0) +x,I(x, 1 > 0)I(x,., <0)
+ 1o, 1 I(%,41 < O0)(1 — I(x,_1 < 0)) + 1,4 51(x,11 <0)
= ¢b105(b1x, + &, 1) (%1 <0) (2,44 <O0) +x,I(x,_; 2 0)I(x,., <0)
+ b1ba8, 1 I(%y0 1 <0)I(x,_1 2 0) + ey, 5I(x,,4 <0)
> 3(d1x, + e ) I(2,_y <0)I(2,00 <0) + 2, 1(x,; = 0)I(%x,,; <O0)
+ b1o8, 1 I(%,01 < 0)I(x,_1 2 0) + by, 5I(x,4; <0)
=xI(x,; <0)I(x,1 <0) +x,I(x,_; > 0)I(x,,, <0)
+ 160 (x,01 < 0) + 1o, 1 I(%,41 <0)I(x,_, 2 0)
+ ¢3e, 1L (%,4 < 0)I(x,; <0)
=x,1(%,,1 <0) + b1doe, 1 I(x,01 <0)I(x,_1 > 0)
+ dder1L(%,01 <0)I(x,_; <0) + bre,5I(%x,,1 <0).

(21)

(22)
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Similarly, by (17), the fact that ¢,¢2 = 1 and (22), we can show that
I, = ¢y2, 4 51(%,41 2 0)
> x,I(x,.1>0) + b3, I(x,.1 > 0)I(x,_, <0)
t $1d28, 1 L(%,01 2 0)I(2x,_1 2 0) + o, pI(%,1 2 0).

Now, using I;, I,, (18) and the above two inequalities, we obtain

X3=1 +1I, + &4
(23) > %, + €43 T rpa[ 01 1(%01 < 0) + bpl(%,4, 2 0)]

+ e, 02(x, 1 < 0) + ¢15I(x,_, = 0)].

From (23), we define y; = x; and
Ye=Yi_1+m, fort>1,
where n, = &5, + £3,_12) + £5,_,2® with
2V = ¢1I(x3,_1 < 0) + ¢pI(x5_; 2 0)

and z® = ¢3I(x5,_, < 0) + ¢,¢,I(x5,_, = 0). For d = 2, since &g, £4,_; and
€3, are independent of y, ; for i > 1, £5,_; and 2{V; are independent for
i >0, and £5,_, and z{®; are independent for i > 0, it is easy to show, by
using a similar argument to that of Section 3, that E[y,ly,_1,...,y,1=1y,_1,

that is, {y,} is a martingale. Let
T, = inf{tlt > 1,y, <0}, T, = inf{t|lt > 1, x,, < 0}.
For t < T,,
Elly, 1 —ydlyr -]
= E[lnlly,, . .. e
< Eleg, sl + Elegy s ol E[l11( %541 < 0) + ¢oI(23,,1 = O)llyy, ..., 5]
+ Eleges |E[|631(x5,_1 < 0) + 1651 (x5,_1 > 0)llyy,. v

< Eleg, 5l + (4] + |@ol)Eleg, ol + (|¢§| + lp1hsl) Eleg, |
< K < oo,

Therefore, by the same argument as that in Section 3, {x,,} is not ergodic,
and neither is {x,}. Finally, for the case of ¢, > 1, ¢, < 0, the proof used in
Section 2 can be emplcycd to show that the process is not geometrically
ergodic. O

By the symmetry between ¢; and ¢, in model (1), a similar result to
Theorem 2 holds for the case of ¢; < 0 and ¢, > 0.

For any given d, Theorem 2 provides two numbers, namely, 2/(m) and
#(m). We conclude this paper by defining s(d) and #(d) of Theorem 1 to be
these two numbers, respectively, for the general TAR(1) model in (1).
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