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CONVERGENCE OF SOME PARTIALLY PARALLEL GIBBS
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By PaBLO A. FERRARI, ARNOLDO FRIGESST AND ROBERTO H. SCHONMANN

Universidade de Sdo Paulo, Istituto per le Applicazioni del Calcolo del
CNR and University of California, Los Angeles

In this paper we consider the Gibbs sampler dynamics with simulated
annealing and partially parallel updating scheme, as proposed by Trouvé. It
is known that in some cases the support of the limiting measure does not
coincide with the set of global maxima of the underlying energy function.
We provide some new simple examples of this undesirable behavior. How-
ever, we also prove that for one-dimensional binary models with nearest
neighbor interaction the algorithm works “generically.” We prove also that
for two-dimensional models with nearest neighbor ferromagnetic constant
interactions the algorithm works.

1. Introduction. Simulated annealing is a very well known algorithm for
global optimization. Its convergence properties have been intensively studied,
both from a theoretical point of view and for practical purposes (see, e.g., Aarts
and van Laarhoven [1] and Hwang and Sheu [9] and references therein). It is
all-purpose, and this is its main advantage; it has been applied to many hard
problems which could not be solved in a satisfactory way otherwise. The most
serious drawback lies in its very slow convergence rate. Simulated annealing is
a stochastic iterative algorithm that converges (in a proper sense, to be made
precise below) to the set of points which are the global maxima of a given
function. But this convergence occurs if and only if a certain parameter, called
temperature, is decreased slowly enough. This cooling schedule is so slow, that
in most practical cases it has to be replaced by a faster one, although
convergence to the extrema cannot be proven anymore. The parallelization of
simulated annealing is therefore of growing interest, as parallel architectures
become more and more available.

The simulated annealing algorithm that we consider in this paper is based
on a discrete time Markov chain, whose state space coincides with the domain
of the energy function H to be maximized. The transition matrix is defined so
that the chain converges weakly to the uniform distribution over the maxima
of H. Typical problems to which it is applied arise, for instance, in statistical
mechanics (see Sokal [11]), neural networks and learning (Azencott [2]), image
restoration (Geman [7]) and combinatorial optimization (Aarts and
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van Laarhoven [1]). The common feature of these problems is a very large but
finite state space, which cannot be enumerated in practice. We are concerned
with lattice based problems, because of their simple parallelization. By this we
mean that H is defined on Q = L%, where A is a finite sublattice of Z¢ and L
is a finite set of possible values (colors) taken at each site of A. The algorithms
we consider act locally, by updating single sites, according to a specified local
transition rule. In this paper we concentrate on the Gibbs sampler proposed by
Geman and Geman in [6]. The transition rule is given by the conditional
probability distribution of the site being updated, given all other variables. The
algorithm can be asynchronous, when sites are updated one at a time, for
example, according to a random sweep strategy along the lattice; or the
dynamics can be synchronous, when all sites are updated simultaneously. In
the asynchronous case, when the temperature goes to zero slowly enough, the
process converges to a convex combination of the measures that concentrate
mass on the states that maximize H. Unfortunately, in the synchronous case,
the algorithm does not always converge to that measure (see Azencott [2] and
Dawson [3]) and is therefore not always useful.

Trouvé [13] proposes a very interesting algorithm, that lies between the
synchronous and the asynchronous ones: At each time, each site is updated
independently with a probability 7, while it does not change its current value
with probability 1 — 7. For 7 = 1 this is the synchronous algorithm, and for =
close to 0 it may be considered to be similar to the asynchronous one. In terms
of parallelization, this partially parallel algorithm is more profitable for values
of 7 close to one. Trouvé proves, quite unexpectedly, that the support of the
limit distribution of the partially parallel Gibbs sampler with annealing does
not depend on the value of 7 € (0, 1). Hence the crucial question arises: Is this
support the set Q* of global maxima of H, or is it another set, as in the case of
the fully parallel dynamics? The answer is not complete yet, but some informa-
tion is available. On one hand, there are examples for which the limiting
support is not Q* for 7 > 0: see, for instance, Trouvé [12] or Section 2 of this
paper. On the other hand, numerical experiments done by Gaudron and
Trouvé [5] with two dimensional spin glasses indicate good agreement between
the limiting support of H, as ¢t — », when sequential or partially parallel
updating schemes are used. These numerical results allow one to be quite
optimistic concerning the practical application of the partially parallel scheme.

This paper aims at clarifying the apparent contradiction pointed out above.
We will show that in fact the counterexamples are not generic, but instead
depend on a careful choice of the interactions (i.e., the constant parameters
that appear in the definition of the energy function). We will see that if for the
same lattice the interactions are chosen at random from continuous distribu-
tions, then almost surely the resulting model is well behaved, in the sense that
the corresponding partially parallel Gibbs sampler, with logarithmic annealing
. schedule, has a limiting distribution concentrated on Q*. The models which we
treat in this paper are very simple and should be considered as toy models if
compared to those really interesting for applications. However our investiga-



CONVERGENCE IN A GIBBS SAMPLER 139

tion points out to some important properties of the interactions which may
cause the partially parallel algorithm to work or fail.

In the next section we introduce some notation and give the precise defini-
tions; also some results obtained by Trouvé in [12] and [13] are recalled.
Section 3 is devoted to the one-dimensional spin glass model with random
interactions and two possible colors. Our results in this section are based on
techniques borrowed from the theory of interacting particle systems (See
Durrett [4], Griffeath [8] and Liggett [10]). In Section 4 we study the limiting
support for the two-dimensional ferromagnetic Ising model. The analysis is
based on estimates of hitting times for the underlying Markov chain. The
analysis of the extrema for this model has no practical purpose, since they are
known, but the type of arguments used in the proof may turn out to be
relevant in other, more interesting, cases.

We end this introduction with a more practical remark: If the Gibbs sampler
is implemented on real parallel machines, where a CPU is dedicated to each
site, the random parallelization scheme produced by the Bernoulli site activa-
tion process could probably be avoided. In fact the CPUs will be only partially
synchronized; hence a random parallelization would be ‘“naturally” produced,
in a pseudo-random fashion.

2. The partially parallel Gibbs sampler. We will construct Markov
chains (7,),_, , ... which take values on Q := L, where A = {1,..., N}¢ c Z¢,

d > 1land L = {+1, —1}. Consider the nearest neighbor energy function H on
Q) given by

(1) H(n) = Y J,m(x)n(),
(x,y)

where the sum is over neighboring pairs of sites in A. Free or periodic
boundary conditions are assumed. The interactions o, , may be chosen ran-
domly, for example, as i.i.d. Gaussian random variables; however, after being
chosen, the interactions are kept fixed. The Gibbs measure associated with the
energy function H(-) at inverse temperature 8 is

_ exp(BH(n))
pp(m) = ———=,

where Z = ¥ exp(BH(7)).

Let Q* ={n € Q: H(n) > H(¢),V £ € Q).

In order to describe the Gibbs sampler dynamics, we define the local
characteristics at site x by .

2:(m,§) = ng(o(x) = &(x)lo(y) =n(y),y #x).

" Next we intfoduce the different parallelization schemes.
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Sequential dynamics. At each step choose a site uniformly at random and
update it. The probability transition matrix is, for n # &,

(1/1AD) g (n,€), if €€ N(n,x) ={o:0(y) =n(y),y * x}
Qg(’ﬂ,f) = for some x € A,
0, otherwise.

These dynamics are reversible with respect to the measure u; and hence the
process, being irreducible and aperiodic, converges weakly to it.

Parallel dynamics. All sites are modified simultaneously. The probability
transition matrix is '

Q1,3(77, f) = I:Iqx(n’ f)

This process is typically not even irreducible, and u, is not one of its invariant
measures; see, for example, Azencott [2]. To understand this important point,
consider the case in which free boundary conditions are used: With parallel
updating, the configurations on the even and odd sublattices (i.e., the sublat-
tices on which the sum of the values of the coordinates are, respectively, even
or odd) are independent at any given time if they were so at time zero.

Partially parallel dynamics [13]. In this case each site will be updated with
probability 7, independently. The transition probability matrix is
(2) Q’r,ﬁ(n’ &) = I—I (qu(nr & +(1- T)l(n(x):f(x))(n, f))

x

For 7 € (0, 1) the Markov chain with transition probabilities (2) is ergodic and
converges to an invariant distribution w, 5. Of course, for 7 =1, @, 4(, )
gives rise to the parallel dynamics and for 7 = 0 it corresponds to the trivial
dynamics in which the initial configuration never changes. However for small
positive 7 there are occasional flips of a single spin, and much less frequent
flips of more than one spin at a time. It is easy to see that in the limit in which
T — 0, after rescaling time, the partially parallel dynamics approaches a con-
tinuous time Markov process whose embedded Markov chain is the sequential
dynamics.
The limit

lim w, 4

B

exists, as shown by Trouvé [13], and we will denote it by u, .
Let @, ,, = limg @, 5, which is also well defined as observed in [13], and
consider the convex set of invariant measures
I o ={u:p@, ,=u}.

Consider the invariance condition w, ;@ ; = u, g, and take the limit in B, to
see that

(3) Boro €11
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(See Proposition 2.14 of Chapter I in Liggett [10], where the fact above is
shown to be true even for infinite systems and in continuous time.) Trouvé
proves also in [13] that the limiting support

supp(,, ..)
is independent of 7 € (0, 1).

Take now a sequence of inverse temperatures {f,}, .y increasing to infinity,
and let 7, be the time-inhomogeneous Markov process with transition proba-
bilities

P(77t+1 = f"rlt; () = Q-;-,B,(g, f)

Recall that this process depends on 7, which is held fixed. The standard
simulated annealing convergence theorem is proved for the partially parallel
dynamics by Trouvé in [13]:

THEOREM 1. Let 0 <7 < 1. There is a constant C (that depends on the
energy H, v and the number of sites) such that if B, increases to infinity but
B, <Clnt, then

lim || P(n, = Ino) = o) = 0,
where |lu — vl = X, |lu(n) — v(n)l.

It is not difficult to construct examples for which the limiting support does
not coincide with the set O* of global maxima of H(-). Trouvé describes in [13]
such an example, but his function H(-) does not have the form (1) and is
rather artificial. The following is a simple example in which H(-) is of the form
(1). Let d = 1, N = 3, consider periodic boundary conditions and let J,
for every pair of (neighboring) sites x and y. In other words, we are con31der-
ing three spins coupled to each other with the same antiferromagnetic cou-
pling. The set Q* contains the six configurations with two spins + and one
—1 and vice versa. On the other hand, the limiting support is the full set of all
eight possible configurations, including the two configurations with all spins
aligned. One can easily check this claim, by observing that enough entries of
the transition matrix @), ; remain positive in the limit as 8 — =, so that @, ..
is irreducible. Hence the set I, has a unique element, which gives pos1t1ve
mass to all the configurations. The claim follows then from (3). Note that this
argument relies on the fact that all the couplings J, , have the same value.
The mechanism which provides the nonvanishing probability of jumping from
a configuration with exactly two alike spins to a configuration with three
identical spins is the simultaneous update of the two, parallel spins but not of
the other one. Due to the fact that the three couplings are identical, this
transition has probability 72(1 — 7)(1,/2)? for every value of g.

Now let us modify slightly the model so that the three interactions are still
negative but with one of them being smaller than the others in absolute value.
The configuration in which the spins connected by the smallest interaction are
identical while the other one is different is the only one which maximizes the
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energy. However, in this case the probability of escaping from it vanishes as
B — «. In other words, the counterexample above is not robust. We will see in
the next section that in one dimension the partially parallel algorithm indeed
works in great generality.

The choice of N = 3 above is made for simplicity; one can easily see that for
any odd value of N > 3 the model with periodic boundary conditions and equal
and negative nearest neighbor couplings presents the type of behavior previ-
ously described.

If one generalizes the form of the energy (1), by introducing also external
magnetic fields coupled to each spin, then one can construct another very
simple example in which the limiting support is different from the set of global
maxima of H(-). Consider just two spins, coupled ferromagnetically, but one
subject to a positive and the other subject to a negative external field. Assume
that the interaction and the external field are of the same strength. Again the
process can escape with positive probability (uniformly in B8) from the set of
configurations that have maximum energy.

An apparent contradiction has to be solved: It is easy to construct coun-
terexamples, although in many numerical experiments the limiting support is
the set of maxima of H. Our aim is to clarify this apparent contradiction.

3. Limiting support for one dimensional spin glasses. Consider the
one-dimensional version of the energy (1) on A ={1,..., N}

(4) H(n) = X, wem(®)n(x + 1)

with free or periodic boundary conditions (identify the site N with 0 and
N + 1 with 1 in this latter case). In this section we will have to consider
separately interactions of the following two types:

TyrEA. J,,,, =0forall x € A.
TypE B. The more general interactions: arbitrary J, ,.; € R for x € A.

We will prove that with free or periodic boundary conditions the limiting
support coincides with the set Q* of global maxima of the energy, provided an
additional assumption is satisfied in Type B when periodic boundary condi-
tions are used: Namely, that there is a unique site x for which J, ., is
minimized. For free boundary conditions the result for interactions of Type A
easily implies the same result for interactions of Type B. Periodic boundary
conditions are more delicate: Recall the counterexample given in Section 2
with J, ,,; = —1and N = 3 (or any odd number), where the limiting support
fails to be Q*. (Note that the additional assumption we will require excludes
these cases.) The extra assumption above is automatically satisfied with proba-
bility one in case the o, . ,’s are drawn from independent absolutely continu-
ous distributions.
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Observe that the particular case in which J, .., =c¢ > 0 can be easily
handled, since one can check that I, is the set of convex linear combinations
of 8, and &_;, the point masses concentrated on the configurations with all
spins up or down. Hence the limiting support is equal to Q* by (3). However,
in general, I_. is a larger set, including point measures concentrated on
“metastable configurations,” that is, configurations which do not maximize
the energy, but are such that any single flip of a spin strictly decreases the
energy.

The first step in our approach to studying the Gibbs sampler for models of
the form (4) consists in showing that they are generalized voter models. In
order to make this statement precise we first observe that the probability
measure g ,(n, - ) can be obtained as follows. Define

92 exp(_ﬁ(IJx~1,x| + |Jx,x+1,))
E, = s
* exp(‘B(IJxﬁl,xl + |Jx,x+1|)) + exp(B(le—l,xl + IJx,x+1|))

where J, ; = Jy n.1 = 0 for free boundary conditions, and J;, ; = Jy y.1 =
Jy, 1 for periodic boundary conditions. Let p, be the number in [0, 1] which
satisfies

Ex

2

exp( —B(!Jx—l,x! - !Jx,x+1|))
eXp( _B(IJx—l,xI - IJx,x+1|)) + exp(B(le—l,xl - |Jx,x+1|))

and define A, =1 —p,.

The measure q,(7, - ) gives positive mass only to configurations that differ
from n at most at x, and here is how we can obtain the distribution of the spin
at site x:

+ (1 - gx)px =

(i) With probability ¢, do the following: Assign with equal probabilities the
value +1 or —1 to the spin at the site x.

(i) With probability 1 — ¢, do the following: Assign to the spin at x the
value n(x + 1)sgn(J, ,,,) with probability p,, or the value n(x — Dsgn(J, _, ,)
with probability A, = 1 — p, [where sgn(z) = +1if z > 0 and sgn(z) = —1 if
2z < 0].

Later we .will interpret step (i) as noise with respect to (ii). The following
statement is easy to prove by straightforward computations.

LEmMMA 1. The local characteristics q,(n,) on N(n,x) = {o: o(y) = n(x),
y # x} can be obtained by following steps (i) and (ii).

REMARK. Incase J,_; ,=0and J, ,.; # 0 we obtain A, =0 and p, = 1,
and similarly in the other case. In particular free boundary conditions corre-
spond to zero couplings at the boundaries and A; = py = 0. In the case
Jy 12 =9, +1 =0 we obtain ¢, = 1 so that A, and p, are not defined and

are not relevant.
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Lemma 1 leads to a graphical construction of the various Gibbs sampler
dynamics defined in Section 2. We refer the reader to Griffeath [8], Liggett [10]
and Durrett [4] for reviews of this technique. We will represent the Gibbs
sampler dynamics on {1,..., N} X Z, the space-time diagram. We first define
random arrows between points in this space, then random marks on the
points, corresponding to the activation of a site at a certain time and to the
presence of noise. Next we will introduce paths in the space and rules that
allow us to compute the value of the spin at a site at a certain time by
following the path originating in it. Both the sequential and the partially
parallel dynamics will be represented together, on the same diagram.

Arrows and marks. Draw an arrow from each point (x,¢) to () (x — 1,
¢t — 1) with probability A, or to (il) (x + 1,¢ — 1) with probability p,, indepen-
dently for each point. (See Figure 1.) To each arrow we attach a sign, defined
as sgn(J,_; ,) and sgn(J, ,,,) for arrows of type (i) and (ii), respectively.
These signs are necessary to deal with Type B interactions.

Next we mark each point (x, ¢) independently with an N (for noise) with
probability £,. To each point (x,#) we associate a random variable a(x,¢)
taking values +1 and —1 with equal probabilities. These variables are used in
order to assign values to the spins at the points where the noise is acting.

Mark each point independently with a U (for update) with probability 7.
These marks are used by the partially parallel dynamics. We need different
activation marks for the sequential Gibbs sampler: For each time ¢, choose a
site uniformly in {(1,¢),...,(N,¢)} and mark it with U’, independently for
different ¢.

On this probability space we construct both the partially parallel and the
sequential Gibbs sampler. We denote by P the corresponding probability
measure.

x-1 X X+1

t Y

Fi1c. 1. A realization of some arrows in the space time diagram.
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x-1 X x+1
0
u KPNU
N U A
AV
U \) \} >)
t Y u \V U u KU

Fic. 2. Some paths for the partially parallel Gibbs sampler.

Paths. Starting from any point, paths will go backwards in time. For the
partially parallel dynamics, the path starting from (x, ¢) is defined inductively
as follows. When the path reaches a point (y, s) with s < ¢, then (1) if (y, s) is
not marked with a U, then go to (y, s — 1). Otherwise (2) if (y, s) is marked
with N, then stop the path there. Otherwise (3) follow the arrow which starts
at (y,s)[to(y —1,s — Dor(y +1,s — 1]

For the sequential dynamics, the definition is analogous, but with U’ replacing
U. See Figures 2 and 3 for examples of paths for the partially parallel and the
sequential Gibbs sampler, respectively. To facilitate the reading of the figures,

x-1 X x+1
° x
A NU'
]
U'f N
'Y
S— D
. ' Hu \{/ o

Fic. 3. Some paths for the sequential Gibbs sampler.
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only some arrows and marks are displayed. We are ready to introduce the rules
that allow us to identify the configuration at each time.
Given 7,, we compute 71,(x) as follows:

1. If the path started at (x,¢) is stopped at (y, s), with s > 0, then
n(x) = ka(y,s),
where « is the product of the signs attached to the arrows used by the path.
Otherwise:

2. If the path started at (x, #) reaches (z, 0),

n(x) = kno(2),
where « is as above.

The graphical representation is now complete. Observe that for both dynamics
the paths started at different points coalesce, in the sense that they stay
together once they meet.

The crucial observation now is that in the case

the law of the path starting in a given point is the same for both the sequential
and the partially parallel Gibbs sampler. This holds in spite of the fact that the
joint law of two or more such paths is different for the two dynamics. This
property allows us to draw conclusions about the partially parallel Gibbs
sampler from our knowledge about the sequential one.

The invariant measure for the dynamics can be constructed as follows.
Starting from ¢ = 0 say, follow all paths from (x,0), x = 1,..., N, back in
(negative) time until each of them eventually stops. Assign to n(x) the value
ka(y, —s) if the path from (x, 0) stops in (y, —s) and « is the product of the
signs of the arrows followed along this path. One can easily see that
{n(Q),...,n(N)} is distributed according to the invariant measure of the
corresponding Gibbs sampler.

We are ready to state and prove our results, first for free boundary
conditions and then for periodic ones.

THEOREM 2. Consider interactions of Type B, with free boundary condi-
tions. For every r € (0,1) the measure . ., is concentrated on *.

Proor. We will exploit the property, proved by Trouvé [13], that u,
exists and its support is independent of 7 € (0,1). Based on this we choose
T=1/N.

Consider first interactions of Type A. We can suppose that all J, ,,, are
strictly positive, since otherwise the system will be broken into independent
systems of the same type. (* contains only the two configurations —1
and +1.
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In order to prove certain facts about the graphical construction, it is
convenient to consider the system with the special boundary condition in
which the spin at the site 1 is frozen to +1, while at the other end of the
lattice we keep the free boundary condition. In this case the corresponding
Gibbs measure becomes concentrated on +1, as 8 — . We can construct both
the sequential and the partially parallel Gibbs sampler with this boundary
condition by ignoring all marks N, U, U’ that may appear at the points (1, - ):
When a path from (x, ¢) hits the site 1, it is stopped and 7,(x) is set to the
value + 1. Define the events

&,(x,y) = {the path of the partially parallel dynamics start-
ing in (x, 0) hits the site y before being stopped
(by noise)},

and

&(x,y) = {the path of the sequential dynamics starting in
(x,0) hits the site y before being stopped (by
noise)}.

Considering now the sequential dynamics, one can conclude that for all
x<€{1,...,N},

pe(m:n(x) = —1) = 3(1 = P(&(x,1)).

Hence
lim P(&(x,1)) = 1.
B—»oo

Note that the event &.(x,1) is unaffected by the changes at the site 1 made
above, since it does not depend on the value of the spin at this site nor on the
presence of marks there. But since the definitions of the events &(x,y) and
&,(x,y) are based on a single path, these events have the same probability.
Therefore for all x € {1,..., N},

(5) lim P(&(x,1)) = 1.

Similarly one can prove that for all x € {1,..., N},

(6) lim P(&(x, N)) = 1.

Define the events

F(x,y) = {the paths of the partially parallel dynamics
started at (x,0) and (y, 0) coalesce before being
stopped (by noise)}.

We want to prove that for all 3‘c, ¥,
(7N lim P(F(x,y)) = 1.
ﬂ—)oo
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This will imply that

lim p, z{n:n(x) is constant and equal to +1or —1} =1
B ’

and will finish the proof in this case.

From (5) and (6) it is clear that the paths started at (x,0) and (y,0) are
likely to cross each other, but in principle they may jump over each other
without coalescing. In fact if 7 = 1, this certainly occurs when |x — y| is odd
and we will exploit the fact that + = 1/N < 1. The idea is simply that (5) and
(6) assure that the two paths cross each other many times before they are
stopped by noise, by the strong Markov property of the hitting times of sites 1
or N. Each time the two paths cross, they have a chance to hit each other and
coalesce. To be precise, suppose x < y and define the stopping time (remember
we are using the reversed time scale)

T = inf{—¢: the paths started from (x,0) and (y,0) are
respectively at time ¢ in the sites z and z + 1, for
some z<({l,...,N—1}, the points (z,¢) and
(z + 1,¢) are not marked with noise N, and there
are arrows from (z,¢) to (z+ 1,# — 1) and from
(z+ 1,8 to(z,t — 1)}

It is clear that up to time T the paths did not cross each other, and with
probability 27(7 — 1), independently of anything else, the two paths will hit
each other at time T + 1. (See Figure 4.) By using now the strong Markov
property and repeating this argument each time the two paths cross each
other, one can prove (7) in a standard way.

We turn now to interactions of Type B. A simple transformation maps a
model with such interactions into one with interactions of Type A. Indeed,

X X+1

-t-1

X z z+1 y

Fic. 4. Crossing paths.
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consider the sequence
(1) =1,{(x+1) = sgn(Jx’xH){(x) for x > 0.
Let ¢n be defined as the sitewise product: {n(x) = {(x)n(x). It is now easy to

see that the states {(+1) and {(—1) are the global maxima for interactions of

Type B and that the limiting support contains only these two configurations.
O

Our next result concerns periodic boundary conditions.

THEOREM 3. Consider interactions of Type A or B, with periodic boundary
conditions. Assume in the latter case that there is only one site x for which
|, 11| is minimized. Then, for every v € (0,1) the measure u, ., is concen-
trated on Q*.

Proor. Consider first interactions of Type B. For the sake of notation
assume that the smallest |J, , .l is |Jy ;1(= |y 1| = |y D). We first iden-
tify the elements of Q*. The two states of maximum energy are obtained by
ignoring the weakest coupling between N and 1, and satisfying all other
couplings, in the following sense: For each pair x < y define

K(xay) = Sgn(Jx,x+1)sgn(Jx+l,x+2) T Sgn(Jy—l,y)

and let «(x,x) =1 and «(x,y) = k(y, x). Then the two states n*, n** with
maximum energy are given by

n*(x) = k(1,%),

7 (x) = —«k(1,x)
forx e{1,..., N}

Observe now that once two paths starting in (x,0) and (y, 0) coalesce, the
product of their signs becomes constant. So in case the paths coalesce before
either one is stopped by noise, we have n(x)n(y) = (the product of the signs of
these two paths at the moment they coalesce). Also note that if these two paths
coalesce without ever jumping from site 1 to site N or vice versa, then we get
from the equality above

n(x)n(y) = «(x,¥).
Next we define an event which is similar to that one considered in the
previous proof:
F(x,y) = {the paths of the partially parallel dynamics
started at (x,0) and (y,0) coalesce before they

are stopped (by noise), and before either one
ever jumps from 1 to N or from N to 1}.

As before we will be done once we prove that
(8) lim P(F(x,y)) = 1.

B
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This can be proven similarly to the proof of (7). Since ¢,, p, and A, are

independent of the signs of the interactions ¢/, ,.,;, we can assume with no

loss of generality that the system is frustrated, that is, sgn(Jy ;) # «(1, N).
Define the events

é?,(x, y) = {the path of the partially parallel dynamics start-
ing in (x, 0) hits the site y before it is stopped
(by noise) and before it ever jumps from 1 to N
or from N to 1}.

Consider now the boundary condition in which the spin at the site 1 is frozen
to the value +1 (but N is still coupled to 1 by Jy ;). The measure u, ., is
concentrated on n*. Proceeding as in the previous proof, by using the sequen-
tial dynamics and observing that, for + = 1/N, single paths in both dynamics

have the same law, we conclude that for all x € {1,..., N},
(9) lim P(&(x,1)) = 1.
Analogously,
(10) lim P(&,(x, N)) = 1.

B—o

Now (8) follows from (9) and (10) as (7) followed from (5) and (6).

Finally we sketch the proof in the case of interactions of Type A. By the
same argument used in the proof of Theorem 2, it follows that the path
starting from any site is likely to hit the site 1 and the site N before it is
stopped by noise. For periodic boundary conditions, this does not eliminate in
principle the possibility that two paths, started at (x, 0) and (y, 0), never cross
each other before they are stopped by noise. The reason for this is that they
may rotate in the same direction on the circle {1,..., N}. For this to be the
case, the paths starting from the sites 1 and N would have to be likely (as
B — =) to hit the sites N and 1, respectively, both going in the same direction,
clockwise or counterclockwise. Now change the sign of the interaction oy ;, in
order to frustrate the system. As already observed, this does not affect the
paths. Now use boundary conditions with the spin at site 1 or N frozen to the
value + 1. If the probability of the path from 1 to N going clockwise (respec-
tively counterclockwise) tends to one as 8 — =, then the probability of the
path from N to 1 going counterclockwise (respectively clockwise) also tends to
1. And hence the paths cross each other, and the problem mentioned above
does not occur. O

4. Limiting support for the two dimensional Ising model. In this
section we consider the two-dimensional nearest neighbor ferromagnetic Ising

, model, and we show that for this model the limiting support coincides also
with the set of global maxima of the energy. The proof is based on estimates of
hitting times of the corresponding Markov chain and relies less on special
tricks than the proofs presented in Section 3. For this reason we believe that
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the sort of arguments used here may turn out to be applicable also to other
more interesting models.

THEOREM 4. Consider the ferromagnetic Ising model on a finite square A
contained in 72, described by the usual nearest neighbor interaction

1
H(n) =5 Z}n(x)n(y)
{x,y

with periodic or free boundary conditions. For 0 <7 < 1,

_1ls 1
Borw = 3041+ 304

Proor. We will present the proof in the case of periodic boundary condi-
tions; the modifications needed to treat the case with free boundary conditions
are straightforward and are omitted.

Let A ={+1, —1} = O* be the set of maxima of H and B its complement.
Because the partially parallel process is a renewal process with respect to visits
to A,

/J,T’OQ(A) = E(TA)/(E(TA) + E(TB))’

where T, and Ty are the times spent by the process in each one of these two
sets during one renewal cycle. The expected time spent in A is inversely
proportional to the probability of exiting A at each unit of time; this probabil-
ity is proportional to exp(—4p). So the proof will be complete once we prove
the following:

LEMMA 2. Given n € B, let (n,),., be the process started from m and set
T"(A) = inf{t > 0: n, € A}.

Then there is a constant ¢ which does not depend on B and m, but may depend
on N == |A|"? and 7, such that

E(T"(A)) < ce?.

In what follows all constants c;, ¢y, ... will be finite and strictly positive and
will not depend on B8 and 7; they depend however on N and 7. (Note that the
assumption 7 < 1 will be needed to guarantee that some of these c; are strictly
positive.)

Proor oF LEMMA 2. Divide B into two sets C and D = B\ C, where C is
the subset of configurations of B in which there is at least one site that has
two neighbors in state + 1 and two neighbors in state — 1. It is easy to see that
starting from any n € C, the probability of the event (), that by time N? the
system has hit D U A, is bounded from below by a constant ¢, > 0.

Starting from n € D, we estimate now the probability of the event (,, that
by time Ne?? the system has hit either A or another configuration in D with
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more spins up than there are in 7 itself. This probability is bounded from
below by the product of two terms: The first is the probability of the event (1,
that up to this time none of the + 1 spins in 1 flipped. The second term is the
conditional probability of the event (1, given (1, that before this time, N
spins with value —1 did flip to +1 in successive time units, thus creating a
new line of +1 spins adjacent to an already present one. Using | -] for integer
part, we clearly have

P(Qy) = (1 — ¢;NZe 2N 5 ¢,
and
P(QlQ5) 21— (1 - c4e‘2’3)le2BJ > c5.

To derive the second estimate, observe that there are [e2?| independent
chances for N successive —1 spins along a line to flip. In each attempt the
probability of success is at least c,e”2#, since, after the first one flips, all the
other can flip easily.

Therefore we have

P(Q,) = P(Q,,Q,) = cq.

One can now repeatedly use the estimate above, when the system first enters
D and each time it reaches a new configuration in D with more + 1 spins than
the last one visited previously in D. Since the system will have to hit A before
visiting N different configurations in D in such a manner, we obtain for all
n € B:

P(T"(A) < N%%) > P(Q,)(P(Q,))" = ¢i(ce)™ = ¢
Therefore for all £ =1,2,...,
P(T"(A) > kN%?) < (1 - ¢;)"
and
E(T"(A)) <NZ%® ) P(T"(A)/(N??) > k) = ce®.
£=0
This completes the proof of the lemma and Theorem 3 follows from it. O

We finally observe that also if the interactions between nearest neighbors
are not strictly identical, but are close enough to a common positive value, the
proof given above can be applied to conclude that the partially parallel algo-
rithm works.

Acknowledgments. Thanks are due to Alain Trouvé and Laurent Younes
for introducing us to the problem and to Tom Liggett for a helpful discussion
that allowed us to avoid a long proof.
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