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We consider a problem of controlling the production rate of a single
machine, single product, stochastic manufacturing system in order to
minimize the total discounted inventory/backlog costs. The demand has
two components: one is deterministic with constant rate d and the other is
stochastic with random demand batches. Under heavy loading (or heavy
traffic) conditions, that is, when the average production capacity is close to
the average demand, the control problem is approximated by a singular
stochastic control problem. The approximate problem can be solved expli-
citly. The solution is then interpreted in terms of the actual manufactur-
ing system and a control policy for this system is derived. We prove that
the resulting policy is nearly optimal under the heavy traffic condition.
This policy is characterized by a single critical level z,. The commodity
should be produced only when inventory is less than or equal to z,: The
production rate is maximal if the inventory is less than z, and equal to
the deterministic component d of the demand rate if the inventory is
equal to z,.

1. Introduction. We study a manufacturing system S consisting of a
single machine producing a single part type. The machine is unreliable. It
has two states: up and down. If it is up, then its production rate can be
adjusted to be any value between zero and the maximum production rate r.
On the other hand, if the machine is down, then the production rate is zero.
The durations of up and down periods are sequences of i.i.d. random variables
with arbitrary distributions. The demand facing the manufacturing system
has two components: a deterministic one with a constant rate d and a
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stochastic component with random demand batches. The objective is to
control the production rate during the up periods so that the total discounted
inventory /backlog costs can be kept as low as possible.

Production systems with unreliable machines were studied by Kimemia
and Gershwin [21]. A system similar to ours but with a constant demand rate
and exponential distribution for machine up and down periods was studied by
Akella and Kumar [1] and Bielecki and Kumar [3]. They showed that the
optimal control policy is of a threshold type. Furthermore, they succeeded in
deriving a closed form solution for the threshold value known also as hedging
point. Unfortunately, more complex systems cannot be solved in closed form.
We therefore turn to the aid of the asymptotic approach based on the idea of
diffusion approximation. So far, it has been applied mainly to various queue-
ing systems operating under heavy traffic conditions. The essential features
of this approach can be described as follows. Based on the existing heavy
traffic theorems for queueing models, the control problem for a given physical
system is approximated by a limiting optimal control problem involving
Brownian motion. This control problem is easier to analyze and in many
cases is explicitly solvable. The solution is then interpreted in the original
terms and a certain control policy is derived for the original system.

There are a number of papers in which the controlled diffusions have been
used as models for real systems. The literature on this subject can be
classified according to the level of rigor in the justification of their use.

In works of the first type, real processes are replaced by diffusion processes
and then the resulting problems of controlled diffusions are solved. The
optimal policies obtained are then interpreted in terms of the original system.
Justification of the procedure employed is based usually on mere intuition or
simulation. Earliest examples of such works are those of Harrison and Wein
[15, 16] and Wein [36], who analyzed queueing network scheduling problems
(references in [15], [16] and [36] contain the list of literature on this subject).

Works of the second type such as [25], [27] and [28] begin with a sequence
of systems whose limit is a controlled diffusion problem. The traffic intensi-
ties of the systems in the sequence converge to the critical intensity of 1.
Justification of the use of controlled diffusions is provided by proving conver-
gence of the resulting sequence of value functions to that of the limiting
system. This convergence together with the solution of the limiting problem
enables one to construct a sequence of asymptotically optimal policies, de-
fined to be those for which the difference between the associated cost and the
value function converges to zero as traffic intensity approaches its critical
value. .

The primary advantage of the first stream of research is that considerable
insight can be derived from the closed form solution of the limiting problem,
whereas the main weakness is that a rigorous justification of convergence is
not . obtained. The second approach, on the other hand, provides rigorous
justification of convergence, but a closed form solution is not obtained.
Instead, a Markov chain approximation technique is used [26] to obtain
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numerical results, and therefore it is difficult to obtain insight from this
approach.

The current paper combines these two complementary approaches in that
insight from the solution of the singular control problem is obtained and
rigorous justification is provided. Although the system considered in this
paper is much simpler than those investigated in [15], [16], [36] and [25],
[27], [28], it is of considerable value in studying failure-prone manufacturing
systems. Furthermore, the explicit solution of the limiting problem can be
obtained for this model. In addition, using the results in [1], one has an
opportunity to compare the policy provided by the diffusion approximation
with the optimal one.

The main purpose of studying diffusion approximations is to develop a
reasonable policy for a given real system with traffic intensity close to 1.
However, there are several issues that one faces in such procedures. First, if
one imbeds a given system into a sequence of systems in heavy traffic, then
an asymptotically optimal policy corresponding to the given system depends
on the limiting diffusion model whose parameters are not uniquely deter-
mined by those of the original system (usually drift has an arbitrary value).
An appropriate way to address this problem would be to obtain an asymptoti-
cally optimal policy that is expressed only in terms of the system’s parame-
ters. Second, asymptotic analyses of systems in heavy traffic usually employ
the idea of rescaling of the state space. The rescaling procedure introduces
a difference of several orders of magnitude between the cost functional
of the original system and that of the representation of the original system in
the sequence. Therefore, it is difficult to estimate the absolute error of the
constructed control for the original system even if one has asymptotic
optimality for the sequence of systems.

In this paper we obtain asymptotically optimal policies for the sequence of
manufacturing systems in the manner suggested; that is, we express the
policies only in terms of the parameters of the original system. We also
suggest using the relative error rather than the absolute error to evaluate the
quality of approximation, because the relative errors for the real system and
for its representation in the sequence do coincide.

The paper has the following structure. We start with the formulation of the
optimal control problem for the original system S (Section 2). It is assumed
that the average production capacity exceeds the average demand. Traffic
intensity is defined as the ratio of these two quantities. For the system S,
this ratio is assumed to be close to 1; that is, it operates under the heavy
traffic condition. In order to perform an asymptotic analysis, we construct a
sequence {S,} of systems similar to the original one, but with its parameters
being functions of &. The original system S is then identified with S, for
some &,. The small parameter & indexes the traffic intensity, so that it
converges to 1 as ¢ —» 0.

We formulate the main results of the paper in Section 3. The optimal
control problem for S, is related to that of the limiting system Sy, which is a
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singular controlled Brownian motion with properly defined drift and vari-
ance. In the case considered, the general nature of the solution to the problem
is similar to that of the other papers on singular control [14], [17]-[20]. There
exists a level z*, such that the optimal process X is a Brownian motion on
(—o0, z*] with reflection at the point z*. The optimal control functional L* is
the one that induces the reflection at z*; that is, it coincides with the local
time of X at z*. We provide an explicit formula for the optimal threshold
level z*.

It is proved that as ¢ — 0, the liminf of the cost functions for {S,} is
bounded below by the optimal cost for the limiting system Sy,. Using an
explicit expression for the optimal level z*, we construct a threshold control
policy for S, such that the corresponding values for the cost functionals
converge to this lower bound as & approaches zero. In other words, these
control policies are proved to be asymptotically optimal. From these, a nearly
optimal control policy for the original system S is constructed.

In Section 4, we prove a theorem concerning an application of the asymp-
totic results to the original system S. Because the system S is identified with
S,, for some &, we use a threshold control policy for S. In our problem, we
have an explicit formula for the threshold value. Using it, we show that this
value can be expressed in terms of the original system parameters. Further-
more we compare numerically the optimal threshold values found in [1] with
the corresponding ones provided by our approach. Our comparison shows that
if two of the parameters, namely, 5 and a (see Section 7), are close to zero,
then relative error is small. The parameter § is associated with the traffic
intensity of S. When § is small, the system is in heavy traffic. The parameter
a, on the other hand, is the proportion of time the machine is up in the long
run. The smaller is the value of «, the “further” is the original system from
the deterministic one. In this case the Brownian motion is a good approxima-
tion for the underlying stochastic process.

The limiting system Sy, and the corresponding singular control problem
are treated in Section 5. Sections 6 and 7 are devoted to the proofs of
Theorems 2 and 3 stated in Section 3.

2. System description. We consider a failure-prone manufacturing sys-
tem S producing a single part type. Let {a,};.; and { B;};. ; be two sequences
of i.i.d. random variables representing successive up and down periods for the
machine. Another two sequences of i.i.d. random variables {£,};.; and {n;}, .,
represent, respectively, successive interarrival times of demand batches and
their sizes. We assume that all random variables are defined on a complete
probability space (), #, P) and have a moment of the order 2 + q, ¢ > 0. Let
us introduce the parameters

Ea;=a™1, EB, =b71, E¢ =271, En, =ut,

Vara;, = o, VarB, =02, Varé =ol, Vary =gl

The surplus X(¢) is defined as the difference between the cumulative
production and demand up to time ¢. A positive surplus means excessive
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inventory, whereas a negative surplus corresponds to a backlog. To describe
the dynamics of X = (X(¢), ¢ > 0), we define the processes

(2.1) G(t)y= Y1 ZL‘,(aj+Bj)st< Xl:(aj+ﬁj)+ai+1 ,
i=0

i=0 \j=0
(2.2) A(t) =max{j>0: & + - +§ < t},

where a, = B, =0 and I(F) is the indicator function of the set F. The
process G(t) is the “indicator” process for the machine state: G(¢) = 1 when
the machine is up and = 0 when the machine is down. The renewal process
A(¢) describes the cumulative number of arrivals of the demand batches.

Given the initial inventory level x and production rate p(s), the surplus
process can be represented in the form

: AQ)
(2.3) X(¢) =x+f0G(s)p(s) ds — td — '-21""'

The production rate p(s) in (2.3) is the control variable and the following
definition specifies the restrictions it must satisfy.

DEFINITION 1. A real-valued process (p(¢), t > 0) is called an admissible
policy, if the following conditions hold:

(1) the process p(t) is adapted to the filtration & = o{G(s), H(s), s < t},
where H(s) = LAY 7.
G) 0 <p(t) <r.

We use & to denote the set of admissible controls. It should be noted that
the dynamics of X(¢) described by (2.3) allows us to omit a formal require-
ment on p(¢) to be equal to zero whenever the machine is down.

Let C* be the unit cost of holding excess inventory and C~ be the unit
cost of backlog per unit time. Set A(x) = C*x*+ C~x~, where x* = max(x, 0)
and x~ = max(—x,0). The objective is to minimize the expected discounted
cost

(2.4) J(x,p) = Ef:e""h(X(t)) dt

over all admissible policies p €%, where p > 0 is the given discount rate. We
denote the corresponding value function by

(2.5) v(x) = inf J(x,p).
pEP
A closed form solution for the optimal control problem of (2.3)—(2.5) is very

difficult if not impossible to obtain. In view of this, we find an approximate
solution by means of an asymptotic analysis.
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We assume that the system S is operating in heavy traffic; that is, the
parameter

(2.6) 8= (rb(a+b)" —d—A/u)(d+r/p)”"

is close to zero. Note that rb/(a + b) is the expected long run production per
unit time when the maximum production rate r is used and d + A/pu is the
expected demand per unit time. This condition requires the average demand
to be close to the system capacity and the traffic intensity, defined as
rb(a + b)"1/(d + A/u) = 1 + 8, to be close to 1.

Consider a family of systems {S,}, ¢ = 0, indexed by parameter ¢ belong-
ing to a countable set &. (Setting & =n"!/2 one gets the conventional
notation for heavy traffic limit theorems.) More precisely, each system is
described by its maximal production rate r,, discount rate p, and families of
ii.d. random variables {a/}, { B7}, {£7}, {77 } with corresponding mean and

variance parameters indexed by & as well. Our main assumptlon on the
family {S.} is the following: There exist constants 4, b i, /\ d £, 62 i=
1,2,3,4; ¢ > 0, y> 0 and ¢ > 0 such that

a,—a, b, — b, M, = 0, A = A, d€—>dA, r,—r,
(2.7) . . R .
0'12s - 0'12’ 0'22s - 0'22’ 0'328 - 0'32’ 0'423 - 0'42, g —0;
rEbé‘ A&'
(2.8) c,=¢! -d,——|~—ec, e - 0;
a,+ b, M,
(2.9) Y. =p.e 2>y, e 0.
supE(af )2+q < o, supE( B )2+q < o,
(210) ’ 2+q 2+q
supE( £F) < o, supE(ny5) < o,
&

Note that according to (2.8), the traffic intensity of S, converges to 1 in the
order of .

Let p®(-) be an admissible policy for the system S, and X°*(-) be the
corresponding solution to (2.1)-(2.3). For each initial position x in (2.3) and
each ¢ > 0, let J° be the following cost functional associated with p°(-):

J*(x, p°(*)) = esE/:oexp(—pgt)(C+(X3(t))+

(2.11) \
+C™(X°(¢t)) )dt.

Define also

(2.12) vi(x) = 1nf J°(x,p(*)),

where Z_ is the set of admissible controls for the system S,.
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Our original system dynamics is identified with that of S, for some fixed
gy, €&, that is,
a. =a, b€0=b, Koy = M> Ay = A, d€0=d, e, =75

=0 €0

(2.13) P, =ps 02, =02, i=1,234.

igg

From (2.6) and the definition (2.8) of c,, we have

(2.14) =8, =c,&(d,, + /\go/uso)_l-
For any admissible control p (p = p*?),

(2.15) J(x,p) = e5°J(x, p°)
and, consequently,

(2.16) v(x) = &5%v(x).

Owing to (2.13), (2.15), and (2.16), we will refer to S, as a system that
corresponds to S, while noting that they are not 1dent1ca1 systems. Our goal
is to draw conclusions for the original system S by using (2.15) and (2.16)
and a solution of the limiting optimal control problem. For this we need the
following definitions of asymptotically optimal controls for the sequence {S,}
and a nearly optimal control for S; see Section 4 on motivation for these
definitions.

DEFINITION 2. A sequence of controls p¢, ¢ € &, is said to be asymptoti-
cally optimal in the sense of absolute error for the sequence {S,} if

lin(l) lve(xet) — Jo(xe7t, p°)| =0
8—)
and asymptotically optimal in the sense of relative error if

ve(xet) - Jg(xa_l, ﬁs)

=0.
ve(xe )

(2.17) lim

e—0

DEFINITION 3. Let S, corresponds to S and p® be a policy for S, . We
call a policy p for S an image of p®o if
J(x,p) — v(x) vé(x) — J°(x, p°)
v(x) vo(x) ’
If p*® is an element of the sequence of asymptotically optimal policies, then

following the usual practice in the literature (e.g., [25], [27], [28)]), its image is
loosely referred to as a nearly or approximately optimal policy for S.

3. Summary of results. As a limiting problem for the family of sys-
tems {S,} as & > 0, we consider a system Sy that is a singular controlled
Brownian motion with drift ¢ equal to the right-hand side of (2.8) and
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variance
(3.1) o =72(a%B(a +b) 67 +ab%(a +b) "63)+ A% + A2,
where 7,8, b,... are given by (2.7). In this problem, we start with a process

(W(t), ¢t = 0), W(0) = 0, defined on (Q,%, P), which is a (¢, 0?) Brownian
motion with respect to a family of o-fields (%, ¢ > 0). A control policy is
defined to be a nonnegative, right-continuous nondecreasing process L =
(L(2), t > 0) adapted to the ﬁltratlon , such that L(0) > 0. We say that L is
an admissible policy if

(3.2) E[:e-vtdL(t) <.

The dynamics of the system are given by
(3.3) X(t)=x+ W(t) — L(2),

where x is the initial state. With each control functional L, we associate the
cost

(3.4) J(L) = Ef:e‘”h(X(t)) dt,

where the cost function A(x) is defined in the Section 2. The objective is to
find V(x) and L* such that
(3.5) V(x) =dJ,(L*) = i%fJx(L).

Applying techniques similar to the ones developed in [14] and [17]-[20], we
prove the following result.

THEOREM 1. The optimal control policy for the problem (3.2)—(3.5) is given
by

(3.6) L*(t) = sup[x + W, —2*]", ¢>0,
s<t
where
(3.7) . o? . (C++ c- )
. z* = n
c+ e +20% c*

We can describe the optimal control L* and the associated process X* as
follows. If x > z*, take L*(0) =x —2* [so that X*(0) = z*]; otherwise
L*(0) = 0. After time 0, L* increases by the minimal amount sufficient to
. achieve X*(¢) < z*. Under this policy, X* is a (¢, 0?) Brownian motion on
(=, z*) with reflecting barrier at z*. Thus L* — L*(0) is the local time of X*
at z*. Process L* may have a jump at ¢ = 0, but it is continuous and singular
on (0, »). The latter means that the set of time points where L* increases has
zero Lebesgue measure.
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In the next set of results, we specify the relation between the structure of
the optimal control for the limiting system and asymptotically optimal con-
trols for the sequence {S,}. Before we do that, however, we provide a heuristic
explanation that reveals the connection between our original system S and
the singular stochastic control problem (3.2)—(3.5). In (3.3), we can view W(¢)
as Wy(¢) — Wy(¢), where W,(¢) is a Brownian motion approximation of the
demand process in the system S and W,(¢) is a Brownian motion approxima-
tion of the maximum possible cumulative production process. Finally, L(t)
stands for the cumulative underproduction; that is, the difference between
the maximal cumulative production and actual cumulative production associ-
ated with a feasible policy. Because W,(¢) and W,(¢) are known, finding L*(¢)
satisfying (3.5) corresponds to finding a nearly optimal production policy
for S.

We can now state the main results of the paper.

THEOREM 2. For any x and any admissible control p®,
V(x) < liminfJ¢(x&7!, p*).
-0
Put

o2 =r2(alb(a, +b,) ol +a,b3(a, +b,) Pl
(38) ( & 5( a) 1 ( ) 2 )

&

3, -2_2 2
+ /\a”’a O3, + )taa:le

and let z} be defined as

(3.9) : o (C+ - C )

. z¥ = n ,

¢, + el + 207, c*

where c, and vy, are given by (2.8) and (2.9), respectively. Consider the policy

(3.10) po(t) =r I(X°(t) <&'z}) +d I(X°(t) = e'2}).

THEOREM 3. For any x,
V(x) = lin(l) Je(xe™t, pe()).
ored

COROLLARY 1. Let v°® be defined by (2.12). Theorems 2 and 3 imply

lin(l) vi(xet) = V(x).

COROLLARY 2. The sequence of control policies p° is asymptotically optimal
in the sense of both absolute and relative errors; that is,

lin})lvg(xs'l) - J”(xs'l,ﬁ€)| =0,
ored

(8.11) . |vi(xe™t) —J°(xs7, p7)
lim =)
) ve(xe™t)

= 0.
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THEOREM 4. Let

o2 C*+C~
(3.12) ZO = n( ),

8(d + A/n) + Vo2(d + A/u)’ + 25% c”

where 52 = r¥(a®b(a + b)~%2 + b3ala + )~ %2) + Au"%0f + Aol Then
(3.13) p(t) =rI(X(t) <zy) + dI(X(t) =z)

is an image of p°° given by (3.10).

4. Proof of Theorem 4 and discussion.

ProoF oF THEOREM 4. The proof of Theorem 4 clarifies how asymptotic
analysis is applied to a real system. This is the most important practical
issue of this paper. Therefore, we prove Theorem 4 prior to Theorems 1, 2 and
3, which are more technical in nature.

Recall that the original system S is related to S, for some &;,. Asymptoti-
cally optlmal control policy given by (3.10) is characterlzed by the level
2y = &y 2, where z} 1s defined by (3.8) and (3.9) with & = &,. Taking into
account that Pe, = ’}’5080 , we can write

o? (C++ C')

4.1 2y = =

D * e 60+ R el + 2020, c-

Note that both &, and c,  are nonuniquely determined parameters, because
there exist infinitely many sequences {S.,} in which the original system S can
be imbedded with ¢, indicating its position in the sequence and being an
arbitrary index. In our problem, nevertheless, the expression for z, appears
to be a function of c, &,, which is equal to 8(d + A/p) in accordance with
(2.14); that is, it is expressed in terms of the original system parameters.
Using (3.8) with ¢ = ¢, and (2.13) in (4.1), we derive (3.12). As a result, the
control policy defined by (3.13) is suggested for the given system S. In
accordance with (2.15) and (2.16), the relative and absolute errors of using p
can be expressed as

J(x,p) —v(x) | _|vo(x) —JI%(x, %)
v(x) voo(x) ’
|J(x, B) — v(x)| = &5®|vo(x) — I*>(x, p)],

that is, p is an image of p° given by (3.10). This completes the proof of
" Theorem 4. O

(4.2)

Certain remarks are in order at this point.
From Corollary 2 we know that the right-hand side of (4.2) is small when
&, is small. An important open question is that of finding an estimate for the
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relative error in (4.2) without solving the original control problem. Mathe-
matically this issue is related to finding the rate of convergence in (3.11).
Error estimates for constructed controls have been found in Sethi and Zhang
[32] and Sethi, Zhang and Zhou [33] in another context of piecewise deter-
ministic manufacturing systems. In this paper, the limiting problem is
obtained by replacing fast-changing Markov processes by their average; see
also Lehoczky et al. [29]. To our knowledge these kinds of estimates have not
been obtained in models approximated by controlled diffusions.

Furthermore, in contrast to the case considered here, the corresponding
limiting system in [32] is uniquely determined by the original system associ-
ated with a known ¢, indicating the frequency of the fast process. Therefore,
the error bound expressed in terms of ¢, is adequate. In our problem, on the
other hand, it seems to be reasonable to seek an error bound in (4.2) as a
function of ¢, &, or, equivalently, 5. This would enable one to express the
relative error in terms of the original system parameters.

Next, we turn to the numerical comparison of the optimal threshold values
found in Akella and Kumar [1] with the corresponding ones provided by our
approach. Recall that the system considered in [1] is the same as the one
described in Section 2 with additional restrictions: (1) Up and down periods
(a; and B; in our notation) are exponentially distributed, and (2) the
demand process is deterministic with a constant rate d.

For this system, the optimal production policy, which minimizes the
expected discounted cost (2.4), can be explicitly computed. The optimal policy
is characterized by a critical number z{ (known as a hedging point inventory
level), whose closed form expression is known. One can write the optimal
policy in the form of (3.13) with z, replaced by z{.

We test our method on those systems studied in [1] that operate in heavy
traffic and compare answers; that is, we compare z, defined by (3.12) and the
optimal inventory level z§. To this end, we introduce four independent
parameters of the system, namely:

1. Traffic parameter 8 defined by (2.6).

2. Demand rate d.

3. Mean cyclle duration (total duration of mean up and down periods) & =
a ' +b7L

4. Proportion of up period with respect to the cycle duration a = a1 /k.

All other parameters except the cost coefficients can be expressed in terms of

8, d, k, a and p. The parameter a takes values in the interval [0, 1]. If

a — 1, then the machine is reliable and the system becomes deterministic.

If @ — 0, then the machine is unreliable and the system is far from determin-

istic. Analysis of the numerical data shows that the approximation is good

(i.e., the relative error A = |z, — z¥|z5! is small), if the discount factor p is of

‘the order of 82 and both & and « are small. We present the graphs of z* and

z{ as functions of a for §=0.1, 2 =1,d = 1, and p = 0.01 in Figure 1 and a

graph of corresponding relative error in Figure 2. Recall that the traffic

intensity is equal to 1 + 6.
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'] 0.1 02 03 0.4 0s 0.6 0.7 08 0.9 1

Fic. 1.

5. Singular control problem for Brownian motion: Proof of
Theorem 1. In this section we study the singular control problem described
by (8.2)-(3.5) and prove Theorem 1. The proof is done in two steps. First, we
derive the lower bound of the cost functional J (L) associated with any

admissible control L. Let

2 92 d

F g
=———4+c—.
2 9x? dx

0 01 02 03 04 Qas 06 07 08 09 1

FiG. 2.
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We show that if f € C? satisfies

(5.1) Tf(x) — vf(x) + k(%) > 0,
(5.2) f(x) <0

and the linear growth condition
(5.3) |[f(x)| <K(1+|x]), K =const,

then f(x) < J, (L) for any x and L.
In the second step we show that the cost functional associated with L*,

defined by (3.6) and (3.7), satisfies (5.1)—(5.3).

STEP 1. Denote AL(t) = L(¢) — L(t — ), assuming that L(0 — ) = 0; that
is, AL(0) = L(0). The continuous part A(¢) of L(t) is defined as At) =
Y. . AL(s), ¢t > 0. For arbitrary f € C2, denote Af(ZXt) = f(Z(t)) —
f(Z(¢ —)) with the convention Z(0 — ) = X(0).

LEMMA 5.1. Let f€ C?%, where C? is the set of functions h such that
h € C! and the second derivative of h is continuous everywhere except at a
finite number of points, where it has left and right limits. Then

Ble(Xn)] = x) + B [Te (07 = 9 ) ot

—E[foTe‘”f’(Xt)dAt]+E[ Y e TAf(X),].

0<t<T

PROOF. The proof of Lemma 5.1 can be found in [35]. O

LEMMA 5.2. Iff € C? satisfies (5.1)—(5.3), then for any x and any admissi-
ble control L, we have

F(x) < J(L).
Proor. Define K, = /¢ e~ ""h(X,) ds. It follows from Lemma 5.1 that
E[Ky + e "Tf(X(T))]
= F(x) + B{[ e 07— vf + WX 0

(5.4) _E{/OTe—Wf’(X(t)) d/\(t)}

+ E{ Y e-vtAf(X(t))} .

0<t<T
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If f satisfies (5.1)—(5.3), then formulas (5.1) and (5.2) imply that the second
and the third terms in (5.4) are nonnegative. Because

Af(X(2)) = f(X(2)) - f(X(t-)) = fX(t)

f'(y)dy,
X(t)+AL(t)

formula (5.2) yields nonnegativity of the preceding expression. Thus,
(5.5) E[K; + e "Tf(X(T))] = f(x).

On the other hand, using (3.3) and (5.3), we can write |f(X(T))| < K(1 +
|x| + |W(T)| + L(T)). From (3.2) one can derive the existence of a sequence
T,, k > 1, such that T}, - » as k — « and lim, _,,, e "*EL(T,) = 0. Because
E\W;| < (302T)Y2, we conclude lim, _,,, e ""™*Ef(X(T},)) = 0. Setting T'= T,
and taking k£ — « in (5.5), we have J (L) > f(x). Because L and x are
arbitrary, Lemma 5.2 is proved. O

STEP 2. Consider the control functional

(5.6) L(t) = sup[x + W(s) —z]", ¢=0.

s<t

Because L(¢) < |x — z| + sup, ., |W(s)| and E sup,_, |W(s)| < (Lo28)/2, we
have

Ef “e 7' dL, = lim {ELTe-vT +f Te-vEL, dt} < const.
0 0

T — o

Thus, L is an admissible control. It is known that the process X(¢) = x +
W(t) — L(¢) is a Brownian motion with values in (—o, z] reflected at the
barrier z [11]. The following lemma characterizes the cost function associated
with the control L.

LEMMA 5.3. Suppose that f € C? satisfies (5.3) and
(5.7 I'f(x) — yf(x) + h(x) =0, x <z,
(5.8) f'(x)=0, x>z
Then f(x) = E{/; e~ ""h(X(t)) dt}.

Proor. Note that (5.7) and (5.8) imply that f is twice continuously

differentiable on [ —, z] and on [ z, ©) with 2z being the only possible point of
discontinuity for f”. If x € (—, z], then AL, = 0. In this case (5.4) yields

E[K; + e "Tf(X(T))]
'(5..9) =f(x) +E{f0T(Ff— yf+ h)(X(t))dt}

= EfOTe‘”f’(X(t)) dL(t).
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Because X(t) € (—=, z], the second term on the right-hand side of (5.9)
vanishes due to (5.7). Next, according to (5.6), L increases only when X = z.
Therefore, the third term on the right-hand side of (5.9) also vanishes due to
(5.8). Letting T — o and using the linear growth condition of f, one can show
that EK,, = f(x) as desired.

If x > z, then the value of E(K,) is the same as it is for the process with
the initial state z. From the first part of the proof, we know that E(K,) = f(z)
and f(x) = f(z) in accordance with (5.8). O

To determine the optimal threshold value z* we use the “principle of
smooth fit” (see [17] and [18]). To this end, we have to find z* such that the
solution f of (5.7) and (5.8) is twice continuously differentiable and satisfies
(5.1)-(5.3).

LEMMA 5.4. The optimal threshold value z* is given by (3.7).

ProoF. Denote k(x) = f(z — x). We have
(5.10) 302k"(x) —ck'(x) — yk(x) + h,(x) =0, x>0,

where h,(x) = h(z —x), x > 0. Because f is twice continuously differen-
tiable and f(x) = const for x > z, one gets the boundary conditions 2'(0) =
k"(0) = 0. Differentiating (5.10) and putting g(x) = k'(x), we conclude that
g is the solution of the following Cauchy problem:

(5.11) 3078"(x) —cg'(x) — vg(x) + H,(x) =0
g(0) =g'(0) =0,

where A, (x) = —C*I(x < z) + C"I(x > z). A general solution of the homo-
geneous part of the preceding equation is given by

go(x) = Cle/\lt + CzeA2t

with A; = (62)"Hc + Y2 + 20%y) and Ay, = (62) " Y(c — c? + 202y). Using
Green’s formula [5], we can find the solution of the Cauchy problem (5.11) for
x <z

+

(5.12) g(x) = VY {Az1(e** — 1) — A7 M(eM® — 1)}.

2 1
Next we extend the solution for x > z, preservmg the continuity of g and g’'.
For x > z, it has the form

(5.13) g(x) = CieM* + Cye™™ + g(x),
. where
c” c” Ag(x—2) + ____C’_____e)\l(x—z)

)‘1/\2 AZ()‘2 - /\1) )tl( AZ - /\1)

8(x) = -
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is the solution of the nonhomogeneous equation (5.11) for x > z subject to
£(z) = g(2) = 0. Using the required continuity of g and g’ at the point x = z
we can find the equations for the constants C; and C, in (5.13); that is,

CieM? + Cye™? = CH(Ay — Al)_l{/\gl(e"zz —1) — A (e = 1)},
CiAeM + Cyhgets® = CH (A, — Ay)  H{eh2? — eh?),

Therefore,

+ +

)(1 —e M), Cy(z) =

C B
I(Z) /\1()‘2_)‘1

N~ LT

Thus, (5.13) yields the following expression for g on [z, ©):
g(x) = —CTATNG ! = CTAI (A — Ay) e et
+ CTA N Ay — Ay) leMizehx
— C+A1‘1(A2 — ,\1)—1(1 — e MZ)eh?
+ C+’\2_1()‘2 - /\1)_1(1 - e_“z)e)‘z".

(5.14)

The linear growth requirement on k(x) results in boundedness of its
derivative g(x) given by (5.14). Because A; > 0 and A, < 0, the coefficient in
front of e** in (5.14) must be equal to zero. Therefore,

CAT (A = X)) e = CH AT (A — ) (L - e,

The solution z* of the foregoing equation is given by (3.7). Note that for
z = z*, the function g in (5.14) is decreasing and g(x) > —C A A;! > 0 as
x = +, Consequently, g(x) > 0 for x > z*. It is easy to see from (5.12) that
g(x) = 0 for x € [0, 2*]. Set

k(0) =y 'h,(0) = C*z*y7?,

kO) + [(t)dt,  x=0,
0

k(0), x <0.

k(x) =

One can conclude that f(x) = k(z* — x) satisfies (5.7), (5.8) and the linear
growth condition. According to Lemma 5.3, f is the cost function correspond-
ing to the control L* defined by (3.6). Moreover, f is twice continuously
differentiable, f'(x) <0 for all x and I'f(x) — yf(x) + h(x) = —yf(z*) +
h(x) = —yf(z*) + h(z*) = 0 for x > z*. Consequently, conditions (5.1)—-(5.3)
are satisfied. By virtue of Lemma 5.2, L* is the optimal control. O

6. Rescaled inventory procéss: Proof of Theorem 2. We introduce
the rescaled inventory process Y°(¢) = eX*(e~2t). Using {2.3) we rewrite Y*
as

(6.1) Ye(t) =x + We(t) — Le(t),
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where
(62) Li(1) = &G (u)(r, —p*(w) du,
(6.3) We(t) =c,t +r,M°(t) — N°(¢),
e % be
(6.4) Me(t) = e{j(-) G°(s) ds — s a_2t} ,
A%(e72t) A
(6.5) Ne(et) = 8{ Y omf— —ge_2t} .
i=1 &

The process M*°(-) is the centered and rescaled cumulative up time of
the machine, whereas N°(-) is the centered and rescaled stochastic part
of the demand.

Note that the expression (6.2) establishes a one-to-one correspondence
between p® and L°. Set

JE(L?) =J°(xe71, p®).
After simple transformations, we have
(6.6) JE(L) = E [ e h(Y*(2)) dt.
0
Our goal is to compare the sequence JZ(L?), & € &, with the optimal cost

V(x) = J,(L*) of the singular control problem and to show that
(6.7) liminf JZ(L?) > J, (L*).

e-0
We need a number of auxiliary results, which are formulated as lemmas.
LeMMA 6.1 ([24], Appendix I). Let {£f);., be a sequence of i.i.d. random
variables with E&f = A1, Var ¢ = o2 and
A°(t) = max{j: &5 + - +£F < t}.
2

Suppose that A, > A, 0> > 02 as € > 0 and sup, E(¢£)?%9 < o for some
q > 0. Then there exists a constant K such that for any t > 0, we have

9\1/2
sup (E(suple(Ae(g—zs) —)tgg_2s)|) ) <K+ Kit,

s<t

91\1/2
sup (E(e?A%(72t))’) " <K + Kt.
LEMMA 6.2. There exists a constant K such that

a2
sup(E(suplWe(s)l)) <K + Kt.

& s<t
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LEMMA 6.3. Let

(6.8) v, = AR%2 + A62,
A A —3 ey ol _3
(6.9) v, = G%6(4 + b) "6 +b%(4 +b) 2.

Under the preceding assumptions and the definitions, we have
N® -, N, M-, M, e -0,

where N and M are independent Wiener processes with variations v, and v,
respectively, and the symbol —, stands for convergence in distribution.

CoroLLARY. W® -, Was & — 0, where W is a Wiener process with drift ¢
and variance o2 defined by (2.8) and (3.1), respectively.

The proofs of Lemmas 6.2 and 6.3 are given in the Appendix.

LEMMA 6.4 [23]. Let {af};., be a sequence of nonnegative i.i.d. random
variables with sup, E(af)?*? < « for some q > 0. Then,

P-lim e max a7 = 0,
£-20 j<g72

where the notation P-lim stands for limit in probability.

We now proceed with the proof of (6.7). One can assume without any loss of
generality that the sequence JZ(L?), £ € &, converges as & — 0 to a finite
limit; otherwise the left-hand side of (6.7) is equal to +% and (6.7) is valid.
Thus, for some constant C,

(6.10) TE(LF) =E [ e "h(Y*(¢)) dt < C.
0
LEMMA 6.5. Foreach T > 0 there exists a constant C(T) such that for each

e,
(6.11) E{L:(T)} <C(T).

Proor. It follows from (6.1) that
(6.12) [ e EL(t)dt < [ e (x| + E|W*(¢)| + E|Y*(t)|) dt.
0 0

Lemma 6.2 implies E|[W(t)| < K + Kt. Besides, |x| < (min(C*,C™))"1A(x)
for any x; consequently, (6.10) and (6.12) imply

(6.13) [ e BL () dt < C,
0

with C, = |x|y,! + C(min(C*, cH !+ K(y ' + y7%). Because L*(T) <
L(u) for u > T, we have

[ EL(TYe * dt < [ " "“BL*(u) du < C,
T 0
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and
(6.14) EL*(T) < C,y teT.

Because the sequence {vy,, ¢ € &} converges, the right-hand side of (6.14) is
bounded and we get the statement of Lemma 6.5. O

Let V* Dbe the space of nondecreasing right continuous functions V* with
Skorohod M, metric on it [34]. Consider the process L¢ as a random element
with values in V*. It is known that convergence of m, to m in V* is
equivalent to convergence of py(m,, m) as & — 0 for each N > 0, where

pn(my, my) = inf{n: my(x — m) — n < my(x) <my(x +n) + 1,
my(x —m) —m<my(x) <my(x+1m) +7
forall x € [4, N — n]}.

An equivalent description of the convergence of m_ to m in V* would be the
convergence of m_(x) to m(x) for every x > 0 which is a point of continuity of
m (see also [31]). Using the classical Helly’s theorem, one can show that a set
Z € V" is relatively compact if for each N > 0 there exists K, such that for
any m €.%,
(6.15) m(N) < K.
Let 6 > 0 and

Z={meV*':m(N) <§12¥"'1C(N),N = 1,2,...},

where the constants C(IN) are given in the previous lemma. By virtue of
(6.15), the set .# is compact in V*. Chebyshev’s inequality and (6.11) imply
that P{L°(-) &%} < 8. Therefore, the sequence L°(-) is tight [4].

Consider M* and N°*, £ € &, defined by (6.4) and (6.5), respectively, as
sequences of elements from the space D = D[0,») with the Skorohod ./,
metric on it [34]. Define a triple U¢ = (M ¢, N°, L) as a random element with
values in %, where

#=DXDXV*.

Lemma 6.3 implies that M*°(-) and N*(:), £ € &, are tight. Therefore the
sequence U’ € % is tight because each of its components is tight. Without
loss of generality we may assume that U® converges in distribution. By the
Skorohod representation theorem ([10], Section 3, Theorem 1.8), there exists
a sequence Us, e &, on another probability space such that U"" has the
same distribution as U*® and U converges almost surely. Let (M, N, L) be its
limit. Obviously (M, N) has the same distribution ‘as (M, N) in Lemma 6.3.
With some abuse of notation, we identify (M, N) with (M, N) and U*® with
U?, thus assuming .

(6.16) lim (M*,N°,L*) = (M,N,L), P-as.

Because (M, N) have continuous trajectories, almost sure convergence of
(M?,N°) to (M, N) in the ¢, topology is equivalent to uniform convergence
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on all finite intervals. Convergence of L to L in V" coincides with conver-
gence of L?(s) to L(s) for each s that is a point of continuity of L (see [31]).

Let W(t) = ct + rM(¢) — N(¢) and Y(¢) = x + W(¢) — L(¢). In view of con-
vergence of M*®, N° and L, we can use (6.1) to get

Y(t) = lin(l) Y°(t), P-as,

for each ¢ that is a point of continuity of L. Consequently, there exists a
countable set A = A(w) such that
(6.17) h(Y?%(t)) - h(Y(¢)), &—0,P-as.foreacht & A.
Fatou’s lemma and (6.17) imply

[Te (Y (2)) dt = [ e 7 lim e~ MR(Y?(t)) dt
(6.18) 0 °

< liminf [ e~*h(Y*(2)) dt.
& 0

Taking expectation in (6.18) and applying Fatou’s lemma once again, we
obtain

E[ e 'h(Y(t)) dt < liminf E [ e h(Y*(t)) dt.

0 B 0

The preceding inequality can be rewritten as J, (L) < liminf, J2(L?). In
order to complete the last step of the proof, namely, to show that

(6.19) J.(L*) <J (L),

we need to apply the results of Section 5. To this end, we have to identify the
filtration % such that W is a Brownian motion with respect to % and L(t) is
F-measurable. We define 7, as o(M(s), N(s), L(s), s < t). Obviously L(¢)
is F;-measurable.

LEMMA 6.6. The process W is a Brownian motion with respect to (%,
t>0).

Proor. Let F and G be bounded functions of 3% arguments and a single
argument, respectively. Let

0<s;<8;< - <g,<t<u
and P{L(s;) # L(s; =)} =0,i=1,2,..., k. We need to show
E{F(M(sy),...,M(s,),N(s1),...,N(83), L(81)5--»
L(s0)G(W(u) - W(t)))
= E{F(M(sy),...,M(5,),N(sy),...,N(5;), L(s1),---, L(s3))}
X E{G(W(u) — W(2))}.

(6.20)
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Define
Af(t)+1 De(t)+1

If(t)= Y & -t l5(t)= X (& +B7)—t,
i=1 i=1
where
D*(t) = max{j: af + B{ + - +af + Bf < t}.
For any ¢ > 0, the following estimates hold:
sup|li(s)| < max &°,

(6 21) s<t i<Af(t)+1
sup|li(s)| < max (af + Bf).
s<t i<De(t)+1

Using the elementary renewal theorem (see Chung [8], Section 5.5), (2.7),
(2.10) and (6.16), one can conclude
P-lim £2A%(s7%t) = At,  P-lim £2D°(&%t) = ab(a + b) ¢,
e -0
where P-lim stands for the limit in probability. Together with (6.21) and
Lemma 6.4 this yields
(6.22) P-lim supelf(e2s) >0, P-lim supelf(s2s) — 0.
£-0 g4 £-0 g<¢
Choosing a subsequence, one can get a.s. convergence in the foregoing for-
mula. In view of (6.16) and (6.22), we can write

N(u) — N(t) = lin(l)[N"‘(u + e2lf(e7%t))

(6.23)
_Né‘(t + g2lf(6—2t))]’ P-a.s.,
and
(6.24) M(u) = M(t) = im [M*(u + e*5(e70))
_Ms(t + gzlg(e—zt))]’ Poas.
Denote
ae () = ol (u + o%5(e720)) = M (s + £%5(c70)]

—[Ne(u +&%lf(e7 %)) — N°(¢ + ezlf(e'zt))] +c[u—t].
Using (6.4) and (6.5), we derive

u P - -
Ae(t)=r€sj(‘) I(e 2t+1,(e7 %) <s

< e lu+ly(e7%t))Ge(s) ds

(6.25) -

— e L onfI{A%(e 2+ 15 (s7%t)) <i
i=1

SA£(6_2u+lf(6_2t))}.
Fix &. Let S =A%(¢7 %t + 1{(s72t)) = A°(¢7%t) + 1. If one considers a
sequence of i.i.d. random variables {£7);, ;, then S is a stopping time with
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respect to the filtration o{ §f, i =1,...,k}, k > 1. Therefore, o{&7, i < S} is
independent of o{é&g,;, i = ..} (see [7], Lemma 2, Chapter 5.3). Obvi-
ously S is a stopping time w1th respect to the sequence {&7, 1), 1. Similarly,
= o{¢f,mf, i < Sy and #5 = o{&8,,,mé,,, i = 1,2...} are independent.
Let T = D*(e7%t + 1,(¢7%¢t)) = D*(s72¢t) + L In the same manner, &, =
olaf,Bf, i <T} and &7 =of{af,;, B, i=1,2...} are independent.
Because {af, Bl and (&7, m7), .. are 1ndependent sequences the o-fields
%, 75 ?T and £ 7 are mutually independent. Therefore, #s V &p and
#° v ? are independent. Using (6.25) and the definition of the process G°

[see (2.1)] one can conclude that Ae(‘t‘) is #° v & T-measurable. Obviously
Fr=0{M*(s),N°(s),s <t} CHV Zy.

Thus, AS( ) and #° are independent. It follows from the definition of the
admissible policies that L*(¢) is #°-measurable. Consequently,

E{F(M*(s,),..., M*(s,),N°(s1),..., N°(s3),
L*(sy),..., L(s;))
G(r [Me(u + £215(e72t)) — M°(t + £215(&7%t))]
—[No(u + 215 (e72t)) — N*(t + £2(&%t))]
(6.26) +c,[u - t])}
=EF(M°(sy),...,M*(s;),N°(s1),...,N°(s),
L(sy),...,L°(s))
XEG(r,[M*(u + £215(7%t)) — M*(t + £215(e~2¢t))]
—[Ne(u + 215(e72t)) — N°(t + &% (%))
+cfu — t])

Allowing & — 0 on both sides of (6.26) and using (6.3), (6.23) and (6.24), we
derive equality (6.20). Applying monotone class arguments, one can extend

(6.20) for any measurable functions F' and G, whence independence of %, and
W(u) — W(¢) follows. O

LEMMA 6.7. The functional L is an admissible control; that is,

E[ e dL(t) <.
0

PROOF. From (6.13), (6.16) and Fatou’s lemma, we derive

[ “"EL(t)dt <C, < C,
0
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where C is a constant. Consequently there exists a sequence ¢,, £ > 1, such
that ¢, - « and lim, ., e~ "*EL(¢,) = 0. From this fact, it follows that

Efme‘”dL(t) = lim {EL(tk)e‘m + yf"*EL(t)e-vtdt} <C, O
0 - 0

Lemmas 6.6 and 6.7 and the results of Section 5 yield (6.19). This com-
pletes the proof of Theorem 2.

7. Asymptotically optimal control policy: Proof of Theorem 3. In
this section, we consider policies characterized by a single critical level. The
commodity is produced only when inventory is less than or equal to this level,
the production rate being maximal if the inventory is strictly less than this
level and equal to the deterministic demand rate d if the inventory is equal
to this level. We show that by choosing the critical level properly, one can
construct a sequence of policies whose associated costs approach the optimal
cost of the singular control problem described in Section 5.

Let z* be defined by (8.9). The associated control policy [see (3.10)] can be
written in terms of the rescaled inventory process Y°(¢) = ¢X*(¢%t) as

(7.1) pe(e%t) =r I(Ye(t) <z¥) +d I(Y°(t) =zF).
Let Lf,W¢,... be defined by (6.2)—(6.5) with the control p® given by (7.1),
and let Y¢ be the corresponding solution to (6.1). Let L* be the optimal

control for the limiting problem given by (3.6) and let Y* be the optimal
process corresponding to the control L*; that is,

(7.2) Y*(¢) = x + W(t) — sup[x + W(s) —2*] ",

s<t

where W is a Brownian motion with drift ¢ and variance (3.1). Put J(L®) =
J(e71x, p®). Our goal is to show that JZ(L?) — J,(L*) as &£ — 0; that is,

(7.3) lilr(l)]; e-vsth(Ye(t))dt=Efo e~ Vh(Y*(¢)) dt.

The proof of (7.3) is based on two facts:
1. Forany ¢t > 0, Y*(¢) -, Y*(¢), £ = 0.
2. There exists K > 0 such that

911/2
sup[E(Ye(t)) ] <x+ Kt + K, t>0.

Indeed, if fact 1 holds, then
(7.4) h(Y?(t)) =4 B(Y*(2)), e—>0,t>0,

by the continuous mapping theorem. Because |A(x)| < max(C*,C~)|x], state-
ment 2 implies that sup, E[A(Y*(¢))]?> < » and that the family of random
variables A(Y*4(¢)), € € &, is uniformly integrable. Thus, we have from (7.4),

(7.5) Eh(Y*(t)) » Eh(Y*(t)) as &— Oforanyt > 0.
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Let g¢(¢) = E{e =" "*h(Y*(¢))} and g(¢) = ER(Y(#)). Equality (7.5) implies
pointwise convergence of the sequence of functions g°(-) to g(-) as £ — 0.
Using fact 2 we can write

[ER(Y*(¢))]? < E[R(Y*(¢))]® < max(C*,C™)*(x + Kt + K)®.

Without loss of generality we can assume that |y, — y| < y/4. By Jensen’s
inequality we have

fwe-vt(ge(t))z dt < fme—vt/Z max(C+,C_)2(x + Kt + K)2 dt < const.
0 0

Therefore, the sequence g®(-) is uniformly integrable with respect to the
measure e "' dt and

[ege(t)dt > [ e 'g(2) dt,
0 0

whence (7.3) follows.

We first prove facts 1 and 2 for x < z*, where z* is given by (3.7). It is easy
to see that
(7.6) 2t} —>2z* ase—0,
where z* and z* are given by (3.9) and (3.7), respectively. Therefore, we may
assume without loss of generality that x < z} for all ¢ € &. In this case, the
process Y° does not exceed z*, and using (6.1) and (6.2), we can write

(7.7) Yo(t) =x + Wo(t) — Lo(2),
(7.8) Lo(t) = (r, — de)g‘ILtGe(s‘zs)I(Ye(s) = z¥)ds.

For further analysis, we need to introduce the concepts of a Skorohod
problem and a reflecting mapping [11], [13]. Denote by D,[0, «), the space of
functions u € D[0, ) with u(0) € (—x, z].

DEFINITION 4. Given u € D([0,x), the Skorohod problem in the region
(—o, z] with reflecting barrier at z consists in finding a pair of functions
(y’ l)’ Y, le D[O, °°) such that:

@ y@) =u@®) - 1), t=0.
() y@)e (-« z], ¢t = 0.
(iii) I(-) is a nondecreasing function with 1(0) = 0 and

f:I(y(t) £2)di(t) =0.

It is known that for any u € D[0,«), there exists a unique solution to the
Skorohod problem, which can be written as

(7.9)  y(t) =u(t) — sup[u(s) —2]",  U(¢) = sup[u(s) —2]"

s<t s<t

(see [11]). Thus, one can define a reflecting mapping ®*: D[0,%) — D,[0,x),
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setting ®*(u) = y, where y is defined by (7.9). We denote by ®Z(u) the value
of ®*(u) at time ¢.

Note that by virtue of (7.7) and (7.8), the pair (Y *, L?) is a solution to the
Skorohod problem for the process x + W*(-) in the region (—«, z*]. Indeed,
Y*4(t) € (=, z*] and the first condition in Definition 4 is fulfilled. Because
r, > d,, it holds that L’ is nondecreasing and it increases only when Y*(¢) =
z¥. Consequently, we can write

(7.10) Ye=®%(x + W*).
It follows from (7.6) and (7.9) that
(7.11)  sup|®ZF (x +W*— 2" )(x+W*)|<|z} —2*| > 0 as £ - 0.

s<t
The mapping ®2" is continuous in the uniform topology on D[0, ) (see [11)]),
and according to the corollary to Lemma 6.3, W* —, W as & — 0, where W is
a Brownian motion with drift ¢ and variance o? given by (3.1). By the
continuous mapping theorem, ®*"(x + W¢) -, Y* as & — 0, where Y* =
®>"(x + W) is given by (7.2). This fact together with (7.11) implies Y* -, Y*
as ¢ — 0. Therefore, fact 1 is proved.

Because the reflection mapping ®% satisfies the Lipschitz condition with
coefficient 1 in the uniform topology in D[0, ), we can use (7.10) and write
[Y°(t)| < sup,_, [Y*°(#)| < x + sup,_, [W?|. By Minkowski’s inequality,
[E(Y*()?]V? < x + [E sup, _ |/W*(s)I*1/2. Applying Lemma 2, we derive
fact 2.

Suppose x > z*. According to the Corollary to Lemma 6.3, W* defined by
(6.3) converges weakly in D[0, ») to the Brownian motion W. By the Skorohod
representation theorem, this convergence can be realized on another proba-
bility space as almost sure convergence. Therefore, we can assume that W?
and W are defined on the same probability space and for any T > 0,

lim sup|We(¢t) — W(¢)| =0, P-as.

£20 4 <

Because L*(¢) = sup,_,[x + W(s) — z*]"=x — z* + sup, _ [W(s)]", relation
(3.6) yields

(7.12) Y*(t) = ' (2* + W).

To prove fact 1, it is sufficient to show that

(7.13) P-li_l)r(l)lYe(t) -Y*(t)| =0, t>0.

Define 7° = inf{s > 0: Y*(s) < 2*} and Y*(¢) = Y*(¢t + 7°), t > 0. Obviously,
' (1.18) 79(0) = Y*(r®) <2*

and, similarly to (7.10),

(7.15) Ye(t) = @7 (Yo(0) + We(t + 7°) — Wo(79)).



446 E. V. KRICHAGINA, S. X. C. LOU, S. P. SETHI AND M. I. TAKSAR

Put Y*(¢) = ®?(z* + W). For arbitrary ¢t > 0 and & > 0, we can write
P(lYe(¢) —Y*(t)| > &)

sP( sup  |Y%(u) — Y*(u)| > 8,7° < t)

TP<u<Te+t

+P(7°>t)

SP( sup |¥(u) — Y*e(u)| > 6/3,7° < t)

O<uc<t

(7.16)
+ P( sup |Y*(u + 7°) — Y*(u)| > 6/3)

O<u<t
+ P( sup |[Y*°(u) — Y*(u)|> 8/3)
O<u<t
+ P(7°>t).
Note that 7° < (x —z*Nd;')e and d, > d as & — 0. Hence, P(r, > t) -
0, £ > 0. Because Y* has continuous trajectories, the second term in the
right-hand side of (7.16) approaches zero as & — 0. Obviously sup,_, .,
Y **(u) — Y*(u)| < 2|z¥ — z*|. Thus in view of (7.6), the third term con-
verges to zero. Now we show that the first term also goes to zero as £ — 0.
Using the Lipschitz property of ®2* and (7.12), (7.14) and (7.15), we can
write

sup |Ye(u) — Y*(u)| <2* — Y*(79)

O<ucx<t
+ sup |We(u+ 7°) — We(7°) — W(u)|.
O<ucx<t
On the set {7° < ¢}, the estimate
(7.17) 2y —Y°(7°) <& max nf

i<A®(s721)
is true, and we can write

P( sup |Y?(u) - Y**(u)| > 5/3,7° < t)

O<ucx<t
< P( max en° > 6/6)
i<A%(s2t)
+ P( sup |We(u + 7°) — W(7°) — W(u)| > 6/6).
O<u<t

Because 7° converges in probability to zero as £ —» 0'and W* converges to W,
which has continuous trajectories, the second term in the preceding inequal-
, ity converges to zero as ¢ — 0. For any ¢ > 0, we have P-lim £24°(¢™%t) = At,
and by Lemma 6.4, it follows, therefore, that

P(a max 7n’ > 6/6) -0, e—0.

i<A®(e72¢)

Allowing ¢ to approach zero in (7.16), we derive (7.13).
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Next we prove fact 2. Note that Y°(¢) € [2¥,x] if w €{r®* >t} and on

the set {r° < t}, (7.15) and (7.17) imply |Y*(¢)| < x + e max; _ go(,-2) W +
2sup, _, IW?(s)l. Consequently, the latter estimate is valid everywhere and

[E(Ye(t))2]1/2 <x+ 2[1‘388313IWS(S)Ié]l/2

+[E(a max 7’ )2]

i<A®(e%t)

(7.18) e

Applying Lemma 6.1 and using independence of A° and {7}, ;, we can write

911/2
[E & max nf)] <

Ac(s™2%t) 172
)2
i<A®(s72t)

e’E Z (”h’e
i=1

(7.19)
= (;1,;2 + 0'425)E82A”(s_2t)
<Kt + K.

By virtue of Lemma 6.3, (7.18) and (7.19), we derive statement 2.

APPENDIX

ProOF OF LEMMA 6.2. Consider the representation (6.3)—(6.5). By virtue of
(3.8), the first term on the right-hand side of (6.3) is less than K¢, where K,
is a constant. In view of the convergence of r®, we can choose K; such that
r, < K,. Minkowski’s inequality implies that

(Bauplaae(s)F)

s<t

1/2
E(sup|W€(s)|2) <Kt +K,

s<t

(A.1) s
+ (Esup|N5(s)|2) ’ ]

s<t

In the sequel we prove that there exists a constant K, such that

1/2
(A.2) sup (Esup|M€(s)|2) < KV + K,
& s<t
and
,\1/2 .
(A.3) sup (Esuple(s)l ) <K,/t + K,.
& s<t

One can see that (A.1)-(A.3) imply Lemma 6.2.
- In order to prove (A.2) and (A.3), we introduce a renewal process D =
(D*(¢), t > 0) generated by the sequence {a + B};, ;; that is,

(A4) D?4(t) = max{j: af + Bf + - +af + Bf < t}.
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One can write the estimate

s D(s)+1
sup f G*(w)du— ), «of
(A.5) s<t |°0 i=1

< max o < max (o + B7).
i<Df+1 i<Df+1
We will also need the identity
De(t)+1 b a De(t)+1

Y af-——t - Y (af-at)

a,+b, a,+b

i=1 £ e i=1
b De(t)+1
A6 +—= F—b1
a9 T B )
b De(t)+1
- Y (ef+Bf)—t.
a,+ b, { =1 ! '
Note that
De(¢)+1
(A7) sup| Y. (af+BF) —t|< max (o +B7).
s<t i=1 i<D®(t)+1
Define processes M7 and MJ as
D*(s7%8)+1
Mi(t)=e Y (af —a.Y),
i=1
D%(s72)+1
Mi(t)=e Y (B7—b7)
i=1

and let AM"(s) = M{(s) — M7(s — ), i = 1,2. Then we can write
e max (af+B) <|M7(0)|+|M;(0)|+ sup |[AM;(s)]

i<D%e"2)+1 0<s<t

1 1
+ sup |AMZ(s)|+ (a_ + -l—)—)s

O0<s<t & &

For M¢ defined by (6.4), this inequality together with (A.5)—(A.7) implies

as
sup | M*(s)| < ——— sup| M;(s)|

s<t a, bs s<t

&€

+
a +b

&

1 2,

sup | M$(s)| + . + —|e
e S<t & a,
(A.8)

+ b,

+(1+a )(le(0>|+|Mf(0>l

&

+ sup |AM{(s)|+ sup A|M2‘°"(s)|)

O0<s<t 0<s<t
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Define #¢ = o{af, Bf,..., af, Bf). It is easy to see that D*(e7%t)+ 1is a
stopping time with respect to the family of o-fields (%), - Hence we can
define & = Z5e,-24y41, ¢ = 0. In a way similar to the proof of Lemma 1 in
[22], one can prove that the processes M{ and M; are martingales with
respect to the filtration £°. Consequently, using the Burkholder-Handy
inequality for martingales ([30], Chapter 1, Section 9), we can write

a9) (Bsuwplmr(o)l) = (B(ur@))) + Co(B LML),

s<t

where C, is a constant and [Mf], = T, . (AM;(s))* is the quadratic
variation of the martingale M7, i = 1,2.

Because sup, . , - (AM7(s))? < Ly . , < (AM7(s))?, Minkowski’s inequality,
(A.8) and (A.9) imply

(Esulee(s) |2)1/2 < 2(E(Mf(0))2)1/2

s<t

)1/2

25, Y
1+ —7 )(E(MZ(O))

&€ &

Csa, b, 1/2
. E &
(A.10) + a€+b€+1+a€+b€)( [M£],)
CZbe be 1/2
E &
- a€+b€+1+a€+b€)( [M:]:)
1 2
+e|l—+—|
b, " a,

Because {i < D*(e72t)} = {T}_y(af + Bf) < &%t} does not depend on af,;,
we can write
D*(s72t) 9
E[M{],=Ee® ¥ (afi1—a)
i=1

— &2 Y E(afy, —a; ') I(i < D*(e72t))
i=1
= o2 Ee’D*(&7%t).

In addition, we also have (E(M{(0))*)/% = g0, ,. Similarly,

E[M;], = o2 Ee’D(e%t),  (E(M35(0)%))” = eay,.
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According to Lemma 6.1, sup, Ec2D*(¢2t) < K + Kt. Thus, it follows from
(A.10) that

1/2 2b,
(Esulee(s)lz) s2ales+e(1+ 3 )0-2€+s(b€'1+2a;1)
a€

CZae 1 be
Tl a,+ b * +a€+be

b
414+ — + K)2
— )](Kt K)

&

&

& & &

The foregoing inequality and (2.7) yield (A.2).
Now let us prove (A.3). We have

A%(e72t)
(A11) Ne(¢)=e ), (

1 1
nF— — |+ —e(A°(e7%t) — A, &7 %t).
i=1 K ) M ( ( ) )

£ &

According to Lemma 6.1, there exists a constant K such that
5\ 1/2
(A.12) (Esup|e(A€(s'2t) - )\ss_2t)| ) <K+Kit.
s<t

The process

Af(e72¢)
He(t)=¢ Y (n—-w'), t=0,

i=1

is a martingale with respect to the family of o-fields #; = o{H*(v), u < ¢},
t > 0. Applying the Burkholder-Handy inequality, we derive

9\ 1/2
|| =
1/2

= C20’4€(E82A8(8_2t)) .

A%(s™2¢) 1/2

A%(e™2) 9
Ee® Y, (mf-wmt)
i=1

Elsuple Y (07— n')
i=1

s<t

By Lemma 6.1, Ec2A°(£72¢t) < K + Kt. Consequently, using (A.11) and (A.12),
we can derive .

1/2 1
(Esup|Ne(s)|2) < —(K+Kt) + Cyof (Kt + K)">.
Mg

s<t

Because u, — i and 0,° — &, as ¢ — 0, the sequences u, and o,,, ¢ € &, are
bounded. Consequently, there exists K, such that (A.3) holds. Lemma 6.2 is
proved. O
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ProoOF OF LEMMA 6.3. Let N be the same as in (6.5) and show that
(A.13) N¢ -, N, - 0.
Denote
[72¢]

Se(t) =¢ ; (nf —w™t), As(t) = e(A°(&7%t) — A e7%t),

d°(t) = e 2A°(e7%¢).
Then from (5.5), we have

(A.14) Ne(t) = 8°(o°(2)) + %Ae(t).

Donsker’s theorem and Theorem 17.3 [4] yield S° -, S and A° -4 A,
& — 0, where S is (0, ;%) and A is a (0, A%) Brownian motion. Applying the
law of large numbers for the renewal processes A°(-) we can write P-
lim, sup, _7|¢°(¢) — At| = 0, T > 0. Because the processes S° and A* are
1ndependent and ¢° converges to a deterministic function ¢(¢) = At, we have
(S¢, Ae, ¢°) -, (S, A, ¢), as & — 0. The required relation (A.13) follows from
(A. 14) by virtue of the continuous mapping theorem and we have the equality
N(t) = S(At) = (1/w)A(¢). Because S and A are independent, we conclude
that N is a Brownian motion with zero drift and variance given by (6.8).
Now we show that

(A.15) M® -, M, e — 0.
Denote
D*(s7%t) b
Ze(t) = F - ——e& %),
(t) =& E‘l “ a, + bss

where the process D° is defined by (A.4). It is easy to verify that
(A.16) sup|M®(¢t) — Z°(t)|<e max of.

t<T i<D*(72T)+1
Put D = 4b(4 + b)~'. Because
(A.17) P- lim sup|e2D*(&~%t) — Dt| =0,

20 <t
Lemma 6.4 implies that the right-hand side of (A.16) converges to zero as
& — 0. Thus, we have P-lim, sup, _7|M*(¢) — Z*(¢)| = 0. To prove (A.15), it
suffices to show that
(A.18) Z° -, M, e— 0.
One can write the decomposition
D*(&7%t)

Ze(t) _ - aé‘ e Zl (aie _as—l)
i=

AL .t b,
(A.19
(A.19) b oo 1
_ £ _ B~ + A€
a, + beg igl (ﬂl be ) A (t),

where A°(¢) = b_(a, + b) (L2 "N af + B7) — t}. Applying Lemma 6.4 and
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(A.17) to the estimate
sup|A®(t)|<e max (af + Bf),

t<T i<D*(e2T)+1
we get
(A.20) P-lim sup |A®(¢)| =0
& t<T
Denoting

[e72t]

[e72t]
Ri(t)=e ¥ (af—a'), Rs(t)=¢ X (BF—0b.")
i=1 i=1

and applying Donsker’s theorem, we derive R{ —»; R, and R; —»,; R, as
e - 0, where R, and R, are (0, o?) and (0, o) Brownian motions, respec-
tively. It follows from (A.19) that

Zo(t R 2De(e7%t)) —

() = g Bi(e™D (e720) —
Because processes Rf and R are independent, ¢, — d and b, — b, as ¢ » 0,
and (A.20) and (A.17) are satisfied, we can apply the continuous mapping
theorem to the right-hand side of the preceding equality and get (A.18) with

———R;5(e2D?(& %t)) + A°(2).

M(t) =

R,(Dt).

Taking into account independence of R, and R,, we conclude that M is a
Brownian motion with zero drift and variance (6.9). O
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