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PROBLEMS IN CERTAIN TWO-FACTOR TERM
STRUCTURE MODELS

By MIcHAEL HOGAN
Citibank

The formal solution to a two-factor option pricing model in which a
short-term rate and a bond yield are taken as instrumental variables is
shown to explode. There are no real-valued solutions to the diffusion
equations written down for the long and short rate by Brennan and
Schwartz.

The Brennan and Schwartz model is an early and well known two-factor
bond option pricing model. Its main idea is to take the short-term rate, which
is an instantaneous rate, and the yield of a fixed bond as the instrumental
variables that drive the model, and it is meant to supplement models that
work from the short-term rate alone. It is therefore thought to be an improve-
ment for pricing certain financial instruments in which the cobehavior of two
different bonds is central, for example, an option to exchange a long bond for
a short bond. A variant is frequently used in mortgage pricing, where the
long rate determines when homeowners refinance their mortgages.

Several versions of the Brennan and Schwartz model exist. All take the
fixed bond to be a “console” that pays out a coupon of $1 per unit time forever
and never repays principal. The console has a stationarity that makes it
easier to deal with than a bond that matures and repays principal. It also has
the following simple relationship between yield and price going for it: The
price of the console is the reciprocal of its yield. The price of a bond is the
value of its cash flows, discounting at a rate equal to its yield. For the console,
the discounted value of the cash flows is [jexp(—I¢) d¢, which is 1/1.

Starting from true or original processes for the prices of a collection of
assets that are defined as the solutions to stochastic differential equations,
the theory of contingent claims pricing, as presented in [5] (Section 5.8),
requires that there be an absolutely continuous change of measure under
which the (instantaneous) expected return on all investments is equal to the
short-term rate. This measure is called the equivalent martingale measure
because it is equivalent and under it the discounted price of any financial
instrument that makes no payouts is a martingale. For an instrument like
the console, which makes payouts, one has to add in the discounted value of
the payouts, and this price plus dividend process forms a martingale.

The results of this paper could be stated and proved without reference to
the equivalent martingale measure.
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It is easy to use the condition that the instantaneous expected return
equals the short-term rate to derive a constraint on the change of measure
required by the Brennan and Schwartz model. This is the tack followed in [1]
or [2] and the result is that if the console yield is assumed to satisfy a
stochastic differential equation of the form

di(t) = {(r, 1) dt + a,(r,1) dBy(t),

where r = r(t) is the short-term rate process (as yet unspecified) and B, is a
standard Brownian motion, then under the equivalent martingale measure, [
will satisfy the same equation with ¢ given by

(1) ((r,l) =a(r,)/I2+1(1—r).
The console price process, Z(¢) = 1/1(t), is more intuitive:
(2) dZ = (r(¢)Z — 1) dt — Z%(r,1) dB,.

The drift term expresses the fact that the console price must grow instanta-
neously at the risk-free rate and decrease by its payouts.

By Girsanov’s theorem we expect that we have specified the likelihood
ratio of the equivalent measure when we have specified the drift of the
short-term rate process, but two things have been observed to go wrong. In
[3], Cheng reports a nonobvious example in which an equivalent martingale
measure does not exist. In [4] (Section 5) the authors give an example of how
blithely changing the drift coefficients of the stochastic differential equation
defining the rate process (as before) can lead to subtle problems: The result is
a perfectly well behaved process, but it is not equivalent to the original (true)
process, and so arbitrages exist.

We will show that the proposed solutions to the Brennan and Schwartz
model, as given, for example, in [1] and [2], fail in the most dramatic fashion.
The console rate explodes; that is, it reaches infinity in a finite amount of
time with positive probability. In particular, no real-valued solutions will
exist for the diffusion equations written down for the short-term rate and the
console rate in [1] or [2]. This shows that the candidate measure is not
equivalent to the original, since the process did not explode under the original
measure. From a practitioner’s viewpoint, we regard the fact that the pro-
posed solution explodes as more serious than that it is technically wrong. The
problems reported in [4] would probably not cause a problem when applied to
the pricing of standard contracts.

This does not show that no equivalent martmgale measure exists, only
that the candidates in [1] and [2] are not it.
~ As before, r is the short-term rate, / the console rate and Z = 1/ is the
console price. The dynamics of the console price are given by (2) and the short
rate dynamics under the martingale measure will be given by

(3) dr =u(r,l)dt + o.(r,l)dB,,
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where B, and B, are jointly a Brownian motion with correlation p # 1.
PUoZ0{ A} = P{A|Z(0) = Z,, r(0) = ry}; that is, it denotes the process started
from the point (ry, Z,). Furthermore, we specify that o,(r,1) = 7,(r) and
oy(r,1) = n,(1), which are specifications that are eventually made in [1] and
[2]. Set m; = Z%y,(1). Taking account of (1) and of the familiar relation
between differential equations and diffusion processes yields the usual for-
mulation, that of equation (8) of [1]. We assume that |n.(r)| < a + b|r| for
some constants a and b, and also that 7, satisfies a Lipshitz condition of
order 1 in the interval (I, ) for all Il > 0. This assures that the r process is
well defined, at least until it hits 0, and it will be seen later that problems
occur before the processes hit 0. We assume that similar conditions are
satisfied by 7,(1). We will refer to the case where n,.(r) = n,r and n,(1) = 0,1
as the lognormal case, although neither r nor ! need be lognormally dis-
tributed in this case. The only other interesting cases are 7,(r) = n,Vr and
n,(r) = 1, and similarly for »,.
Let X =rZ =r/I. Then X satisfies

X2
() dX = |r(X-1) +Zu(r,l) — —z Pz dt + Zm, dB, + rn, dB,
= /.LX(T',X) dt +an dBl + r'T]Z de.

In the lognormal case, X is lognormal and that allows slightly stronger

conclusions to be made.
We will show that with positive probability, X hits 0 when r is not zero.
At that point [ = r/X has exploded.

PropPOSITION 1.  Let u(r,1) be as in (3). If

@ wr,D)=a+ A -r)or
G) wr,)=a+ Br(l—r)and B<1or
(i) u(r,l) = a + Brlog(l/r),

the model explodes; that is, either r or | reaches « in a finite amount of time
with positive probability. In the log normal case, if

@) wr,)=prl—r)and B=1,
the model explodes.

Case (i) appears as equation (9) of [1]. Case (iii) is:equation (13) of [2].

. PrOOF. We consider case (iii); cases (i) and (ii) are similar. The drifts of
the X and r processes are given by

w(r,l) = a+ Brlog(1/X),
ux(r,X) = r(X — 1) + aX/r + BX log(1/X) - p(X2/r2)m(L)n(r).
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Note that when r is large and X is small, the first summand defining uy is
dominant and negative. Let C be a cup with one side on the r axis:
C={(r,X)0<X<X,r,<r). If X, is chosen sufficiently small and r, is
chosen sufficiently large, then in C we will always have u > § > 0 and

(5) py < —8<0

for some 8. We will always assume our cups are chosen so that this is
satisfied and we will assume X, < 1/4.

With these definitions and observations out of the way we can give a
heuristic outline of the proof.

If the process stays in the cup for a long time, the negative drift of the X
process will cause it to have a negative expected value, which is clearly
incompatible with X being positive. If it leaves quickly, we will show, under
the assumption that the r process does not explode, that it must exit through
the sides of the cup with high probability. Again, because of the negative
drift, exiting via X = X, must be balanced by exiting through X = 0. When
that happens, the process has exploded.

Therefore, we will first attempt to show that if we start the process at a
sufficiently large value of r, then we can be quite confident that it will not
exit the cup through the bottom. Let T, = inf{¢: r(¢) < a} and let

(6) to = inf{¢: (r(t), X(¢)) & C}.
Let the process r* satisfy
dr* = u(r(t Atg),l(t Atg))dt + m.(r*(¢)) dB;.

The processes r and r* agree up until they leave C, but the r* always has
positive drift. Let T be the stopping time for the r* process. It is pretty
clear that

lim POt = T, <t} < lim POO(T* < ¢} = 0.

r—o r—o>®
Now we observe that if the short-term rate r does not explode, it must take a
long time to hit high levels. Let 7, = inf{¢: r(¢) > a}. If r has a finite-valued
maximum up to time ¢, lim,_,,P"o*){r < ¢} =0 for all X, r, and ¢.

Let 1/2 > € > 0. First choose r, and X, so that sup{uy(r, X): r > r,,
X < X,} < —100. Next, choose r, <r,<r; <r, and ¢t > 1/100€¢ so that
PUvXe/2T, <t} < €/2 and PUv¥*0/Dr, <t} < ¢/2, which is possible by the
foregoing statement. This forces 7,, to be large with high probability starting
from (ry, X,/2). In particular, if o is any (random) time,

P('I'X"/Z){T,2 = w} < P('I’XO/Z){T,Z =, 1, < t} + P(’l’XO/z){Tr2 =w, > t}
(7 < PUo X/ g <t} + PO X/ D > t)
<e/2 + E(w)/t
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and similarly for 7, . Let ¢; be as in (6). We have
4
(8) EX(tc) = X(0) = E [ “ux(r(1), X(1)) dt.

Equation (8) follows easily if X is kept away from 0 and r is bounded above,
because in this case all coefficients of the equations defining X are actually
bounded and, in general, it follows by bounded convergence on the left-hand
side and monotone convergence on the right, taking account of (5). In particu-
lar, EX(¢,) < X(0). We consider two alternatives.

ALTERNATIVE 1: Ef; > 1/200. Then by (8), EX(¢t;) < —1/2 + X,/2 < 0.
Because its expectation is less than zero, X must also be less than zero with
positive probability.

ALTERNATIVE 2: Etc < 1/200. By(7), PUr*o/t, =T, ort, =1} < 2e.
Therefore, the process exits through the upper or lower boundary only with
small probability. If it only exits through X = X, then EX(¢;) > X, *(1 —
2¢€) > X,/2 and (8) is violated again. Therefore X(¢,) = 0 must hold with
positive probability. If » and [ are lognormal and Case 4 prevails, the process
satisfies

dX = —pXdt + 1, XdB,,

where dB, and dB; are correlated Brownian motions. Let H = 1/r. In terms
of H and x the process satisfies

dH = (—(1 —X)/X—Hnlz)dt - n,HdB;.

We make an absolutely continuous change of measure under which the
process is distributed as the solution to

dH = (—(1 - X)/X) dt — m,HdB,,

where A is large. Then, similar to but more simply than before, because the
expected drift for H is negative and large in magnitude it must hit zero with
positive probability. By the absolute continuity of the measure the original
process must also hit zero with positive probability. When H hits zero, r has
exploded. O

Conclusion. This argument shows that the formal solutions to a two-fac-
tor bond option model in [1] and [2] are not correct. For better or worse, it
does not show that the problem itself is improperly formulated. It is possible
that a martingale measure does exist and that the problem with [1] and [2] is
a naive handling of the drift of the short-term rate.
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