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CAPACITY OF ATM SWITCHES

By I. Iscog,! D. McDoNALD? AND K. QIAN

McMaster University, University of Ottawa and University of Ottawa

When traffic sources are statistically multiplexed over a common link,
the sum of the peak rates of the sources exceeds the throughput of the
link. The excess may be stored in a buffer, but when this overflows,
information is lost. When a source is bursty, the peak rate is attained only
for very short periods of time, whereas between bursts the source is idle.
Because the sources are independent, the chance that many bursts arrive
simultaneously is small, but these rare events do occur and the mean time
until overload is a key design parameter.

Here we model the multiplexor as a multidimensional Markov process
with a set of forbidden states that represent the exceedance of the link
capacity. We use the theory of induced Dirichlet forms to estimate the
Laplace transform of the hitting time of this forbidden set. We obtain an
upper bound on the probability that the link capacity is exceeded during a
fixed time interval along with a lower bound for the mean time until the .
link capacity is exceeded. This provides the network designer with a
degree of assurance about the probability and frequency of overloads.

1. Introduction. The asynchronous transfer mode (ATM) is currently
being considered as the preferred transport method for the broad-band
integrated services digital network [see Woodruff and Kositpaiboon (1990) for
a general overview]. ATM is suitable for multimedia traffic because it offers
greater flexibility in bandwidth allocation by transmitting information in
fixed length packets, called cells, through virtual network connections.

To achieve maximum bandwidth efficiency, bursty traffic is statistically
multiplexed. When traffic sources are statistically multiplexed over a common
link, the sum of the peak rates of the sources, in cells per second, exceeds the
throughput of the link. The excess cells may be stored in a buffer, but when
this overflows, cells are lost. The results in Li (1989) suggest, moreover, that
when transmission rates are high, no practical buffering will prevent the loss
of cells when the link rate is exceeded. When a source is bursty, cells are
generated at the peak rate only for very short periods of time. Immediately
afterward the source becomes idle and generates no cells. Because the
sources are independent, the chance that many sources transmit simultane-
ously at the peak rate is small.
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278 I. ISCOE, D. MCDONALD AND K. QIAN

We assume that the link rate is / — 1 cells per second. Further we assume
that traffic sources belong to n distinct, independent service categories (voice,
text, video, etc.) and that traffic sources in category i may be described as an
alternating series of idle and bursty periods. A burst from a source in
category i produces cells at a rate of d; cells per second. This means that
during a burst from source i, approximately every (! — 1)/d;th cell leaving
the link comes from source i. We must say approximately because cells that
arrive simultaneously at the link from different sources must be slotted one
after the other. This is accomplished by buffering and it results in jitter or a
slight delay in the arrival of one cell relative to others in the burst. We
assume that bursts of category i arrive according to a Poisson process having
a rate of a; bursts per second. We also assume that the burst periods are
independent (and independent of the arrival process) and are exponentially
distributed with a mean burst length of 1/5,.

The aggregate of the n different source categories represents the total load
at the link. In particular, if we let N,(¢) represent the number of bursts from
category i sources being multiplexed at the link at time ¢, then the total load
at time ¢ may be represented by

N() = ¥ (o).

When the load exceeds the link rate we say the multiplexor is congested.
Define

7=1inf{¢ > 0: N(t) > 1},

so 7 is the time until congestion occurs.

N,(t) is statistically equivalent, up to time 7, to an M /M /~ queue [which
we still denote by N;(¢)] with arrival rate a; and service rate b,, so assuming
each category is in equilibrium, the mean load is X}_ ,d;a;/b;. To characterize
7, the time until congestion, we describe the traffic at the multiplexor by the
Markov process N(t) := (Ny(¢),..., N,(#)) defined on the state space S :=
{0,1,2,...}". Let 9, denote those real-valued functions that are constant
outside a finite subset of S. N has infinitesimal generator —%, having 9, as
a core, given at u €9, by

—Zu(x) = _il [(u(x + &) — u(x))a;
+(u(x - §) —u(x))xibi], X = (xq,%9,...,%,) €8S,

where §; is the ith basis vector in S having all its components equal to 0
except the ith, which is 1; 7 is the first time the process N(¢) reaches the
forbidden region F = {x € S: Ld;x; > I}.

For bounded g: S - R we can define a(x) = E, [[g(N(¢)) dt, which if
g = xre (x is the indicator function) represents the mean time to reach the
forbidden region starting at x € S, but in general gives some measure of the
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occupation time in S before hitting the forbidden set. a satisfies

Za(x) =g(x) forx¢F,

(1) _
a(x) =0 forx e F.

This linear system can be solved, but the number of variables is of the order
1", so large systems are intractable. Similarly define «,(x) = E, exp(— 67) to
be the Laplace transform of 7. It is easy to check that

—Zko(X) = Okp(x) forx ¢ F,

(2) Ko(x) =1 forx e F.

Again this linear system is only tractable for small n.

We first remark that the N, are independent and each is reversible with
respect to the stationary Poisson measure having mean A; := a;/b; assumed
less than one. Hence N(¢) is also reversible with respect to the stationary
product measure 7 given by

A

T( Xy XgyeronyXy) = l_[——e

Ay
i= lx'

The reversibility of N(¢) with respect to 7 means that for all 1 <i < n,
Define the Dirichlet (zero) form

&(u,u) = Y, u(x)Zu(x)m(x) (foruc9,)

xeS
no1
L I gluex+8) - ux)e
(3) xeS i=1
+(u(x - &) — u(x))’x;b;| w(x)
= Y Y [u(x + 8) - u@®)] am(x)
xS i=1
and define

E(u,u) =&(u,u) +6 Y u(x)277(x),

xeS

1
Hu,u) = Eg(u,u) - Y u(x)g(x)m(x).

xeS
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Let #Z be the set of functions defined on S that equal 1 on F. Because N(#)
is reversible, the function «, satisfies a variational principle.

THEOREM 1.1. Among u €%, k, minimizes &,(u, u). Moreover,

Cap,(F) = inf{&(u,u); u €#}
= 0E,, exp(—067)
=0 ), ko(x)7(x).

xS

Proor. For a proof that is valid for a general reversible process, see
Fukushima [(1980), Lemmas 3.1.1 and 4.3.1]. For an elementary proof,
differentiate the form &,(u, u) at any u(-) and follow Liggett (1985). O

Let Z be the convex set of functions defined on S that equal 0 on F. Again
because N(#) is reversible, the function o satisfies a variational principle.

THEOREM 1.2. Among u €%, a minimizes /(u, u). Moreover

1
infle(u,u);u e} = —3 Y a(x)g(x)7(x).

xeS

ProoF. Note that there exists an m > 0 such that &(u,u) >m if u €7
and ¥, . gu(x)?m(x) = 1. For otherwise, if £(u, u) = 0, then, by (3), necessar-
ily u is constant and hence 0 by the boundary condition. This gives the
coercivity of «7. To find the minimum, differentiate .«(u, u) at any u(:). O

In particular, if g = xp., then E_ 7= —24(a, a).

We now map these complicated minimization problems onto simpler ones.
Specifically, define the map f from S into #, by f(x;, x,,...,%,) =
L} 1d;x;. First f induces a measure 7*, having (countable) support S* c#,,
defined by

m(r)=r({x:f(x)=r}) = L 7.

. n p—
x: L} djx;=r

By Corollary 1.12 in Iscoe and McDonald (1990) this map also induces a
regular Dirichlet form &* on S*. For any function 2 €9, where 2 is the
set of real-valued functions defined on S* that are constant outside a finite
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subset of S*,
&*(h,h) '=e?(h fihof)
n
-5 ¥ Y L [(a(r+d) - h(r) e
rES*xES Lidjxj=ri=1

+(h(r — d;) = h(r)) x;b;] m(%)

1 n 2
=3 L. L (h(r+d) = h(r)am*(r)
eS* j=

+— r E(h(r—d) ~ h(r))*

reS*z=1
(4 2w

[ g G >] w

1 n

= E g (h(r + d;) = h(r)) a;m*(r)

1 n

+5 L X (h(r—d) —h(r))’
reS* i=1
a;m*(r —d;
[ l 77(*(7‘) l)]ﬂ*(r)

n
Y Y (h(r+d;) - h(r))am*(r).
reS*i=1

The form &* is associated with a Markov jump process N*(¢) on S*, having
stationary measure 7* and generator —#*, which jumps from r € S* to the
right to r + d; € S* with intensity a; and to the left to r — d; with intensity
a;7*(r — d;)/7*(r). It is not, in general, the same process as N(¢) because
the latter is not typically Markovian.

Now let & be any function in #*, those functions on S* taking the value 1
on the image of the forbidden set F* = f(F) = [[, ). Clearly,

Capy(F) = inf &(u, u)
inf & (hef, hef)

IA

= inf g*(h R) + 6 % h(r)imt(r)l.

reS*
' Hence, defining
gr(h,h) =&*(h,h) + 0 Y, h(r)’m*(r)

reS*
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and
Cap,‘,“(F*) = hielg;%*(h’h)’
we have
Cap,(F) < Capy(F*).
If we define

7* == inf{¢ > 0: N*(¢) > I}

and we denote by E_. the expectation associated with N* started with its
stationary measure, 7*, then the analogue of Theorem 1.1 is valid for the
Markov process N*(¢); and we have the following proposition.

ProPOSITION 1.3. For all 6 > 0,
E, exp(—07) < E_.exp(—07%)

and
*
E .v* <E,T.

PRrRoOF. The second inequality follows from the first by subtracting 1 from
both sides, dividing by 6 and letting 6 tend to 0. O

Using Chebyshev’s inequality, we immediately have an upper bound on the
probability of congestion occurring in a fixed time interval [0, T'].

COROLLARY 1.4. For any 6 > 0,
P(r<T)< TB‘le"Cap;‘/T(F*).

We may numerically evaluate the overestimate in Corollary 1.4 of the
probability of severe congestion in a given time interval and we may do the
same for the underestimate of the mean time until severe congestion sets in.
Because the induced process is a one-dimensional jump process, the computa-
tion of the Laplace transform and the mean level-crossing time is feasible and
is essentially independent of the number of sources. In the next section,
comparison is made for four cases (see Tables 1-5) with the real time until
the forbidden region is reached, obtained by solving (1) and (2). In the four
cases n = 3, so the number of queues in the system is three; [ = 11 is the
maximum link capacity; d; is the burst rate of queue i (d; =1, d, = 3,
d, = 5 are fixed); a; is the arrival rate of queue I, b, is the service rate of
queue i; T = 10 is the time. Rates for the four different models are shown in
Table 1.

In all cases the bounds given by Proposition 1.3 are very close. For

, practical purposes we may take the burst rates d; to be integers. Indeed,
rounding up the d;s will decrease 7 and hence increase our overestimate of
P (7 < T) and decrease our underestimate of E, 7. Also one should, through
scaling, ensure the d;s and ! have g.c.d. = 1, thereby making / as small as
possible to minimize computation.
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TABLE 1
Rates for four different models

Queue 1 Queue 2 Queue 3
Model a, b, a, b, ag b
1 0.1 12 0.2 20 0.3 30
2 0.3 6 0.2 9 0.1 10
3 0.3 12 0.2 18 0.1 20
4 0.3 16 0.2 22 0.1 30

Now, to apply Corollary 1.4 we may simply set § = 1 and, by defining
60’ = 1/T, the bound above may be written (e/6')Capj (F*). Alternatively,
we may optimize in 6. Let G,.(0) = E_.exp(—67*) and define u*(9) :=
log(G,.(6)). The bound above is now equivalent to P (7 <T) < exp(8T +
pnr.(0)). For T < —(ut.)'(0) = E_.7*, the value 0 that produces the tightest
upper bound is found by solving ( u*.)'(6,) = —T'. This equation has a unique
solution because u*.(0) is strictly convex, strictly decreasing and analytic on
the interior of its domain of convergence, (8,) for some 6 < 0. In Table 2
under the columns labelled Upper Bound 2, we find this minimum numeri-
cally. This involves fitting a quadratic to the function 6T + w%.(6) and
finding the minimum for this quadratic. Each evaluation of this function at a
given 6 involves the solution of the induced linear system (7). We see this is
moderately successful, but although the Laplace transform E,_ exp(—67) is
well approximated, the Chebyshev inequality is rather rough.

Better upper bounds on P, (7 < T') and lower bounds on E_7 can be found
by applying Theorem 1.5 below. The upper bounds are given in Table 2 under
the column “Upper bound 1.” The corresponding lower bounds on E_7 are
given in Table 3 under the column “Lower bound.”

When [ is large, even solving the induced problem may become trouble-
some. In Section 3 we give a closed-form upper bound on the probability of
severe congestion in a given time interval and a closed-form lower bound on
the mean time until severe congestion. In particular we prove the following
theorem.

TABLE 2
Upper bounds and lower bounds for the probabilities

Upper bound 2 Lower bound
Model Upperbound1l Original Induced 1 —exp(—AT) 1 - exp(—A*T)

1 0.00118269 0.00314619  0.00314619 0.00116212 0.00116212
2 0.00166685 0.00438615 0.00438622 0.00161618 0.00161620
3 0.00042244 0.00112713 0.00112714 0.00041598 0.00041598
4 0.00022586 0.00060497  0.00060497 0.00022338 0.00022338




284 I. ISCOE, D. MCDONALD AND K. QIAN

TABLE 3
Mean exit times and their lower bounds, principal eigenvalues

Mean Lower
Model E_7 E_.v* bound K A A* w(F) = o*(F%)

8599.98 8599.96 8520.63 1.17361E-4 1.16279E-4 1.16279E-4  1.55686E-6
6182.41 6182.31 6094.06 1.64090E-4 1.61748E-4 1.61751E-4  6.03955E-6
24034.6 24034.4 23864.4 4.19033E-5 4.16067E-5 4.16070E-5  7.67553E-7
44761.5 44761.4 44546.1 2.24486E-5 2.23406E-5 2.23407E-5  2.94977E-7

AN =

THEOREM 1.5. If the integers d; are aperiodic (the greatest common de-
nominator of the d;’s is 1), then as r - ,

— (f)\( ‘ 1))
s " exp (8% —
27 X 1d At 1

m*(r) ~

where s = s(r) is the positive solution of r = X7 ldj)\~sdf and hence s is
asymptotic to (r/Ad)Y ¢, where d = max{d;: j=1,..., ni and A= Y; 4. _qA;
Moreover,

K

1

1
=T Gap(2)’

P(r<T)<1- (1 )e"?T, E,

~ Gap(2)
where Gap(.¥) = min{b;; i = 1,..., n} and

d -1
k=Y Y a;m*(l — k) gow*(r).

k=1 j:d;>k

These bounds are, in fact, asymptotically accurate estimates as | — .

The induced process is in fact the aggregated process that arises in the
aggregation—disaggregation method for finding the steady state of a large
Markov system [see Schweitzer (1990)]. The engineering approach, then, is to
replace any quantity associated with the process N(¢) by the corresponding
quantity for the induced process N*(¢). One might, for instance, use the
small induced process rather than the huge original process to drive a buffer
in the multiplexor [see Qian (1992)]. Hong and Perros (1992) similarly use
the induced or aggregated processes associated with a number of interrupted
Bernoulli processes to drive a multiplexor buffer. If one takes this approach,
we should estimate P (r < T) by P, .(t* < T). For small problems we may
calculate the latter directly, as in Table 4 under Exact Probability. The
results are excellent. For larger problems, a saddle point approximation could
be tried [see Daniels (1954)]. In particular,

1

P.(t*<T)=
V2m0Z(1t.)"(6,)

exp(0,T + wi(6,))
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Exact probabilities and approximations

TABLE 4

285

Saddle point
Exact probability approximation Approximation 2
Model P (r<T) P,(s*<T) Original Induced T/E. T/E, .7*
1 0.00116369 0.00116370  0.00108643 0.00108643 0.00116279 0.00116280
2 0.00162234 0.00162236  0.00151901 0.00151903 0.00161749 0.00161752
3 0.00041676  0.00041676  0.00038878 0.00038878 0.00041607 0.00041607
4 0.00022368  0.00022368  0.00020850 0.00020850 0.00022341 0.00022341
for (m%)'(6,) = —T. In Table 4, under “Saddle point approximation,” we see

the approximation works well for T' and L fixed. We may, moreover, estimate
E_1 by E,.7*. In Table 3 we see that results are excellent. Similarly, if we
compare the original and induced capacities as in Table 5 we again see

excellent results.

The variational method allows one to get bounds on other quantities aside
from P, (r<7T) and E_ 7. In particular, consider g :=g*°f, where g* €
L3(m*); g* = X;r+ is such a function. Let & be any function in Z*, those
functions on S* taking the value 0 on F*. Clearly,

inf o(u,
Jaf(u, )

where

IA

inf |3&*(h,h) —
hlel}%*z ( )

inf w*(h, k),
hez*

inf &/(hof, ho
Jnf o(hef,hof)

reS*

Y h(r)g*(r)=*(r)

a*(h,h) = 3&*(h,h) — ¥ h(r)g*(r)m*(r).

reS*

Because &* is coercive on 7*, we have a result analogous to that of Theorem

TABLE 5

Capacities at different 0’s

0, = 0.05

0, = 0.1

0; = 0.15

Model Original

Induced

. Original

Induced

Original

Induced

0.00011609
0.00016153
0.00004161
0.00002235

W N

0.00011609
0.00016154
0.00004161
0.00002235

0.00011630
0.00016210
0.00004167
0.00002237

0.00011630
0.00016211
0.00004167
0.00002237

0.00011643
0.00016250
0.00004171
0.00002238

0.00011643
0.00016250
0.00004171
0.00002238
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1.2; that is,
(5) L a*(r)g*(r)m*(r) < ¥ a(x)g* f(x)m(x),

reS* xeS
where a*(r) == E, [J'g*(N*(¢)) dt.

Taking g = xp- in the foregoing inequality, we can give another proof of
the second part of Proposition 1.3. If we take g to be the indicator of those x
such that X7_,d,;x; = I — 1, then we can give a lower bound on the mean time
spent on this hyperplane before hitting the forbidden region. If a(x) is this
mean hitting time, then '

a*(l - D)a*(l - 1) < Y a®)w(x),

p. Z‘,Z‘=1dix,~=l— 1

where a*(I — 1) is the mean time spent by the induced process at [ — 1
before hitting /.

Reaching the forbidden region F is a rare event. The probability of a large
deviation into the forbidden set during a given time interval is so small that
traditional simulation techniques are impractical. If we consider a very long
period of time T, the ergodic theorem implies that the expected amount of
time spent in the forbidden set is Tw(F), where w(F) is the stationary
measure of the forbidden set. On the other hand, the expected number of
visits to the forbidden set during this interval is approximately T/E 7. If we
denote by o the sojourn into the forbidden states, then we have that T'w(F) is
approximately E, o (T/E,_ 1), which in turn implies E_o ~ w(F)-E_t. Typi-
cally, however, the probability assigned to the forbidden set by the stationary
measure is orders of magnitude less than the inverse of the mean time of a
large deviation into it. This is borne out in the examples in the next sections
(see Table 3, 4). One may conclude that there are many very brief sojourns
into the forbidden set as opposed to a few longer sojourns. Because any
sojourn into the forbidden states may result in lost cells, we conclude it is
dangerous to measure performance using only a steady state analysis.

It is interesting to note that the #-capacity Cap,(F) of the forbidden set F'
is subadditive. So even if the forbidden set were very complex (say there are
many multiplexors in a reversible Markovian network and the forbidden set
represents overload at any of the multiplexors), then the capacity of the
forbidden set is less than or equal to the sum of the capacities of its parts.
This means that the network designer can assure a desired grade of service
for cell losses by decoupling the components of the network. In particular,
each multiplexor may be considered separately and the sum of the capacities
of the forbidden sets of each individual multiplexor estimates the desired
total capacity.

2. Numerical evaluation of the induced chain. For simplicity we
assume the d; are integer-valued; for otherwise we can round up to the next
integer and this has the effect of reducing 7. This is acceptable because we
are looking for underestimates of E_7 and overestimates of P (7 < T').
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Unfortunately #* is quite complicated in general. The asymptotic be-
haviour is calculated in the Appendix and the following recursion relation is
shown:

1
(6) m() = Ldnm(r=d).  resT\(o),
with 7*(0) = exp(—A), where A = X% 1A;. Note that a*(r — dj) is 0 in the
recursion if 7 — d; is not in S*.

This recursion provides a practical means of calculating 7*. With it we
may evaluate the jump rates for the induced Markov process having Dirichlet
form (4). The following linear systems, which are analogous to (1) and (2), can
be solved by computer:

Z*a*(r) =g*(r) forr ¢ F*,
a*(r)=0 for r € F*,
for a*(r) = E,v* and
—Z*kg(r) = 0k (r) forr & F*,
(7) ki(r) =1 for r € F*,

for k;(r) = E, exp(—67*). From this exact solution, Cap}(F*) and E, .7*
follow. This is feasible even if n is arbitrarily large, because the preceding
systems are at most of dimension /. As mentioned earlier we may solve the
systems (1) and (2) if [ is small. Tables 1 and 2 show that the induced
quantities yield exceedingly close bounds for the cases considered!

For these small systems we can even calculate P,(r < T') and P, .(7* < T).
We can calculate the absorption probabilities directly by calculatlng
exp(—T'%) and exp(—T.¥*), where —& and —%* are, respectively, the in-
finitesimal of N and N* killed when they reach their forbidden sets. The
expressions exp(—7.¥) and exp(—T.¥*) are calculated by an eigenvector
expansion. These exact results are given in Table 4.

3. Special cases and analytic results.

3.1. Identical burst rates. In the case where the burst rates d; from all
sources are identical (and without loss of generality equal to 1), everything
simplifies. From (4), £* becomes (S* =.#):

g*(h,h) = L [(A(r +1) = h(r))’Bm*(r)],
reS*
where B = Y7_,a;. Because L?_,N,(¢) is a Poisson random variable with
‘mean A = X7 A, it follows that 7*(r) = exp(—A)A"/r!. By reversibility, it
follows that the jump rate from r to r — 1 is

Br*(r—1)  Br

w*(r) A’
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We conclude that the induced form is that of a M/M/~ queue having
constant birth rate B, linear death rate Br/A and equilibrium measure
7*(r) = exp(—A)A"/r!.

Consider any positive recurrent, irreducible, birth and death process (X(¢);
t > 0) with generator —% with birth rates B(x) > 0, x €.#, and death rates
D(x) > 0, x €\ {0}, D(0) = 0; and stationary measure 7* given by

(x) = mi(x) / ZO 759,

1, if x =0,
i(x) = | BO)~ B(x = 1)

D(D) - D(x) if x > 1.

The reversibility property is
(8) B(x)m*(x) =D(x + 1)@*(x + 1).
As usual we set
9) 7, = min{¢ > 0: X(¢) > 1}.
Let a(x) = E [7,]. a satisfies
Za(x)=1 forO<x<l-1,

(10) a(x) =0 forx>1.
Also define
. _ r . _ x—1 M*(r)
M*(r) = sgow (s) and wy(x) r§0 _—_—B(r)w(r) .

It is straightforward to verify directly that »,(I) — v,(x) solves the problem
(10). Consequently we have that

(11) E,mp=vi(l) — vi(x)

and, in particular, v,(l) = E,7,. Also,

-1
E .= Y Ernm*(x) =v, ())M*(l - 1)

(12) = L vi(x)7 (%)

-1 M*(x)2
= 2 Bmr()

x=0

The last equality follows from a summation by parts. Alternative formula-
tions of these results are given in Karlin and Taylor (1975).



CAPACITY OF ATM SWITCHES 289

For the preceding M /M /> queue this gives

-1 Rt
a(r) = L & A" exp(4)M*(k),
k=r

where M*(k) == L¢_ 7*(i) = exp(—A)L%_,(1/i!) A’. By Proposition 1.3, it fol-
lows that

1 -1
(13) E 1> E,.m* = zexp(A) 1. AT*EIM*(k)?
' k=0
14 M-y
(14) = "Dir*(1)

The lower bound (13) provides a slight improvement over that given in
Theorem 1.5 when the integers d; are all 1. The bound (14) is asymptotically
equivalent to the bound given in Theorem 1.5.

3.2. Nonidentical burst ratées: proof of Theorem 1.5. If the d; are
integer-valued but not identical, then —%* is the generator of a jump process
that is not a birth and death process. The lower bounds given in Theorem 1.5
provide a practical means of assuring the grade of service of the multiplexor
but we can also show they are asymptotically accurate as [ — o,

Let A be the smallest eigenvalue of the Dirichlet problem:

(15) Zp(x) = Ap(x) forx € F,
p(x) =0 forx € F.

By Theorem 3.2 in Iscoe and McDonald (1993) we have
P(r<T)=1-e?T

and

P(r<T)<1- (1 )exp(~AT),

~ Gap(%)
where Gap(.¥) is the second largest eigenvalue of the operator .#. Integrating
with respect to T gives

z 1 1

2 = =
=R Gap(2)
Alternately we may use Theorem 3 in Aldous and Brown (1992) after
. reduction to a finite state space. ’

~ We can easily give an upper bound on A using the Rayleigh—Ritz principle;
that is,

A < Y h(x)Zh(x)m(x),

xeS
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where h is a function that is 0 on F and such that ¥ _A%(x)7w(x) = 1. Let
h = xpe/w(F°). It follows that

n a;m7(x)
A= i=21 ZFlex va,=1 T(F)
d
=Y X am*(l-k) Z )= k.
k=1j:d;>k

Moreover by Proposition 3.1 below, Gap(#) = min;_; » ;- Replacing A

by k and Gap(#) by min;_, » b; in the bounds in Theorem 3.2 in Iscoe and

McDonald (1993) we get the bounds in Theorem 1.5.
PROPOSITION 8.1.  Gap(%) = min;_,

PROOF. By Theorem 2.6 in Liggett (1989) Gap(#) = min;_ . Gap(%),

.....

M/M /)~ queue with arrival rate a; and service rate b, We shall show that
Gap(-%) = b; [see Kosten (1974) for a similar argument] For simplicity, let a,
b and )\ be the arrival rate, service rate and load a/b, respectively, of the
M/M /» queue. Consequently, the generator —L of this queue is a self-ad-
joint operator on L?(wr), where m(k) = exp(—A)A* /k!. Let a be an eigenvalue
of the generator —L and ¢ € L*(w) be the corresponding right eigenvector.
Then,

(16) (a+a+bk)p(k)=ad(k+ 1) +bkdp(k + 1).
Define the weighted generating function of ¢ as

®(2) = ¥ d(k)zbm(k).
k=0

Using the Cauchy-Schwarz inequality,
R

g & e X
[@(2) < X [6(k) (k) T lzle .
k=0 k=0 :

Because ¢ € L(w), it is clear that ® is entire. Multiplying z*7 (%) on both
sides of (16) and summing over & from 0 to , we get

a
(a+a)®(z) +bz2®'(2) = XCD’(z) + bAz®(2).
This is equivalent to
d'(z 1
() .2 1
P(z2) bl-=z
The only solutions to this equation, normalized so that ®(0) = 1, are

D(z) = e**[1 — 2|0,
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where a/b must be a nonnegative integer. Hence, reversing the preceding
argument, the spectrum of L is o(L)={0,5,256,3b,...}. In particular,
Gap(L) =b. O

We conclude by giving some asymptotic results obtained by connecting the
Laplace transform, ' Cap,(F), of 7, and P,(7, < T'). We need the following
propositions of a general nature.

PROPOSITION 3.2. Let {X,; n > 1} be a sequence of nonnegative random
variables and {c,; n > 1} a sequence of positive constants such that for each
6> 0,lim,_,,c,Eexpl—0X,] =60!. Then forall x > 0, lim, . c,P(X, <x)
= x. The converse is also valid.

Proor. Set
U, =¢,P(X,<z) and U,(6)=[ e **dU(x), 020
0

By the extended continuity theorem for Laplace transforms [see Feller (1971)],
lim, ., U(x) =x iff lim,_,, U,(0) = [fe %" dx = 671, for all § > 0. But

U(x)=c,E[e ?®] - 06!, asn — »,
by hypothesis. O

COROLLARY 3.3. Let {x(t); t > O} be a reversible, positive recurrent Markov
process with stationary distribution (measure) w. Consider forbidden sets F,
and define 7, = inf{t > 0: x(¢) € F,}. Suppose that for some sequence of con-
stants {c;; I > 1} [or functions c¢(1), l € %#,], lim,_,,, ¢, Cap,(F;) = 1 for each
0> 0. Then

lime, P, (1, <T)=T.
1>
The converse is also valid.

Proor. It suffices to make the identifications P = P,, 7, & X;, T' < x and
Cap,(F,) = 0E_e " in order to apply Proposition 3.2. O

We now give estimates on Cap,(F) for the ATM model.

PROPOSITION 3.4. The capacity Cap,(F) of F ={x € S: X}d;x; > I} and
the capacity Capi(F*) of F* = {r > [} satisfy ‘

T A + 6w (F) < Capy(F) < Capj(F*) < kw(F°) + 6w (F).

Proor. The lower bound is obvious because P (r<T)>1—e *T by
Theorem 3.2 in Iscoe and McDonald (1993). The upper bound follows by the
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variational characterization of Cap,(F) and Cap;(F*):
Cap,(F) < Capj(F*) == inf{&}*(u, ©); u € 7*};

where #* are functions that are 1 on F*. It suffices to let u = yz., in which

case
n

Capi(F*) < Y, Y am*(l—d;) + 6n(F)
i=1j:d;>d;

= kw(F°) + 0w (F). O

In Iscoe, McDonald and Qian (1992) we show that, in fact, A ~ A* ~ kK as
[ - «. By Corollary 2.3 in Iscoe and McDonald (1991) it follows that E 7 ~
A7, so E_ 7 is asymptotically equal to (A*)"! ~ E_.7*. Moreover, taking
¢; = A~! in Corollary 3.3 we have, from Proposition 3.4, that A™'P,(r < T)
— T as [ - «. Similarly (A*)"'P_.(r* < T) - T as [ - «. Equivalently,

E 1P (1<T)>T and E_.7*P,.(t*<T)->T

as [ —» . In Table 4, Approximation 2 shows that even for [/ =11 this
approximation is excellent. Note that these asymptotic results are not im-
plied by the bounds in Iscoe and McDonald (1993).

APPENDIX

On the induced stationary measure. In this Appendix we derive the
recursion relation (6) for the induced probability 7* and study its asymptotic
behaviour. For each ¢ > 0, the weighted sum, L?_,d;N(¢), of independent
Poisson random variables, where N,(¢) has mean A;, has a compound Poisson
distribution with characteristic function

st - | £ 1 - 1)
j=1
For any r € S*,

1 =
7T*(r') = 5; X e'"tdr(t) dt

—

1 n
= —¢2 " Dexp { YoAalz4 - 1]} dz
2L i-1

after substituting z = exp(it), where f denotes complex integration around
the unit circle. Next, integrating by parts, we get, for r > 0,
1

n n
m*(r) = 277'”;'2‘('“) exp {j§1 N[ z% - 1]} j§1 \dz% dz

I n
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This recursion, concentrated on S* c %, with 7*(0) = exp(—A), where A =
LI_1A;, provides a practical means of calculating 7*.
We may, moreover, derive the asymptotics of 7*.

THEOREM A.1, If the integers d; are aperiodic, then as r — o,

S N S|
V2w \JELdis Y j=1

where s = s(r) is the positive solution of r = L}_,d;A;s%; so s ~ (r/Ad)"/?.

PrOOF. See Moser and Wyman (1956), expansion (3.49). O

LEMMA A.2. If the d;'s are aperiodic, d = max{d;; i = 1,...,n} and A ==
Lj. a,=ahj, then
. mH(r ) ri/d 1/d
lim ————— = (dA)"".

e T (r = 1)

Proor. Using the previous theorem we have

T (r)s(r) (S_(r’- 1) )"1
7*(r — 1) s(r)

wolsiber)') [
exp():}_lks(r - l)df) _1d2As(r = 1)%
Let r = f(S) = En_ld /\ s%i, Clearly f(S)/S - dA so s(r) ~ (r/dA)l/d The

result will follow 1f we show the right-hand side of (17) tends to 1.
Expanding s around r, we get

s(r—1) =s(r) —s'(r) + 38" (7),

where r — 1 < 7 < r. Now

(17)

S

1
S (r) = f/(s) = Z?:ld?Ajsdj

and

d s ,
§"(r) = (m (r))
so |s"(r)| = @(s(r)/r?). Hence,

s(r-—l) : 1 1
T s(r) =1- d2si(1 + @(1/5)) ﬁ(_?)

-zl
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We conclude

s(r—1) r= n (s(r—1) djjs
) - Al

as s — o, Also,

exp(Z;Ll)tjs(r)df) B n 4 s(r—1) %
exp():'?=1Ajs(r - l)df) - exp(jgl)\js(r) [1 - ( s(r) )

- exp( Zn: Ajs(r)d’d:)l";d (1 + é’(%)))

Jj=1
1
i exp(g).

Finally, the last term on the right-hand side of (17) tends to 1 so the proof is
complete. O

COROLLARY A.3. If the d;'s are aperiodic, then there is an R such that
rar*(r) is decreasing for r > R — d. R may be identified as the smallest value r
such that w*(r) is decreasing on [r — d, r].

ProoF. By the previous lemma we have that, for r sufficiently large,

m*(r)/w*(r — 1) < 1; so there is an R such that 7*(r) is decreasing for
r > R — d. By the recursion formula for 7*, if r > R, then

(r+1)7m*(r+1)

Jj=1

Jj=1

IA

=ra*(r).

We can also see from the foregoing that if 7*(r) is ~decreasing on[r—d,r],
then it also is decreasing on [r + 1,%). O
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