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STEIN’S METHOD AND MULTINOMIAL APPROXIMATION*

By WEI-LiIEM LoH

Purdue University

In this paper Stein’s method is considered in the context of approxima-
tion by a multinomial distribution. By using a probabilistic argument of
Barbour, whereby the essential ingredients necessary for the application of
Stein’s method are derived, the Stein equation for the multinomial distri-
bution is obtained. Bounds on the smoothness of its solution are derived
and are used in three examples to give error bounds for the multinomial
approximation to the distribution of a random vector.

1. Introduction. Stein (1970) introduced a powerful and general method
for obtaining an explicit bound for the error in the normal approximation to
the distribution of a sum of dependent random variables. This method was
extended from the normal distribution to the Poisson distribution by Chen
(1975). Since then, Stein’s method has found considerable applications in
combinatorics, probability and statistics. Recent literature pertaining to this
method includes Arratia, Goldstein and Gordon (1989, 1990), Baldi and Rinott
(1989), Barbour (1988, 1990), Barbour, Chen and Loh (1990), Bolthausen and
Gotze (1989), Chen (1987), Gotze (1991), Green (1989), Holst and Janson
(1990), Schneller (1989), Stein (1990) and the references cited therein. Stein
(1986) gives an excellent account of this method.

In this paper we consider Stein’s method in the context of approximation by
means of a multinomial distribution. To obtain the necessary ingredients for
the application of Stein’s method, we use a probabilistic argument of Barbour
(1988) which we shall now sketch. At the heart of Stein’s method lies a Stein
equation. For example, in the case of the normal approximation we have

df
dw(w) ~wf(w) =g(w), VweR,

and in the Poisson approximation, we have
Mw+1) —wf(w) =g(w), YweZ.

Barbour (1988) observed that we can associate with each of these equations a
stochastic process. For the normal approximation, we have the Ornstein-
Uhlenbeck process and for the Poisson approximation, we have the immigra-
tion-death process with immigration rate A and unit per capita death rate.
One of the basic ingredients of Stein’s method lies in the problem of getting
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smoothness estimates for the solutions of Stein’s equations. By embedding the
Stein equation in a stochastic process, bounds on the smoothness estimates
may be obtained by probabilistic arguments. In many cases, these arguments
are easier to apply than the usual analytic ones. This probabilistic technique
has been successfully applied to Poisson process approximations, multivariate
Poisson approximations [see Barbour (1988)], diffusion approximations [see
Barbour (1990)], compound Poisson approximations [see Barbour, Chen and
Loh (1990)] and multivariate normal approximations [see Gé6tze (1991) and
Bolthausen and Gotze (1989)].

The rest of this paper is organized as follows. Section 2 develops the basic
ingredients of Stein’s method in the multinomial setting. In particular, the
Stein equation for the multinomial distribution is obtained in Theorem 1 and
smoothness estimates of its solution are given in Theorems 2 and 3. In Section
3 these results are used in three examples to give error bounds for the
multinomial approximation to the distribution of a random vector. The first
example involves the base M expansion of a random integer and the second
gives a multinomial approximation to the multivariate Poisson binomial distri-
bution. The third example gives a similar multinomial approximation to the
multivariate hypergeometric distribution. Unfortunately, the error bounds
obtained in these examples are somewhat crude. However, we feel that future
research would inevitably sharpen these results. On the more positive side,
this paper gives yet another probability distribution, namely the multinomial
distribution, for which Stein’s method can be applied. This should, at the very
least, contribute to a broader and hopefully better understanding of Stein’s
method.

2. Multinomial approximation. We first consider the following multi-
urn version of the Ehrenfest model with continuous time. Let there be M urns
and N balls distributed in these urns. The system is said to be in state
n=(ny...,n,) if there are n; balls in urn i, i = 1,..., M. Events occur at
random times and the time intervals T between successive events are indepen-
dent random variables all with the same exponential distribution

P(T >t) =exp(—Nt), Vit=0.

When an event occurs, a ball is chosen uniformly at random, removed from its
urn and then placed in urn ¢ with probability p,, i=1,..., M, with
LXipi=1

The state of the system at time ¢, Z*)(¢), is a stationary Markov process
with continuous time having state space

M .
Q= (kl""’kM):Zki=N’ki20’1SiSM N
i=1

where Z((0) = n. It is clear that the stationary distribution of Z(¢) is
MULT(N, py, ..., py), the multinomial distribution with parameters
N, py,..., py- Multi-urn versions of the Ehrenfest model were first proposed
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by Siegert (1950) and a treatment can be found in Karlin and McGregor

(1965).
The rest of this section is heavily influenced by the techniques developed in
Barbour (1988). For A c (), define

(1) fa(n) = f:[P(z<ﬂ>(t) € A) - P(W € A)] dt,

where W ~ MULT(N, p,,..., py) and ¥ ¥ n, = N. Also for simplicity, we
define 1,(-) to be the indicator function of A and e® to be the M-tuple with
the ith component equal to 1 and its remaining M — 1 components equal to 0.
We shall now proceed to derive a bound on f,.

ProOPOSITION 1. With the above notation, sup,, c olfa(n)l < N.

Proor. Let 7; denote the time taken for ball i to be chosen the first time,
i=1,...,N. Then it is easy to see that when ¢ > max;_;_, 7;, we have
Z"(t) ~ MULT(N, p,, ..., py)- Thus

Ifa(n)l =U:E[IA(Z‘"’(t)) — I,(W)lmax 7; > t| P(max r; > t) dt

< N[ P(r;>t)dt
0

= N.
The last equality uses the fact that 7, is a standard exponential random
variable. O

Next we define
(2) A; fa(n) = fa(n - e® + e(j)) — fa(n),

whenever n,n —e® + e € Q) and A c Q.

THEOREM 1. Let f, be defined as in (1). Then f, satisfies the equation

M
(3) Y nip; A, jfa(n) =P(WeA) —I(n), VYneQ.

i,j=1

Proor. Let fu(n,t) = [({P(Z"(u) € A) — P(W € A)ldu. By considering
the first jump of the process Z"X(u), we have

fa(n,t) = ]O‘e—Nu uN[I(n) — P(W € A)]

(4) < () 4 o
; + Y npifa(n — e+ eVt —u))du

i,j=1

+te~M[I,(n) — P(W € 4)].
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We observe as in the proof of Proposition 1 that
(5) Ifa(n,t)l <N, Vi&¢>0.
Thus it follows from (4) and the definitions of f,(n) and f,(n,t) that

fun) = lim fo(n, 1)

= N"[I(n) - P(W € 4)]

e} M . .
+hm [ e™™ Y n,p;ifa(n—e®+eP, t —u)l, (u)du

f=e’0 i,j=1

M
=NYI(n)—-P(WeA)+ Y n,pfa(n—e®+eP)|.
i,j=1

The last equality uses (5) and the dominated convergence theorem. This
completes the proof of Theorem 1. O

REMARK. The Stein equation for the multinomial distribution is given by
(3). This equation is of crucial importance in our applications in Section 3.

The next theorem gives an estimate of the ‘““smoothness” of f,(n) by
bounding A; ; fo(n).

THEOREM 2. Let f, be defined as in (1). Then for N > 1, we have

, iFCON-1/2 < 1
A, ; < ’
P 0| i Fa(n)l 2CON~12(1 — CON~12/2),  otherwise,

neQ:n;>
where C® = sup, _ [C(, j) A C(j,i)] and
1/2 1 1/2
e B
2ep;(1 — p;)

Proor. Without loss of generality, we shall assume that i+ ;. Let
n,n — e + e € . It is convenient to couple f,(n —e® + ) and f.(n)
on the same probability space as follows. Let there be M urns and initially
(ie., at time ¢ = 0), N + 1 balls are placed in these urns such that »,, balls
are placed in urn m, m # j, and n; + 1 balls are placed in urn j. Suppose for
convenience that the balls are labeled 1 to N + 1. Select a ball from urn i (say
ball a) and select a ball from urn j (say ball b).

We assume that events occur at random times and time intervals T be-

tween successive events are independent random variables all with the same
‘exponential distribution

P(T >t) =exp(—Nt), Vit=0.

6 C(i.7) = .%+_3_+._~_~1_~__
( ) (Lul) - [pi pj epj(l _pj)
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When an event occurs, a ball is chosen uniformly at random from the N balls
numbered 1 to N + 1 excluding ball b, removed from its urn and then placed
in urn m with probability p,,, satisfying Z_ p, = 1. We further impose the
condition that the balls a and & have identical jump times and they jump to
the same urn. This implies that the processes of these two balls coincide after
their first jump.

Foreach I,1 <! < N + 1, let 7, denote the time ball [ is picked for the first
time. Thus 7, = 7, and balls a and b are kept in the same urn whenever
t > 7,. Also the law of 7, is the standard exponential distribution such that the
7,’s, I # b, are stochastically independent. At time ¢, we define for m =
1,..., M,

a(t) =e™ ifball a isinurn m,
b(t) =e™ ifball bisinurn m.
Writing n' = (nq,...,n,_,n; — 1,n,,4,...,n,), it follows from (1) and (2)
that
A, fa(n) = [0°°[P(z<n’>(t) +b(t) € A) — P(Z"(t) + a(t) € A)] dt.
From the above coupling construction, we observe that a(¢) = b(¢) whenever

t > 7,. Hence
Ai,ij(n)

@ = [ELL(ZS0 +5(0) - L(Z90) + a) < 7| Pt <) d
0

= f°°[P(Z<"’>(t) +eW e A) = P(Z"(t) + e® € A)|e ' dt.
0

The last equality uses the independence of r, and Z(¢). Since |P(Z™(¢) +
e e A) — P(ZU(t) + e® € A)| < 1, it follows from (7) and Lemma 1 (see
the Appendix) that

w c®
[A; fa(n)l < 1A e tdt
»J A( ) /;) [(1_e_t)N]1/2
1, if CON~1/2> 1,
- | 2CON-V2(1 - CON~2/2),  otherwise.

This completes the proof. O

CoroLLARY 1. Let f, be defined as in (1) and p, = ‘- =py=1/M.
Then for N > 1, we have

“+

. | 1, if 3.3yM/N =1,
A, <
ne(s;:lrlz),>0| i faln) 6.6/M/N (1 — 3.3yM/N /2), otherwise.
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Proor. The proof is immediate from Theorem 2 by assuming M > 2 since
the M = 1 case is trivial. O

REMARK. The coupling used in the proof of Theorem 2 was suggested by a
referee. The coupling that was originally constructed gives, in general, slightly
cruder bounds and can be found in Loh (1991).

We end this section with a bound for A; ;[A, ; fu(n)].

THEOREM 3. Let f, be defined as in (1). Then for N > 2, we have
sup OIAj,i[Ak,ij(n)”

neQ:n;>0,n,>
1, ifCP[2(N - 1)] ' =1,
<{ C® [Z(N -1) [ c®

2
1 .
N_1 og c® 2(N = 1)] , Ootherwise,

where C® = sup; ; 4. ;4 1+,;CU, 5, k) and

2 2
C(j,i,i)=—+ —,

P D,
2 1
C(j,i, k) = + + —
(8) epi(l _pi) epk(l _pk) p;
2 3 1 2ro 3 1 1/2
+ |-+ =+ —— —t = —
p; p; ep(1-—p;) pi Pr epr(1 —py)
fori # k.

Proor. Without loss of generality, we can assume that i #j and % #j,
since otherwise we have A ,[A, ; fu(n)] = 0. .
Let n € Q with n;,n, nonzero. We shall couple f4(n), fo(n — e® + ),
fa(n —e® + e®) and fy(n — e’ + e®) on the same probability space as
follows. Let there be M urns and N + 2 balls. Initially at time ¢ = 0, these
balls are placed in the urns such that n,, balls are placed in urn m whenever
m+#i,j and n,, + 1 balls are placed in urn m whenever m =i, j. For
convenience, we suppose that the N + 2 balls are numbered from 1 to N + 2.
Case I. Suppose i # k. Select a ball from urn i (say ball a), select two balls
from urn j (say balls & and b”) and select a ball from urn & (say ball ¢).
Case II. Suppose i = k. Select two balls from urn i (say balls a and ¢) and
select two balls from urn j (say balls ' and b").
. We assume that events occur at random times and time intervals T be-
twéen successive events are independent random variables all with the same
exponential distribution

P(T>t¢t)=exp(—Nt), Vit=0.
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When an event occurs, a ball is chosen uniformly at random from the N balls
numbered 1 to N + 2 excluding balls 4’ and 4", removed from its urn and then
placed in urn m with probability p,,, m = 1,..., M. We further impose the
condition that balls a and 4’ have identical jump times and they jump to the
same urn. Thus the processes of these two balls coincide after their first jump.
Likewise we assume that balls b” and ¢ have identical jump times and they
jump to the same urn.

Foreach /,1 <! < N + 2, let 7, denote the time ball / is picked for the first
time. Thus 7, = 7,, and 7,» = 7,. A consequence of this is that once picked,
balls a and b’ shall always be kept in the same urn and balls 4” and ¢ shall be
kept in the same urn. Also the law of 7, is the standard exponential distribu-
tion such that the 7,’s, [ # ¥, b”, are stochastically independent. Next we write
n = y,...,n,) with

, n,,, ifm=#j,k,
"m=\n, -1, ifm=jk.
Furthermore at time ¢, we define for m = 1,..., M,

a(t) =e"™ ifball a isinurn m,
b'(¢) =e™ ifball b isinurn m,
b"(t) =e™ ifball b” isin urn m,
c(t) = e ifball ¢isinurn m.
For simplicity, we write
@ - L(Z9(t) + e + eW) — L(Z(t) + 2¢)
+ L(Z™(t) + e + e®) — I,(Z™(t) + D + e®).

Since a(t) = b'(¢) if ¢ > 7,, and b"(¢) = c(¢) if ¢ > 7,, we have D = 0 whenever
t > 7, A 7,. Hence it follows from (1) and (2) that

A;i[Ar, ;i fa(n)] = Fa(n — e® +e®@) = fy(n — e® + &)
~ Fu(n = €9+ ¢©) + £y(n)

(10) = [[E(D)P(t <7, A7) dt
0 .

= [(E(D)e *at.
0 .

The lést equality uses the observation that 7, and 7, are independent standard
exponential random variables and that 7, A 7, and D are stochastically inde-
pendent. Since [D| < 2, it follows from Lemma 2 (see the Appendix) and (10)
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that
'Aj,i[Ak,ij(n)”
o c®
sfo [2 A Fgpivy I)Je‘2‘dt
1, if C®/[2(N -1)] =1,
={ c® 2(N - 1) c® T .
N—llo[ c® ] l2(N—1)]’ otherwise.

This proves the theorem. O

CoROLLARY 2. Let f, be defined as in (1) and p, = -+ =py =1/M.
Then for N > 2, we have

sup OIAj,i[Ak,ij(n)]I

nEQ:nj>0,n,,>
1, if BM(N-1)""'>1
<|loM (N-1 5M
N-1 Og( 5M )+(N—1

2
) , otherwise.

Proor. The proof follows from Theorem 3 by assuming M > 2 since the
M =1 case is trivial. O

3. Applications.

3.1. On the base M expansion of a random integer. Let k and M be
natural numbers, with M > 2, and X a random variable uniformly distributed
over the set {0,...,% — 1}. Define N to satisfy M¥~! <k < M". Then the
base M expansion of a = 2 — 1 and X can be written as

a = Z aiMN_l, X= Z XiMN_L,
i=1 i=1

where a;, X; €{0,..., M — 1}. Also define for i = 1,..., M,

N
U=% I(Xj=i—1)’ U= (Uy,...,Uy).
j=1
We are interested in approximating the distribution of U by a multinomial
distribution. We note that the dlstrlbutlon of U is exactly MULT(N,1/M,
o /M) if k= MY
Variations of this problem when M = 2 have been studied by Delange
(1975), Diaconis (1977) and Stein (1986). In particular, the expected value of
the number of ones, U,, in the binary expansion of a random integer was
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studied as a function of £ by Delange. Diaconis (1977), jointly with Stein,
exhibited a central limit theorem for U,. Stein (1986) showed that for large £,
U, has approximately a binomial distribution. His argument is more analytic,
rather than probabilistic, and it is not immediately clear how it could be
extended to treat the general multinomial situation.

We shall use the total variation distance as a means of measuring how close
the distribution of U is to MULT(N,1/M,...,1/M).

DEeFINITION. The total variation distance between two probability measures
F and G on ( is defined by

d(F,G) = sup|F(A) - G(A)l,
A

where the supremum is taken over all subsets A of Q. Also for simplicity, we
denote the law of a random vector S by -Z(S).

THEOREM 4. For M > 2, we have
d(£(U), MULT(N,1/M,...,1/M)) <3.3(M - 1)MyM/N .

Proor. First we construct an exchangeable pair of random vectors (U, U*)
on the same probability space as follows. Let I be a random variable uniformly

distributed over {0,..., M — 1} and let J be a random variable uniformly
distributed over {1, ..., N} with I, J, X mutually independent. Define
N
X* = Z Xi*MN_i,
i=1
where
X, ifi+d,
Xr={X,, ifi=dJand X-X,M"N7+(M-1)M "7 >,
I, ifi=Jand X-X,M"7+(M-1)M""7 <.
Define fori =1,..., M,
N
[Ji*= Z I(X}"=i—1}’ U* =(U1*""’U1iﬂ4<)'
j=1

The following alternative construction shows that (U, U*) is exchangeable.
First choose (I’, I”,J) uniformly at random from the set {(i’,i", j): 0 <,
i”<M-1, 1<j<N}. Next choose (X;,..., X, 1, X,,1,..., Xy) uni-
formly at random from {(x,..., %, 1, % 0, ..., Xn): L, %, MN7F <k} If
(M- DMV 7+ %, ,X; MV~ <k, we define
X=I'M"7+ ¥ X,MN~, X*=I'M7+ Y X,MN-i.
itd it
On the other hand, if (M — VMY~ + ., X,M"~* > k, let M, denote the
* greatest integer satisfying MoMY~7 + ¥, X, MV~ < k. Choose I"” uni-
formly at random from {i: 0 < i < M,}. We define
X=X*= I///MN—J + Z XiMN_i.

i#+dJ
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The symmetry of (X, X*) in the above construction immediately shows that
(U, U*) is an exchangeable pair of random variables.
Next we consider, as in Stein (1986), the antisymmetric function

(U, U*) = fa(U) Iy_ys—eir v ety = FA(U* ) sy — e 1 00y
with f, defined as in (1). Then
0= E[ fA(U)I(U=U*—e(”+eU)) - fA(U*)I(U*=U—e“’+e‘j’)]
=E[fi(U)P(U* = U + e — eV|X)
—fa(U = e® + eD)P(U* = U — e® + eV)X)]
=E[fA(U)U’_R U"_R“],
MN MN

where R, =|{m: X, =1-1, X=X, M¥N"" + (M -1D)MN"" >k}, [=
1,..., M. Now it follows from Theorem 1 that

|IP(Ue€A) - P(WeA)

J o_ FA(U = e® + )

M
IE Y [fa(U—e®+e) —fA(U)](R,-/M)I

i,j=1

(11)

M
< sup  Ifa(n — e +eV) —fy(n)EY (1 - 1/M)R,,

n,n—eW+eeQ =1

- whenever A c Q with W~ MULT(N,1/M,...,1/M). We further observe
from the definition of R, that

ER, = f,; P[X>k—(M-1)MN-"]

m=1

N
=Y (M-1)MN-"™/k

m=1

(M-0)M/(M - 1),

IA

and hence

(12) (1-1/M) § ER, < (M- 1)M/2.
=1

We conclude from (11), (12) and Corollary 1 that
[P(UeA) -P(WeA)l <33(M-1)MyM/N .

This completes the proof. O

REMARK. We do not know if the rate given by Theorem 4 is optimal. A
referee conjectured the right rate to be YyM /N at worst.
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3.2. On the multivariate Poisson binomial distribution. Let XV,... XV
be independent M-variate random vectors such that P(X = e‘”") =p',

whenever 1 <m <M,1<Il<N,and Z¥_ p) = 1 for each 1. We define

N
S=(8S1,...,8y) =Y X, m=N"1 Zp”).
=1 =1
The random vector S is said to have the multivariate Poisson binomial
distribution. In this example, we are interested in approximating the distribu-
tion of S by a multinomial distribution. It is clear that if p{") = p, for all
1<m <Mandl <! < N, then the law of S is exactly MULT(N, p;, ..., pa)-
For the special case of M = 2, this problem has been given a comprehensive
treatment by Ehm (1991) using also Stein’s method. However, his solution
rests on solving the Stein equation, namely (3) explicitly. While this is possible
for M = 2, it is unclear how that argument could be extended to arbitrary M.

THEOREM 5. Let CV and C® be defined as in Theorem 2 and 3 respec-
tively. Then for N > 2, we have

d(./(S) MULT(N, ps,. .., Pu))

c® 2(N - 1) c» 1
) (O]
< £ T intp, - o pl‘{N—ll"g[ c® J+[2(N—1)]

I=1i<j

+9CN-1/2 min[ l—l ( p )) n ( (l ))

\

Proor. For each 1 <l <N, we write S®¥=Y%,,,X® and X¥ =
(X0, .., XP). Letting W ~ MULT(N, p, ..., py,), it follows from Theorem
1 that for A c Q, we have

P(WeA) —P(S € A)

—EZ Z XOp;[ fa(S — e + D) — f4(S)]

whenever max{C‘VN~-1/2 CP®[2(N - 1)]71} < 1.

=11 j=
N M’ . .
—EY, ¥ pUp[fa(SD +eD) = f,(SV + )]
l=11i,j=1
N A |
=F Z (pfl)pj —pj(l)pl)[ fA(S(l) + e(J)) _ fA(S(l) + e(‘))]

Il

1i<j

l
N .
=L (pfl)pj —-pj(l)pl <E[ fa(S — XD + e

I=1i<j
—fa(8 = X© + e®) + (S — eV + e®) — f,(S)IS; > 0] P(8; > 0)
+E[fA(SD +e) = fo(S© + eD)IS; = 0] P(S; = 0)}.



STEIN’S METHOD AND MULTINOMIAL APPROXIMATION 547

Hence it follows from Theorems 2 and 3 that
[P(WeA) —P(S A

< sup A L[4 'fA(n)]IZ Y IpPp; - pPp
neQ:ny>0,n,>0 I=1i<j
+  sup  [Ay i fa(n)l Z Y pp; — pPp;l H (1-p)
nEQ,n,«:>0 I=1i<j
c® 2(N - 1) c<2> z
< 1 + | — (O] )y
{N —1 Og[ c® ] 2(N - 121 EJ'PL P; — p; pil

+ 2CON-1/2 Z Y pp; - p"pil n (1-p),

I=1i<j

whenever max{CVN~1/2 C@[2(N — 1)]"'} < 1. The theorem now follows
from the symmetry of i and j in the above argument. O

In the special case of the binomial approximation to the Poisson binomial
distribution, Theorem 5 reduces to the following corollary.

CoroLLARY 3. Let CV and C® be defined as in Theorems 2 and 3
respectively. Then for N > 2, we have

{ c® 2(N - 1) c®
< 1 log[ ] +

N - c® 2(N - 1)

whenever max{CPN~1/2 C@[2(N — 1)} < 1.

2 N
+ 21‘”} Y b — pyl,
-1

ReEMARK. Ehm (1991) showed that for M = 2 and p1 €(0,1),

d(-£(S), B(N, py)) = Z (p® - p1)%,

1
124 [1 " Npy(1 _Pl)
1 2
A(L(S), BV, ) £ s Typd 7)) 2 (P = pa)’

Comparing this result with that of Corollary 3, we infer that the bound given
by Theorem 5 is unfortunately somewhat crude.

3.3. On the multivariate hypergeometric distribution. Consider a popula-

tion .of N, individuals, of which «; are of type 1, a, are of type 2,..., a,, are
of type M with ¥ ¥ @, = N,. Suppose a sample of size N is chosen without
replacement from among these N, individuals. For each i = 1,..., M, let V;

denote the number of individuals of type i found in the sample. Then the
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random vector V = (V,,...,V,,) is said to have the multivariate hypergeomet-
ric distribution with parameters N, «,..., a,, [see, e.g., Johnson and Kotz
(1969)]. When M =2, it reduces to the usual hypergeometric distribu-
tion. In this subsection we are interested in approximating the distribution of
V by MULT(N, py,..., py), where p, =a,/N,, i =1,..., M.

THEOREM 6. With the above notation,

d(£(V), MULT(N, py,...,Pu))
M
<min{(N - 1)N/(2N,), (1 A 2C<1>/W)(1 -y a?/Ng)NZ/NO},

i=1
where CV is defined as in Theorem 2.

Proor. Let W ~ MULT(N, py,..., py). We couple V and W on the same
probability space in the following way. Choose the sample of N individuals
with replacement from the population of N, individuals. This determines W.
If there are no repetitions, set V = W. Otherwise, replace those repeated
individuals in the sample by individuals chosen at random uniformly from the
remaining population without replacement so that the eventual sample has no
repetitions. This determines V. Consequently, we have

d(Z(V), £(W)) < P(V+W)

N-1
(13) <1- JI@-i/Ny)
i=1

<(N-1)N/(2N,).

The above argument was suggested to us by Professor Herman Rubin.

As in the first example, we now construct an exchangeable pair of random
vectors (V, V*). Suppose we have the sample of N individuals obtained in the
manner described in the first paragraph of this section. This determines V.
Now choose an individual, call it a, uniformly at random from the sample and
independently choose another individual, call that b, uniformly at random
from the population of N, individuals. If b is already in the original sample,
define V* = V. Otherwise, replace a by b in the sample. Define for each
i=1,..., M, V* to be the number of individuals of type i found in the revised
sample. Write V* = (V*, ..., V3i).

By considering the antisymmetric function

(V7 V*) — fA(V)I(V= V*—etelyy ™ fA(V*)I(V*=V—e(i)+e(j’)7

with f, defined as in (1), we have
0= E[ fA(V)I(V=V*—e(i’+e(J)} - fA(V*)I(V*=V—e(i)+e‘j)}]

=E[fa(V)P(V* =V + e® — eD|V)

—fa(V = e® + eD)P(V* =V — e® + eD|V)]
V.p; V. ) V.p; V.

=E|fa(V) 2|1 - ——| = fa(V—e® + )21 - ——||.
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From Theorems 1 and 2, we have
IP(Ve A) — P(WeA)
< sup Ifa(n — e® + e(j)) —fa(n)E Z ViVj/NO
n,n—e®+eNeq I, Jil#]
(14) . <(1A209/YN) ¥ (EV,)(EV;)/N,
i, jritj
M
<(1A 2C(1>/\fﬁ)(1 -y af/Ng)Nz/No.
i=1

In the second to last inequality, we have used the fact that for i #j, V, and V;
are negatively correlated. Now the result follows from (13) and (14). O

COROLLARY 4. Letp,= - =py=1/M. Then
d(Z(V), MULT(N,1/M,...,1/M))
< min{(N - 1)N/(2N,), 6.6(1 — 1/M)YM N3/2/N,}.

Proor. This is immediate from Corollary 1 and Theorem 6. O

RemARk. This example is probably the least satisfactory of the three
examples considered in this section. It is known [see Ehm (1991)] that in the
case M = 2,

C(N -1)/(Ny = 1) <d(£(V), B(N,p,)) < (N =1)/(No = 1),

whenever 1 < N < a; A a,, for some universal positive constant C provided
that Np,(1 — p,) > 1. This indicates that the bound given by Theorem 6 is not
optimal for M = 2 (for large N, the bound is essentially a factor N'/2 too
large) and also probably not for M > 2.

APPENDIX

LeEmMMA 1. With the notation of Theorem 2, we have

-1/2

IP(Z™)(t) + e € A) — P(Z(t) + e € A) < CO[(1 - e ) N] V.

Proor. We shall use the same coupling and notation as in the proof of
Theorem 2. We write
ZM(t) = W(t) + Y(2),
where W(¢) = (Wy(2),. .., Wy, (#)) and W, (¢) denotes the number of balls in urn
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m (neglecting balls a and b) at time ¢ which have not been picked even once.
It is easily seen that

B(n,,e™"), ifm#i,
Wn(2) ~ _ . .
B(n;-1,e7"), ifm=i.
B(n,,,e™") denotes the binomial distribution with parameters (n,,, e ). Fur-
thermore, given that W(¢) = k, with 2 = (k,,...,ky)and K=Y %, ,
Y(¢) = (Yy(2),...,Yy(t)) ~MULT(N - K- 1,p,,..., Py)-

Thus

P(Z"")(t) + e e A) - P(Z"")(t) +eD e A)

(15  =ZPW@0 =k T (P[Y(t) =1~ e W(t) = k]
k l:l+keA

—P[Y(t) =1 - eD|W(¢) = k]}.
We observe that

| T {P[Y(t) =1 — eDIW(¢) = k] — P[Y(2) =1 - eD|W(z) = k]}|
l:l+keA

lipj
l.p.

< ¥ P[Y(t) =1-eDIW(¢) = k]|1 - -

1:1;#0

(16)
+ P[Y;(2) = 0IW(¢) = k]
Lipj

9y 1/2
N-K-1
<{(E|]l - ——— + (1 - p; ,
<{ (Lj+1)pi } ( pj)

where L =(L,,...,L,) ~MULT(N - K — 1, py,..., ppyy)- The last inequal-
ity uses the Cauchy—Schwarz inequality. To bound the right-hand side of (16),
we first write

1

L;p; B p;\ 2L;
E[l_(Lj+1)pl _Elﬁ(p—,-)Lj+1
D; 2 L(L;-1) L;
(17) +(E) [(Lj+1)(Lj+2) L0, 2)

L(L-1) L,
(Li+ )L +2) (L + DL, +2) ||
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Some straightforward algebra reveals that
p.l

L +1 - 1P =0),

Ly(L;-1)
( )E(L +1)(L +2)‘ —P(L;=0),

( )E(L +1)(L T = 1
p(N-K)’

(pj) L(L; - 1) 3
2\ E ; < :
pi) (L;+1)(L,+2) pi(N-K)

Dp; L; 1

—| E ) < .

pi) (L;+1)(L;+2) P(N-K)
Hence it follows from (17) that

E|1 Le, 1 p O+t 2 Cus
. A — < .= <
@+ 05| <FL=0 o) P (=K SN-K
where

2 3 1

+—
p; p; epi(1-p))
Now from (15) and (16), we get
IP(Z®(t) + eY) € A) — P(Z™)(t) + e € A)

971/2

e 1 1/2
< {c22 + [2ep,1 - 1] }(EN_—Z_WTtT)

1/2

< ZP(W() =k){ E(l " @ um

<C@, Hla-eHN]”

with C(i, j) defined as in (6). The second to last inequality follows from
Jensen’s inequality and the last inequality uses the fact that ¥, W, (¢) is
distributed as B(N — 1, e ). From the symmetry of i and j in the above
argument, we conclude that

, IP(Z™(¢) + eV € A) — P(Z™(2) + e® € A)

< [C(i,j) A€, D[ -eHN] T
Taking the supremum over all i, j satisfying { <j proves the lemma. O
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LEMMA 2. With the notation of Theorem 3, we have
IE(D)| < C®[(1-e *)(N-1)] ",
Proor. We shall use the same coupling and notation as in the proof of
Theorem 3. We write
ZM(t) = W(2) + Y(2),

where W(¢) = (Wy(2), ..., Wy, (#)) and W, (¢) denotes the number of balls in urn
m, m =1,..., M (neglecting balls a, b', b” and c), which have not been picked

even once up to time ¢. It is easy to see that
B(n,,e™"), ifm=+j,k,
Wm(t) ~ —t ] y
B(n, -1,e7"), ifm=j,k.

Furthermore, given W(¢) = 6, with 6 = (8,,...,0,) and @ =X ¥_0 . we
have

Y(t) = (Yy(2),...,Yy(t)) ~ MULT(N = © — 2,p,,..., Py)-
Then with D as in (9), we have
E(D) =P(Z™(t) +e® + e € A) — P(Z™(t) + 2¢V) € A)
+P(Z(t) + e + e® € A) — P(ZM(t) + e + e® € A)

(19 _ Y p(W(t)=6) ¥ (P(L=1-e®—e®) —P(L=1— 2
[’} l:l+0€A

+P(L=1-eY—e®) —P(L=1-e?D-e®)},

where L = (L,,...,Ly) ~ MULT(N — ©® — 2,py,..., pp)-
Case 1. Suppose i # k. Writing [ = ({4, ..., 1,,), we observe that

Y {P(L=1-e®—e®)—P(L=1-2eW)
l:l+60€A

+P(L=1-eY—e®) —P(L=1-e?D—e®))

<2P(L,=0) +2P(L,=0)+ Y  P(L=1-e®—e®)

1:1;>0,1,>0
_ l_jpi _ ljpk 4 lj(lj - l)pipk
Lipj  Lip; Ll p}

(20) x[1

Ljpipk
(L;+ 1)(L, + 1)Pj2

2} 1/2

<2P(L,=0)+2P(L,=0) +E

2} 1/2

L iPr

Ljpi _
(L, + l)pj

+ _——
(L; + l)Pj

E[l

E[l
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With C; ; defined as in (18), it can be seen on further simplication that the
rlght-hand side of (20) is bounded by

N-0-2 VCJEiCJ'»k + (1/p))

2(1-p)" "+ 21 - p)V T e

<C(J,i,k)/(N-06-1),
where C(j, i, k) is as in (8).
Case II. Suppose i = k. Then

’ Y {P(L=1-2")—2P(L=1-e®—e") +P(L=1- Ze(i))}‘
l:l+0€A

<P(L;=0)+P(L,;=0)

-1 - 1)p;
b T P(Lol-e®—euylizE (i DB,
1:1,>0,1;>0 lipj ljpi
Ljpi Lipj 2p; 2Pj

+ E

+ -2+ +
(L, + )p, = (L, + 1)p, (L;+)p;  (L; +1)p;

<(—2—+—2—) N-0-1
=17 /( )-

i J
Now it follows from both cases, (19) and the definition of C® that
|[E(D)l <C®)Y. P(W(t)=0)/(N—-0-1)
0

< C<2>E[1/(N ~ T W, (¢) - 1)]

<CO[1-e Y (N-1)]7,
since L ,,W,.(¢) ~ B(N — 2,e7%). O
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