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ACCELERATING GAUSSIAN DIFFUSIONS!
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Let m(x) be a given probability density proportional to exp(—U(x))
in a high-dimensional Euclidean space R™. The diffusion dX(z) =
—VUX()) dt + 1/—2_dW(t) is often used to sample from . Instead of
—VU(x), we consider diffusions with smooth drift b(x) and having equi-
librium #(x). First we study some general properties and then concen-
trate on the Gaussian case, namely, —VU(x) = Dx with a strictly nega-
tive-definite real matrix D and b(x) = Bx with a stability matrix B; that
is, the real parts of the eigenvalues of B are strictly negative. Using the
rate of convergence of the covariance of X(¢) [or together with EX(¢)] as
the criterion, we prove that, among all such b(x), the drift Dx is the worst
choice and that improvement can be made if and only if the eigenvalues of
D are not identical. In fact, the convergence rate of the covariance is
exp(2 Ay (B)t), where Ay (B) is the maximum of the real parts of the
eigenvalues of B and the infimum of A, (B) over all such B is 1/m tr D.
If, for example, a “circulant” drift :

(aU oU oU ou oU aU)

9%,  dxy dxy  dxg’ U dx,,_y  Ixy

is added to Dx, then for essentially all D, the diffusion with this modified
drift has a better convergence rate.

1. Introduction. Probability distributions in high-dimensional Eu-
clidean spaces appear frequently in many applications, for example, in image
analysis and image synthesis or in mathematical physics. Direct sampling
from these distributions is not feasible in practice: one has to resort to
approximations. Diffusions with the underlying probability as their equilib-
rium distribution could be used to do the approximation. This leads us to
investigate the theoretical issue of how to achieve rapid convergence of these
diffusions. We first study their structure and then concentrate on the Gauss-
ian case. In the latter, our results allow us to devise a better drift and, in fact,
the commonly used gradient drift is the worst one.

Using diffusions to sample from the prior distribution for image synthesis
at the model building stage and to sample from the posterior distribution for
image reconstruction can be found in the works of Grenander (1984), Roysam,
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Miller, Bhattacharjya and Turner (1992), Grenander and Miller (1992) and
references therein.

Geman and Hwang (1986), Chiang, Hwang and Sheu (1987), Hwang and
Sheu (1990) studied diffusions for global optimization, using a version of
simulated annealing. This also motivates us to search for drifts other than
the gradient one that might have a better convergence rate.

Related works can be found in Barone and Frigessi (1990) for improving
stochastic relaxation for Gaussian random fields, in Amit and Grenander
(1991) for comparison of sweep strategies for Gaussian distribution, in Amit
(1991) for rates of convergence of stochastic relaxation, in Frigessi, Hwang
and Younes (1992) for an optimal Mornte Carlo method with respect to certain
criteria and in Frigessi, Hwang, Sheu and Di Stefano (1993) for comparisons
of convergence rates of some updating dynamics. Diaconis and Stroock (1991),
Fill (1991) and Chiang and Chow (1992) also contain interesting results.
Goodman and Sokal (1989) gave a very extensive treatment of Monte Carlo
simulation for Gaussian distributions and we shall come back to this at the
end of this section.

Let 7 be a fixed probability on R™ with density

(1.1) %exp - U(x),

where Z is the norming constant. Usually U is given and has nice properties.
The diffusion

(1.2) dX(t) = —-VU(X(t))dt+V2dW(t), t>0,X(0)=x,,

is used to approximate 7. Here W is the standard Brownian motion in R™.

Note that we try to approximate w(x) and only have U(x) at our disposal.
The diffusion (1.2) seems to be a reasonable choice. But we approach the
problem from another angle by first studying diffusions with 7(x) as their
equilibrium, and then construct new drifts from U(x) such that the corre-
sponding diffusions would have better approximations. Hence, we consider a
diffusion with smooth drift 5(x),

(1.3) dX(t) =b(X(¢))dt +V2dW(t), t>0,X(0)=x,,

such that 7 is its equilibrium distribution.

If the diffusion (1.3) is reversible, then b(x) has to be — VU(x) (see Section
2). This leads us to consider the nonreversible ones. Write b(x) = —VU(x) +
c(x), where c(x) is chosen to ensure that 7(x) remains the equilibrium of
X(¢) in (1.3). Later we shall characterize c(x). The “circulant” drift

U U oU U U oU
ax

%,  dxy dx;  dxg = dx,_q,  Ixy
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and the “shift” drift

oU 9U U oU oU U
dx dx, ~ dx

m m-1

dxy’ dx,  Ixg

ey
m—2

are examples of equilibrium-preserving vectors, c¢(x). Let L and L, denote
the infinitesimal generators of (1.2) and (1.3), respectively. For nicely chosen
c(x), the spectral gaps of L and L, and, hence, the rates of convergence of
the corresponding Markov processes, are compared. These are studied in
Section 2.

In Section 3 we consider the Gaussian case, that is, U is a quadratic form
and —VU(x) can be expressed as Dx with a strictly negative-definite real
matrix D. For the diffusion (1.3), we consider the Ornstein—Uhlenbeck
process with linear drift 5(x) = Bx with a stability matrix B. Denote by
Ay (B) the maximum (but negative) of the real parts of the eigenvalues of B.
The rate of convergence of the covariance matrix of X(¢), which is
exp(2A,,(B)t) [or together with the convergence of EX(¢)], is used as the
comparison criterion. We prove that, among all drifts with equilibrium 7,
—VU(x) is the worst case and improvement can be made if and only if the
eigenvalues of D are not identical. If the “circulant” drift c¢(x) (previously
defined) is added to —VU(x), then for essentially all the quadratic forms U,
one has faster convergence.

Although the convergence rate of the mean is improved along with that of
the covariance, the overall convergence of the mean is slower if x, # 0. Of
course one can always start at the origin to eliminate the bias.

In Section 4 we prove that the infimum of A, (B) over all equilibrium-pre-
serving B is (1/m)tr D by studying the asymptotic behavior of A, (D + aC),
© as a — o, for a particular C. The construction of an appropriate C depends
on a natural orthogonal decomposition of R™ w.r.t. a weighted inner product.
The attainability of the optimum is still not known (added in proof: the
optimum is attained). As an example, the three-dimensional case is studied in
detail. Two numerical simulations of A, (D + aC) are included at the end of
Section 4.

As an example, let us consider the optimal rate (1/m)tr D for the two-di-
mensional discretized Laplacian A; on an L X L square lattice, that is, —A}
is the inverse covariance matrix of the underlying Gaussian distribution and
the dimensionality m equals L?. The diagonal entries of A; are identically
equal to —4. Notice that the optimal rate —4 is independent of the dimen-
sionality m. Hence, theoretically the “critical slowing down” seems to be
avoided by using proper diffusion processes.

The consideration along this line is related to the following work. Goodman
and Sokal (1989) show for a large class of discrete time algorithms, including
multigrid methods with appropriate structures, that the Monte Carlo simula-
‘tion procedure for the Gaussian distribution with mean —D !y and inverse
covariance matrix —D has the corresponding deterministic procedure for the
solution of the linear equation —Dx = y. These two procedures have the same
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convergence rate. Note that for nonzero y, similar to what was mentioned
before, the rate is determined by the convergence rate of the mean, which is
slower than that of the covariance, and the multigrid methods may avoid the
critical slowing down as the dimension increases.

Whether our result corresponds to some accelerated procedure for solving
the linear equation needs further investigation. Nevertheless, the following
points in this direction are observed.

Let us discretize (1.3) with 6(x) = Bx and time step §:

X,,,—X,=68BX, +/25¢,,

where X, = X(né) and ¢, are ii.d. standard Gaussian random variables in
R™. This is a discretized Langevin equation. Let M =1 + 6B. The corre-
sponding scheme for solving the linear equation —Dx =y is

(Pn,+1 =M(Pn, +Ny9

where N = 8(I + S). Note that B = D + SD for a skew symmetric matrix S
(see Theorem 3.1). For a proper chosen 8, say 6§ ! greater than or equal to the
spectral radius of D (see Theorem 3.3), the real parts of the eigenvalues of M
are nonnegative and strictly less than 1. If the imaginary parts can be
controlled, this should be a good scheme.

The Gaussian diffusions considered here have drifts Dx plus linear pertur-
bations. Do nonlinear perturbations have faster convergence (compared with
linear ones)? It seems quite complicated even for a quadratic perturbation in
the two-dimensional case. Additionally, what is the optimal rate for the
general case? These questions are still under investigation.

2. Preliminary results for the general case. Let {(x,y) denote the
usual inner product in R™ and C™. For a reversible diffusion (1.3) with a
smooth drift 5(x), we have the following proposition.

PROPOSITION 2.1. For the diffusion (1.3) with a smooth b(x), if the diffu-
sion is reversible, then b(x) = —VU(x).

PrOOF. See, for example, Kolmogorov (1937) or Nagasawa (1961). O

Now we will concentrate on the nonreversible case. Let L,f=Af+
(b(x),Vf) and let L% f= Af+ div(fb) denote the adjoint operator of L,,
where div is the abbreviation for divergence. It is known [Varadhan (1980)]
that if L% exp(—U(x)) = 0 (and there is no explosion), then m(x) is the
equilibrium distribution of (1.3). Conversely, if 7 is the equilibrium distribu-
tion and the coefficients are smooth enough, then L% exp(—U(x)) = 0.

PROPOSITION 2.2. L% exp(— U(x)) = 0 if and only if the drift b(x) can be
written as

(2.1) b(x) = ~VU(x) + (expU(x))g(%),



ACCELERATING GAUSSIAN DIFFUSIONS 901

where g = (g4,...,8,), divg = 0 and there exist smooth functions fijy 1<
i <j < m, such that

_ i-1 It _1\i-2 ‘9_fﬂ T A
g= (-DT L ZHCDT T OEC-DT)

ProOF. Direct computation and the Poincaré lemma [Sternberg (1964)]
yield the results. O

Again, direct calculation yields the following useful corollary.

COROLLARY 2.1.  Let c(x) be chosen such that {c(x),VU(x)) = 0 forx € R™
and divc = 0. Then b(x) = —VU(x) + c(x) satisfies L’ exp(—U(x)) = 0.

REMARK. If ¢(x) = S(VU(x)), where S is a skew symmetric matrix, then
c(x) satisfies the conditions of the corollary. Hence, with b(x) = —VU(x) +
c(x) in (1.3), X(¢) has equilibrium 7.

ExampLES. Circulant drift. Define

dU(x) B dU(x) dU(x) B dU(x) dU(x) B dU(x)

geeey ’

c(x) =

X, 0%, dx,q 0xg X, 1 dx,
that is, ¢(x) = F(VU(x)), where F is a circulant matrix
a; QA Ay,
an 0 A1
a, a, a,

with a;, = —1, a,, = 1 and a, = 0 for other k’s. Clearly F is skew symmetric.
Shift drift. Define

dU(x) dU(x) dU(x) dU(x) dU(x) dU(x)
’ B T 9x C ox dx

c(x)=|- , ,

EAR R

dx2 axl dx3 m-—-2 m m-1

that is, ¢(x) = (R — LXVU(x)), where R is the right shift matrix and L is
the left shift matrix. Again, R — L is skew symmetric.

The following simple calculation reveals a preliminary result for the
improvement of convergence rate for some general diffusions. In the Gaussian
case, the results are more definite and complete (the investigation in the next
two sections is devoted to this case):

J(Lof) fm= [(LF)frm+ [(e, V) fm,
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where c(x) = (exp U(x))g(x) in (2.1),
1
J{e VP fr= 5 [<e, V)
1
= ﬁf<ce‘U,Vf2>

1 . 9
=3z [(dive)f
=0
if e(x) and f(x) are good enough; for example, c(x) is smooth with compact
support and f is smooth with some integrability conditions. So we have
J(LyF)fm = [(Lf)fm.

Suppose that U has a nice growth condition. Then L has a discrete
spectrum [see, e.g., Reed and Simon (1978)]. We also assume that the
perturbation c(x) is of compact support and small. Let f + ig be a normal-
ized (w.r.t. 7) eigenfunction of L, with eigenvalue A + iu, where A, u are
real numbers and f, g are real functions. Then

Lbf=Af_Mg’
ng=Ag+Mf’

J(Lf)fr+ [(Le)gm= [(Lof)fr+ [(Log)gm

= /\([fzd77+ fgzdar)

= A
We may restrict ourselves to the subspace of L?(r) such that (A7 = 0. Let
e, denote a complete set of orthonormalized eigenfunctions of L with eigen-
values A, ordered by 0 > A; > A, >

A= [(Lp)fr+ [(Lg)gm = ZAk((ffekw)2 ¥ (/gekwf) <A

Equality holds if and only if f and g are in the eigenspace corresponding
to A;. This means that the convergence rate of [(e’lsf(x) — [fm)? d is better
than or equal to that of [(eLf(x) — [fm)? dm.

3. The Gaussian case. Now we consider U(x) = 3{ — Dx, x), where D
is a strictly negative-definite real matrix. Consider the Ornstein—Uhlenbeck
process with 7 as its equilibrium,

(3.1) dX(t) = BX(t)dt + V2 dW(¢), t>0,X(0) = x,,

l where B is a stability matrix, that is, the real parts of the eigenvalues of B
are negative. In other words, Bx plays the role of b(x) in (1.3) and D(x)
plays the role —VU(x) in (1.2).



ACCELERATING GAUSSIAN DIFFUSIONS 903

As mentioned before, we only have U(x) available, that is, D is known.
The relationship between B and D is stated in the following theorem.

THEOREM 3.1. The Ornstein—Uhlenbeck process (3.1) has a Gaussian equi-
librium with density (1/Z) exp 5{Dx, x) if and only if B = C + D, where the
matrix C satisfies {Cx, Dx) = 0 for any x in R™. In fact, C = SD with a skew
symmetric real matrix S.

ProOOF. Basically this is Proposition 2.2 for the Gaussian case:
div((Cx)exp — U(x)) =0 forall x in R™
=(trC + (Cx,Dx)) =0 forall x in R™.
Because tr C is a constant and (Cx, Dx) is quadratic, {Cx, Dx) = 0 for all x
in R™.
Conversely, if (Cx,Dx) =0 for all x in R™, then tr C = 0, which is
equivalent to div Cx = 0. By.Corollary 2.3, we establish the assertion. O

REMARK 3.1. Stability matrices have been studied extensively in the
literature; see, for example, Bellman (1970). Our study here may be classified
as a dual problem [Taussky (1967)], because D is fixed and we are interested
in different B’s and how to obtain B from D. However, our concern here is
different from that in the study of stability matrices.

The solution X(¢) of (3.1) can be written as
X(t) = eBt(xo + fote‘Bs\/de(s)),
EX(t) = eB'x,,
Cov(X(t)) = 2[0teBseB's ds

and

-1
¢ , ® , -D
[eBseB sds — f eBseB's ds = .
0 0 2

Note that [‘eB%B'*ds is strictly positive-definite and decreasing in the
sense of positive-definiteness.

For a matrix A, let A, (A) and A(A) denote the maximum and minimum
of the real parts of the eigenvalues of A, respectively.

THEOREM 3.2.

: 1
(3.2) —In

; - 27,(B) <0.

® Bs,B'
[ese Sds

t
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ProoF. Because all the norms are equivalent and for a positive-definite
matrix A, (1/m)tr A < A,,(A) < tr A, we may replace the norm here by tr.
To establish (3.2), it suffices to show that for any ¢ > 0,

) trfeBseB’s ds

lim = O’
t> exp(2t(Ay(B) + ¢))

. tr[reBse?’s ds

lim =
t>= exp(2¢(Ay (B) — &))

Because tr is a linear function, by applying I'Hopital’s rule, (3.3) equals

(3.3)

(3.4)

’
tBetB

i —tre
toa 2(Ay (B) + ¢)exp(2t(Ay (B) + £))

-1 (tretBet®)!/ @ ;
= 1.
e 2(Ay(B) + ¢) e*uBle
= 0.

In fact, by using the Euclidean norm for e?Z, one rewrites (tr e!Bet8)l/ @)
= (le*B]I*)/@® and |le?B||** converges to the spectral radius of e®, which is
e™®) Note that the latter holds for integers ¢ [Halmos (1958)], but the same
result remains true in our case.

(3.4) can be proved similarly. O

The rate of convergence of the covariance is exp(21,,(B)¢) and that of the
mean is exp(A,(B)t)x,, so the mean has slower convergence if x, is not zero.
This coincides with the result in Barone and Frigessi (1990). Of course, we
would take the starting point at 0 to speed up the convergence.

Now the rate is determined by A, (B). We have the following comparison
theorem.

THEOREM 3.3. Let B = C + D with {Cx,Dx) =0 for x in R™. Then
(3.5) MD) < MB) < Ay (B) < Ay (D)

and Ay (B) = Ay (D) if and only if there exist nonzero u,v in R™ and p in R
such that u + iv is an eigenvector of B with eigenvalue Ay (D) + ip and u,v
are eigenvectors of D with eigenvalue Ay (D). Moreover, u + iv is an eigenvec-
tor of C with eigenvalue ip and Cu = —pv, Cv = pu. If p is nonzero, then
ulv.

ProoF. First notice that {(Cx, Dx) = 0 for any x in R™ is equivalent to
(C(x + iy), D(x + iy)) being purely imaginary for any x, y in R™:

(D(x +1iy),(D + C)(x +iy)) = {(Dx, Dx) + {(Dy, Dy)
+ a purely imaginary part.
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If B(x +iy) = (A + inXx + iy), A, 7 in R, then
(D(x +iy),(D+C)(x+iy)) = M{Dx,x) + {(Dy, y))
+ a purely imaginary part.

Hence, for an eigenvector x + iy of B with x,y in R™ and the real part of
the eigenvalue A,

(3.6) AM{Dx,x) + (Dy, y)) = {Dx,Dx) + {Dy, Dy).

Let {e,} be a complete orthonormal set in R™ with D(e,) = A,e,. Then
(3.6) can be rewritten as

)\Z)\k((x,ek>2 + (y,ek>2) = ZA%((x,ek)2 + (y,ek>2).

Therefore, AM(D) < A < Ay (D) and A = Ay (D) if and only if (x,e,)* +
(y,e,)* =0 for all A, # A,(D). The last statement is equivalent to Dx =
Ay(D)x and Dy = A, (D)y.

Now take u + iv as in the statement of the theorem,

B(u + i) =D(u +iv) + C(u +iv) = Ay(D)(u + iv) + C(u + iv),

but B(u + iv) = (A (D) + ipXu + iv) = Ay, (DXu + iv) + ip(u + iv). Hence,
Clu + i) =ip(u +iv), Cu= —pv, Cv=pu. If p+0, 0={Du,Cu) =
—pAy(DXu,v). O

REMARK 3.2. The inequality (3.5) is known [see, e.g., Barnett and Storey
(1967)]. Our proof here also gives the condition when equality will hold.

REMARK 3.3. If C has (Cx,Dx) = 0 for x € R™, then so does aC for any
a in R. Now consider Ay, (aC + D) as a function of a. We have the maximum
at a = 0. It is interesting to know the behavior of this function. For a given
D, what is the optimal value inf . , A}, (D + C) and is it attainable? This
will be studied in Section 4.

The following theorem theoretically shows that by adding a drift orthogo-
nal to —VU(x), we can make an improvement as long as the eigenvalues of D
are not identical.

THEOREM 3.4. There exist a real matrix C such that {Cx, Dx) = 0 for any
x in R™ and Ay (C + D) < A\ (D) if and only if the eigenvalues of D are not
identical.

Proor. If all the eigenvalues of D are the same,

Ay(C + D) > \(D) = %tr(D) = Ay(D)

by Theorem 3.3.
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Now we prove the only if part. Let P be a real unitary transformation such
that PDP~! is diagonal and (PCP~'x, PDP 'x) = (CP~'x, DP~'x) = 0 for
x in R™. So it suffices to show the result for the diagonal case:

—1m
U(x)=-?-2)\kx,§, (Dx), = Mx,, 1<k<m.
1

We use the shift drift mentioned in Section 2 for the added term. The
corresponding matrix C can be defined by

(Cx)1= —Ay Xy, (Cx)m = Ap—1%m—15

(Cx)p = A 1% 1 = Apy1Xpyq, forl <k <m.

By using the result in Theorem 3.3, we will prove the assertion by
contradiction. Assume that A; = A, (D), the dimensionality of the eigenspace
corresponding to A, is n, which is strictly less than m, and (C + DXu + iv)
= (A, + ipXu + iv). By Theorem 3.3, C(z + iv) = ip(u + iv), Cu = —pv, Cv
=pu and u, =0 =v, for & > n.

(Cu)pi1=Mu, = —pv,,.1=0; hence u, = 0.

(3.7)

Similarly, (Cv),,; = A, = pu,,.; = 0; hence v, = 0. So we have u, =
0=v, for £ >n — 1. If we iterate the same procedure, we will arrive at
u = 0 = v, which is a contradiction. O

Using the previous theorem to construct C for the nondiagonal case, one
needs to know the eigenvectors of D. This is not practical. In the following we
will study the circulant drift.

THEOREM 3.5. Let C be the circulant drift corresponding to D. That is,
C = FD and F is a circulant matrix such that the entries on its first row are
zero except the second term is —1 and the last term is +1. Let

2mk(m — 1) 2mk(m — 2)
e, = |cos , COS yeees 1,
m m
 2wmk(m —1)  2wk(m —2)
fi. = |sin ,sin ,o..5 0],
m m

Then Ay (C + D) < Ay (D) if: @) for odd m, D does not have e, and f, for
some k as its eigenvectors with eigenvalues Ay (D); or (i) for even m, D does
not have ae, + be,, ,5_, and af, + bf,, o, for some 1 <k <m/2 or ae, +
bes,, ;2_1 and af, + bfs,, ;54 for some m/2 <k <m, for some a,b as its
eigenvectors with eigenvalue Ay (D).

Proor. If D is such that A, (D + C) = A4 (C), then by Theorem 3.3,
there exists u + iv such that .
-p® p?

F?u=(D'C)Y’u= ————u and F?v=———u.
(D7) = D) X%.(D)
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The eigenvectors of the circulant matrix F are e, + if, with corresponding
eigenvalues A, = —i2sin(27wk/m).

If m is odd, then all the eigenvalues A, are distinct. Hence, as long as D
does not have e, and f, for some %k as its eigenvectors with eigenvalue
Ay (D), then D + C has a better Ay, (D + C). Note that for & = m, there is
only one eigenvector e,, = (1,1,1,...,1).

For the even case,

Amjacs 1<k <m/2,
Ay = Mg 2oy ifm/2<k<m.

Similar reasoning as in the odd case is applicable here. O

If we have D, then the circulant drift C is easily constructed and, except
for very specific D as mentioned in Theorem 3.5, we will have a better
A;;(C + D). Hence, one would just use the drift Cx + Dx to run the diffusion
without checking the conditions (i) and (ii).

Concerning the relationship to other types of convergence, results are
presented in the following propositions. The proofs are a little bit tedious but
straightforward; hence, they are omitted.

PROPOSITION 8.6.  Let f, denote the density of the solution X(t) of (3.1) with
x9 = 0. Then 3 a > 0 such that for large t,

aflf, = | < leov(X(£)) + D'l < — [If, = .
In particular,
1
71n[|ft — @l > 2A,(B).
PROPOSITION 3.7. There exists a constant a > 0 such that for large t,
2
f(Exh(Xt) - fhﬂ') m(x)dx < aIIetBIIthQW.

4. The optimal rate. A, (D + C) represents the convergence rate. It is
interesting to find out the infimum of A,(D + C). We will prove that
inf A,(D + C) is (1/m)tr D.

We construct a specific C that relies on a natural orthogonal decomposition
of R™ with respect to the weighted inner product (x, —Dy). Then we
establish that inf, A, (D + aC) is indeed (1/m)tr D.

Our approach does not answer the attainability of the infimum. For m = 2
or 3, the answer is positive. We will discuss the three-dimensional case and
show some simulation results at the end of this section.

LEMMA 4.1. If A is self-adjoint w.r.t. an inner product [ , ] in R™, then
there exists an orthogonal decomposition w.r.t.[ , 1,

(4.1) R™ = H,® H, ® - & H,,, 5,
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such that:

@) for 1 <k <[m/2], H, is two-dimensional and % trP,A = (1/m)tr A,
where P, is the orthogonal projection onto H,;

(i) for odd m, tr(PyA) = (1/m)tr A, where P, is the projection onto the
one-dimensional H,,.

ProOF. The assertion will be proved by induction.

It is obvious for m = 2. For m =3, let e,, 1 <k < 3, be normalized
eigenvectors with corresponding eigenvalues A, and let f, = (e, +e, +
e3)/ V3. Define H, = span{ fi} and let H, be the orthogonal complement of
H,. Then

[PoAf1, 1l = [Af1, f1] = 5[ Aies + Agey + Ageg,e; + ey + €3] = Ltr A.

Let f;, f3 be an orthonormal base for H,,

tr A =[Af, 1] + [Afz, f] + [Af;, f3] =3tr A+ tr (P A).

Hence 3 tr A = 1 tr P, A.
Suppose that the assertion holds for dimensionality less than m. We are

going to establish that it is true for m. Let e,,...,e, be orthonormalized
eigenvectors of A. For m = 2n, let H' = span{e;,...,e,} and H? =
spanfe,, ;,...,e,}. In H', we use the same [ , ] with corresponding P4,

where P’ is the projection onto H'. By induction, we have the decompositions
H'=H{® - ® H}, 5, | = 1,2. Now choose orthogonal bases u},v} for H},
1<k<[n/2],1=1,2.1f n is odd, define H, = {0} and H, = H} ® HZ, and
for1 <k <[n/2],
) Hy, = span{u} — u?, v} — vf),

' H,, ., = span{u} + u},vi + v?}.

If n is even, define H, = {0} and for 1 <k <[n/2],

H,, , = span{u} + u?,v} + v2},

(43) P R
H,, = span{uk —up,vj, — vk},

2tr (Py, A) = [A(ul — u?), ul - ui] + [A(v} - v?), v} — v?]

[Au},ui] + [Avk,vi] + [Au?, u?] + [ AvZ,v2]

2 2
—tr(P'A) + —tr(P%A
—tr(P'A) + —tr(P*A)

2
= —trA.
n

Therefore, 3 tr Py, A = (1/2n)tr A = (1/m)tr A.

Similar proofs hold for H,,,, in (4.2), H,,_, in (4.3) and for H} and H?
when they are one-dimensional.

Now for the odd case, m = 2n + 1. Let f, = (ey + - +e,,)/Vm, H, =
span{f,} and H = H;* with the corresponding projection P. Again we use the
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same inner product in H. The transformation PA = PAP from H to H is
self-adjoint. Choose an orthonormal base f;, f,..., fs, in H:

trA =[Af,, fo] + kZ [Af:, ]
>1

[Afy, fol + kzl[ﬁAfk,fk]

1 ~
—tr A + tr(PA).
m
Hence

1
(4.4) —trA= EtrPA.

Using induction on H with PA and the fact PkP P,, where P,, P, are
defined in the obvious way, fork > 1, 2 tr P, A = L tr (P, PA) = (1/2n)tr PA =
(1/m)tr A. For H,, [ P, Af,, fo] = 1/m)tr A.

We have established the assertion for m. O

The preceding lemma is applied in our setup as follows:
[x y] is defined by {(x, —Dy) and D is the self-adJomt matrix, R™ = H,
) H[m/Z] such that trP D=(Q0/m)trD = —trPkD for1 <k < [m/2]
We are going to define ¢ and consider the limiting behavior of D + aC.
Let u,,v, be an orthonormal base in H a and let d,’s be distinct positive
numbers, for £ > 1. A linear transform C from R™ to R™ is determined by
C(u) = 0if uisin H, and C(u,) = —d,v,,C(v;,) = d,u, for 1 <k < [m/2].
THEOREM 4.1. inf, ., Ay (D + aC) = (1/m)tr D.

[23

ProoF. For a normalized eigenvector u“ + iv* of D + aC with eigen-
value A% + iu®,
Du® + aCu® = \*u® — pneve,
(4.5) .
Dv* + aCv® = pu®u® + A*v°.
a a

46 CA a Ty & A 'lL a Sy QO D a+'a
(4.6) (u +w)—(;+17)(u +w)—;(u iv®).

Suppose that u,v are limits of u,,v, along a subsequence of «, still
denoted by a — . Then

Aa «
(4.7) C(u+w)— lim (—— +1M—)(u+w)
a— © o
Because the eigenvalue of C is purely imaginary, A“ /a— 0and u*/a has a
limit y. We will discuss y = 0 and y # O separately. In both cases, we will
prove A* = (1/m)tr D.
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If y # 0, then it must be d, or —d,. It suffices to prove the positive case.
The corresponding u,v are in H,. By (4.5),

[Dus,u] = aofu,ue] - peloe,ue],
[Dv*,ve] = A*[v*,v*] + p*[u*,v*];
.,  [Du*,u*] + D[v*,v"] [Du,u] + [Dv,v]
A8 A e T+ [vo T lwa) +[o0]
[Du®,v*] + a[Cu®,v?] = A*[u®,v®] — u*[v?,0°],
[Dv*, u] + a[Cv, u®] = A*[v*, u®] + po[u®, u®].

Note that [Cx, y] + [Cy, x] = 0, p*/a(u®, u®] - [v*,v*]) = 2/a(Du®,
ve] — A*[u*,v*]). Let a - », y(u,u] — [v,v]) = 0. This implies [u, u] =
[v,v]land u L v in H,. Then by (4.8) A = :tr P,D = (1/m) tr D.

Now consider the case y=0. By (4.7), v and v are in H,. Because
[u,u)? +[v,v]? =1, this can only happen in the odd dimensional case.
Moreover, H, is one-dimensional, and in view of (4.8), A is an eigenvalue of
P, D restricted to H, which is (1/m)tr D. This completes the proof of the
theorem.

)

O

Intuitively one would expect that A, (D + aC) is decreasing in a as
a — «, Unfortunately this is not true. The situation is more complicated as
we will see in the following study of the three-dimensional case. Let

0 a b
A
A 000 -a 0 c
D=|0 A 0] C= Ag ,
A A A
0 O 3 M Ay
L. A3 A3 =

0> A 2 Ay =2 A3, pp, = A, — (A + A5 + A3)/3, 1 <k < 3. We will show that
the optimal rate is attainable by studying the characteristic polynomial of
D + aC directly. This corresponds to proving that there are two nonzero
solutions, 7 and — 7, of the following set of equations:

A Ag A
(4.9) pP1 P2 P3 + a2()‘—b2p2 + A_C2P1 + Ta2p3 =0,
3 3 2
A A
(4.10) m%=(pypy+ paps+ p3py) + a? Zp2 4 o2y g2,
Ag Ag Ay

Note that p; < 0 < p; and one equality holds iff both equalities hold.
Hence, it is clear that (4.9) has solutions «, a, b, ¢ with fixed «, b, but a,c
can go to infinity. So if we choose a, ¢ large enough and keep the same «, b,
then (4.10) has nonzero solutions 7 and — 7.
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If for some C such that
o A+ A+ Ay
liminfA, (D + aC) = — 3
then from (4.9),
A
1 2 1
_b2 + = 2 + — 2. 0.
As P2 As P A aps
If p, # 0, then the optimum is not attained for finite a. On the other hand, if
- AL+ Ay + A
Ay(D + C) = —1———;——3

and p, # 0, then
liminf Ay (D + aC) > 5(A; + Ay + Ag).

To conclude, we plotted two examples of A, (D + 0.1B8C) as a function of B
from 1 to 160. For both cases,

-1 0 0
D=| o -1 ol
0 0 -4
2 20 40 60 80 100 120 140 160

Fic. 1. Rate of convergence of Ay (D + 0.1BC) as a function of B:

-1 0 o 0 V3 4
p=| 0 -1 o, Cc=|_-5 o 4l
0 0 -4 1 Z1 o
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-1.6t .
171 .

-1.9- 4

2y 20 40 60 80 100 120 140 160

Fic. 2. Rate of convergence of Ay (D + 0.18C) as a function of B:
-1 0 0 0 1 2
D= 0o -1 o], Cc=|-1 0 2]
0 0 -4 -+ -t oo

C in Figure 1 is

0 V3 4
—1/§ 0 4 |
-1 -1 0

which is chosen such that Ay (D + C) is the optimum —2. The plot shows
Ay (D + aC) is increasing for @ = 0.18 > 1. C in Figure 2 is

which is chosen such that liminf, |, A, (D + aC) = —2. The plot shows that
Ay (D + aC) decreases to —2.
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