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A SELECTION-REPLACEMENT PROCESS ON THE CIRCLE

By E. G. CorrFMAN, JR., E. N. GILBERT AND P. W. SHOR
AT & T Bell Laboratories

Given N points on a circle, a selection—-replacement operation removes
one of the points and replaces it by another. To select the removed point,
an extra point P, uniformly distributed, arrives at random and starts
moving counterclockwise around the circle; P removes the first point it
encounters. A new random point, uniformly distributed, then replaces the
removed point. The quantity of interest is d = d(N), the distance that the
searching point P must travel to select a point. After many repeated
selection-replacements, the joint probability distribution of the N points
tends to a stationary limit. We examine the mean of d in this limit. Exact
means are found for N < 3. For large N, the mean grows like
(log3/2 N)/N. These means are larger than the means 1/(N + 1) that
would be obtained with N independent uniformly distributed points
because the selection mechanism tends to cluster the N points into
clumps.

In a computer application, the circle represents a track on a disk
memory, P is a read—-write head, the N points mark the beginnings of N
files and d determines the time wasted as the head moves from the end of
the last file processed to the beginning of the next. N is a parameter of the
service rule (the next service goes to one of the N customers waiting the
longest).

1. Introduction. Given N > 1 initial points marked by crosses on a
circle, iterate the following two steps (see Figure 1):

1. Choose a point P uniformly at random on the circle and delete the first
cross encountered in a counterclockwise scan from point P.

2. Choose another point P’ uniformly at random on the circle and mark it as
a new Cross.

After many iterations of these steps, the joint distribution of the N crosses
approaches a stationary limit, as verified later. Let d,, = d,(IN) be the length
of the scan in Step 1 of the nth iteration, as illustrated in Figure 1. The
problem is to determine

(1.1) E[d] = lim E[d,],

where d = d(N) is the distance from a random point P to the counterclock-
wise nearest of N crosses with the stationary distribution. For convenience,
take the circumference of the circle to be the unit of distance.

Because the new cross P’ in Step 2 is uniformly distributed, one might
think the N crosses would become uniformly and independently distributed
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N=4
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Step 1 Step2

Fic. 1. Seléction—replacement.

over the circle. For that distribution, the distance d* = d*(N) from a random
point P to the counterclockwise nearest cross would have P(d* >y) =
1 -y and

(1.2) E[d*] = [01(1 —)¥dy = 1/(N + 1).

In fact, d is distributed like d* if N = 1 or 2, but not if N > 3. If the deleted
point in Step 1 had been equally likely to be any of the N crosses, then d and
d* would have been distributed alike. However, by picking P uniformly, Step
1 will usually delete an endpoint of one of the longer intervals. This paper
derives an explicit formula for E[d] when N = 3, and gives an asymptotic
estimate of E[d] for large N. Before getting into these and other results, the
source of the problem will be briefly described.

Selection—replacement sequences occur in a model of computer disk
scheduling, where the circle represents a track on the disk.-The disk actually
rotates at constant speed past a fixed read /write (R/W) head, but it will be
simpler to imagine the head rotating around a stationary track. Requests for
R/W operations arrive by some process and join a queue. Each request
requires the head to start at a given point A and to read or write a file until
it arrives at another given point B. A and B are assumed to be indepen-
dently and uniformly distributed on the circle. An equivalent assumption is
that the starting location A and the length on the track from A to B are
independent uniform samples from [0, 1]. These assumptions are simplifica-
tions, made to render the disk scheduling problem tractable.

If the head served requests in order of arrival, it would waste half a
revolution, on the average, just traveling to A. The head would be more
efficient if it served the request whose point A it first encountered. That
would be unfair to older customers in the queue, so as a compromise, we
require the head to serve one of the N oldest customers; it chooses the one
with the counterclockwise nearest point A. This A is the cross that Step 1
deletes; B is point P of the next Step 1. When a R /W operation begins, a new
request in the queue becomes the Nth oldest; its A is point P’ of Step 2.
Taking N = 1 gives service in order of arrival but larger N achieves shorter
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delays. For other disk models, see Fuller and Baskett (1975) and Coffman
and Hofri (1986).

The service rate is greatest when the system is saturated, so that at least
N requests always await service. Under that condition, the head moves a
mean distance E[d] finding A and 0.5 reading or writing. The maximum
service rate is then u = 1/(E[d] + 0.5). The queue is sure to be unstable if
the arrival rate exceeds w. The queue can be shown to be stable if the arrival
process is Poisson with rate less than wu.

2. Results. The state just after the nth iteration of Step 2 is the
unordered set w, = {xy,..., xy}, where x,,..., x5 are the coordinates of the
N crosses relative to some fixed origin on the circle. The coordinates x; are
fractions of the circle circumference; the x; will lie in [0, 1]. It is easy to
see that the process {w, }, to be called the selection—replacement (SR) process,
is a Markov chain. To verify that the SR process is ergodic, it is enough to
observe that the state space is compact and that the transition from any state
{xy,..., x5} to any other state {x),..., x)y} in r iterations has a strictly
positive density for all r > N [e.g., see Friedman (1970)]. Note also that the
stationary distribution of {w,} must have a density p invariant under
permutations of the coordinates and under relocations of the origin. With &
denoting addition mod 1,

(2.1) p(xy,...,2y) =p(x,®a,...,xy ®a)
for all a.

N = 3. Section 3 derives the following stationary density of N = 3 crosses
under the SR process:

(2.2) p(xy, x5, x3) = f(lxy — x5]) + F(l21 — x3l) + (1%, — x5),
where

(2.9) Fo) = —— 207 9)

[1+901-9)]"

To determine E[d], let &, J,,9; denote the lengths of the gaps between
the x,. In terms of the 9;, (2.2) is p(x,, x5, x5) = f(I,) + f(Iy) + f(I3). A
state o= {x,, x5, x5} could equally well have been represented as {x, x ®
9, x ® 9 ® &}, where x is uniform on (0, 1) and &, 9, are gaps satisfying
0 < ¥ + ¥, < 1. Each state has three such representations, corresponding
to three choices for the point x. The joint density for ¥, and ¥, is then
[F(3) + 3y + A — § — 9,)1/8.

Now consider the gap in which point P of Step 1 falls. E[d] is half the
mean size of this gap. For given gap lengths, P is in gap i with probability ¥,
S0

E[d] = %folfol"’z[ﬂf + 02+ (1— 9 — 8,

X[F(9y) +F(92) + f(1 = O — 8y)] d9; d,.
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Evaluating this integral is tedious, but elementary. The result is

'E) 5
E[d] = —4—log(2 -V3) + 5 — 0263074

(all logarithms in this paper will be to base e). When x,, x,, x5 are indepen-
dent, as well as uniformly distributed, (1.2) gives the slightly smaller E[d*] =
1. The comparison suggests a greater clumping of crosses under the SR
process. The comparisons that follow also indicate clumping.

By (2.3), f(99) takes its maximum at ¢ = 0 or ¥ = 1, where f($) = 4. Then
p(xy, x5, x3) < 12 and achieves this maximum when x; = x, = x; (extreme
clumping). Also, if o™ has gaps ¥, 9, 93 (9; + 9, + 93 = 1) between the
crosses then, because f(¥) is convex,

N+ Iy + I 1
p0") = (91) + F(9) + (99) = 37 "2 = a5

> 4.4733724.

This minimum is achieved with &; = 9, = 9, = 3, a state with least clump-
ing. For a comparison, consider the probability density p*(w') for three
crosses chosen independently and uniformly from the unit circumference. An
unordered triple {x,, x,, x5} is then represented by a point (£, &,, £;) (the x;
in numerical order) distributed over the tetrahedron 0 < ¢, < §, < §; <1
with constant density p*(w*) = 6.

Finally, consider the expected gap lengths under the SR process. Routine
but lengthy calculations give

E[longest gap] = flfl_%max{ﬁl, Oy, 1 — 9 — Iy}
07’0

X[F(81) + F(F2) + F(1 = 0y — Fy)] d9; d,

5 93 19-8/3 3 13
-2 ~V3) - 2 — Zlog—
1 V3log(2 — V3) g log—3 glog—
= 0.637762,
V3 93 19-8/3 3 13
E[shortest gap] = —1 + -4—log(2 -V3) - 5 log 13 - glog?
= 0.098541,

E[middle gap] = 1 — 0.637762 — 0.098541 = 0.263697.

These means may be compared with the values that are obtained with three
independently distributed points [obtained by replacing f() by 2]. In this
case, the longest, shortest and middle gaps have mean lengths 11/18 =
0.611111, 1/9 = 0.111111 and 5/18 = 0.277777. The larger mean longest
gap and smaller mean shortest gap obtained with (2.3) indicate clumping.

Large N. The estimates for E[d] will use the following standard asymp-
totic notation: f(N) = O(g(N)) will mean that f(N)/g(N) remains less than
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some constant for all sufficiently large N; f(N) = Q(g(N)) will mean that
g(N) = O(f(N)); and f(N) = 0(g(N)) will mean that both f(N) = O(g(N))
and f(N) = Q(g(N)).

Section 4 proves

log®? N
N b

(2.4) E[d] = @(

a measure of clumping, as it exceeds (1.2) by a factor of ®(log3/2 N). This
result is proved by a novel application of up-right matching theory [see
Coffman and Lueker (1991), Chapter 3]. In fact, the theory provides the
stronger result that, for all N sufficiently large and for n > N2, E[d,] =
O(log®2 N/N).

Simulations of the SR process have given the values of E[d] shown in
Table 1. These results have been used to test the convergence of E[d] to a
function proportional to log®/2 N/N, as N — . The excellent fit given by the
empirical formula

[log(2.2N)]**
Eld]l ~ —sv—1

TaABLE 1
Simulated values of E[d] and approximations b = ((log(2.2N)]3/2)/(4.9(N — 1)) and
E[d*1=1/(N+1)

N E[d] b E[d*]
2 0.33333 0.368046 0.333333
3 0.26305 0.264518 0.250000
4 0.22185 0.218171 0.200000
5 0.18606 0.189448 0.166667
6 0.17385 0.169168 0.142857
7 0.15810 0.153794 0.125000
8 0.14560 0.141596 0.111111
9 0.13505 0.131607 0.100000
10 0.12615 0.123231 0.090909
12 0.11235 0.109876 0.076923
15 0.09730 0.0953076 0.062500
20 0.08045 0.0790696 0.047619
30 0.06110 0.0603494 0.032258
50 0.04288 0.0424445 0.019608
100 0.02588 0.0258220 . 0.009901
200 0.015241 0.0154004 0.004975
500 0.007579 0.00757941 0.001996
1000 0.004266 . 0.00436168 0.000999
> 2000 0.002431 0.00248076 0.000500
5000 0.001155 0.00115889 0.000200

10000 0.000646 0.000645311 0.000100
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shown in Table 1 suggests that there is an asymptotic constant of proportion-
ality close to 1/4.9. The last column of Table 1 shows that E[d*] of (1.2)
disagrees greatly with E[d] when N is large; then the cross locations are not
even approximately independent.

A variant. An interesting problem arises when Step 1 is changed to the
greedy rule: The cross eliminated in Step 1 is the one nearest to the point P,
allowing either clockwise or counterclockwise scanning. For the greedy pro-
cess the scan distance d, is defined in analogy with d,. The greedy SR
process seems to be more difficult to analyze; for example, up-right matching
theory does not appear to be a useful approach. The only result currently
known, planned for a forthcoming paper, is an estimate of the second moment
of d: E[d?] = Q(1/N). This contrasts with the second moment of the SR
process, which satisfies E[d?] < (E[d]D? = O(log® N/N?) by (2.4).

Simulations show that the greedy process produces greater clumping,
which compensates for the time saved in scanning to the nearest point.
Surprisingly, the data give evidence of a threshold N, near 1500, such that

Eld] <Eld],1 <N < N,, and E[d] > E[d], N > N,.

3. Derivation of (2.2)-(2.3). The SR process for N = 3 will be analyzed
together with the ergodic Markov chain {w,}, where w, = {x,, x,} is the
unordered set of coordinates of the N — 1 =2 crosses just before the
nth iteration of Step 2; that is, just after the deletion in Step 1 of the nth
iteration. Note that the invariance (2.1) also applies to the stationary density
of {w,}, which we denote by g¢(x;,x,). For example, the origin can be
relocated so as to coincide with either x; or x,, so that

(3.1) q(xy, %5) = q(0,12; — x5[) = q(0,1 — [x; — x,]).

This shows that g(x,, x,) can be expressed as a function f(9(x,, x,)) of a
single variable 9(x,, x,) = |x; — x,l, with f(1 — &) = f(9).

State w, = {x;, x5, x5} can occur if and only if w, = {x,, x5}, {x,, x5} or
{x,, x5}. In the transition from w, to w,, the new coordinate is a uniform
random sample from [0, 1], so

(3.2) p(xy, %5, %3) = q(xq, x3) + q(xg,x3) + q(xy, x3)-

This proves (2.2).
Conversely, w,, ; = {x;, x,} if and only if, for some point ¢, o, = {x, x,, &}
(the cross deleted in the nth iteration was at £). Then

(%, %5) = (9 (%1, %5)) = [()lp(f,xl,x2)P(§;x1,x2) de,

where P(¢; x4, x5) is the conditional probability that the last deletion was at
£, given the three coordinates &, x; and x,. Now for a deletion to have
occurred at ¢, Step 1 must have chosen P between ¢ and the point x; or x,
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9(z1,22)

1’(11 9y Iz) 0

§ §

FiG. 2. Point P of the preceding iteration.

nearer to ¢ in the clockwise direction (see Figure 2). In terms of the state
{0, &,1x; — x5}, obtained by placing the origin at x; or x,, P(&;x,, x,) is
either ¢ or ¢ — 9(x,, x,), so the transition equation becomes

9z, %) = ["p(0, £, 9 (1, 7)) A
(3.3) .
(06,8 (s, x))(§ - 0(x, 7)) dE

Fxy, xq

A change of variables in the second integral converts (3.3) to

Q(xpxz) = fﬂ(xl’xZ)P(O’f"?(xl’xz))gdf
(3.4) o
+f01“’(x1”‘2’p(o, £+ 9( %y, 25), 9( 2y, %)) EdE.

Substitute (3.2) and introduce the function f(3%) to obtain

F(9) = ["LF(&) + F(9) + (9 - £)] éde

+f01—0[f(19+ E) + () +f(€)]£de.

Changes of variables, use of f(¢) = f(1 — ¢) and easy manipulations give the
integral equation

(85) (3+9-9%)f(9) = (1~ 9) () d+ (20 - 1) ['7(£) de.

Define the new function u(d) = [0 f(¢)d¢ and the constant K =
JY2AE)dE = 5[¢ f(€)dE, where the last equality follows from the symme-
try of f. Then (3.5) becomes

3.6 1+a ﬂ2du 2(1 - 9K+ (201
(36) (5 +0-92) 55 ~20- 9K+ @0 -1
Rewrite (3.6) as ’

_d_{(% c oo az)u} —2(1 - 9K,
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so that
(3.7) (3+0-0%)u=—(1-9)K+a,

with « a constant of integration. But u(3)=K and (3.7) show that
(3)K = — (1)K + a, s0o a = K and (3.7) becomes

[1-@1-9)7]
T T e 92
Finally, substitution of (3.8) into (3.5) gives
1-9+39)HK (1-9(1-9)K
G+o-02) [t-o1-9)]

in which the symmetry about % is obvious.
To evaluate K, note that

flfIQ(xp xy) dxy dxy = 2
070

because every unordered pair {x,, x,}, x; # x,, appears twice in the integral
over the unit square. Then

2= Llj;lf(ﬁ(xl: x5)) dxy dxy = zfolfoxzf(l?(xl, x5)) dx, da,

(3.8)

(3.9) f(9) =

=2j;)1f()x2f(x2 —x,) dxy dx,.

A change of variables and substitution of (3.8) gives
1 1 29— 9?2
Substitution into (3.9) then proves (2.3):
1-9(1-9)
f(9) = .
(%) [ +901-9)]

4. Proof of (2.4). The asymptotics in (2.4) come from the following
stronger result.

THEOREM 1. Let N — ® and n — «, keeping n > N2%. Then
Eld.]-0 log®2 N

[ nl — N .

The proof of Theorem 1 interprets the SR process as a special way of
matching random points (dots) to other random points (crosses). The cylinder
in Figure 3(a) is a product space of the circle in Figure 1 and a time axis (time
increases moving down the cylinder) that shows the locations and arrival
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cut y

(»)

-1

Fic.3. An SR matching; N = 4, n = 4.

times of dots and crosses in the SR process. In each Step 1 of the process a dot
arrives and an earlier cross is deleted. The dot and cross are then considered
matched. Figure 3(a) represents the match by a geodesic path moving coun-
terclockwise on the cylinder, backward in time, from the dot to the cross.
Figure 3(b) shows the same cylinder, cut and flattened into a rectangle and
then stretched linearly into a unit square. In Figure 3(b), some of the paths
become straight line segments, to be called matching lines or simply lines.
However, other paths, which crossed the cut in the cylinder, become broken
wrap-around lines. The set of lines will be called an SR matching. Because of
their special properties, SR matchings are not covered by existing results.
Theorem 1 is proved by relating SR matchings to others that are better
understood; namely, those in the standard model of planar matching theory.

In general, one is given a set I, = {C,,...,C,; Dy,..., D,} of n crosses and
n dots in the unit square. There need be no initial set of crosses at the top of
the square, nor do the dots and crosses have to alternate as in SR matching
problems. A set M of lines connecting cross—dot pairs in I, is a matching if
no cross or dot belongs to more than one pair. Each line is a straight line
segment between the matched points; there are no wrap-around lines.

M is an up-right (UR) matching, if every line in M moves up and to the
right, that is, if a dot at (x, y) is matched to a cross.at (x’, y'), then x < x’
and y < y’. Figure 4 shows a UR matching. Note that some points cannot be
paired. A maximum UR matching pairs as many points as possible, but may

" leave some number U,, of points unmatched. Let H, denote the sum of the
horizontal components of the matching. The following theorem applies to U,
and H, when the 2n points are independently and uniformly distributed at
random.
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X
-1

Fic. 4. AUR matching; n =5,U, = 4.

THEOREM 2 [Leighton and Shor (1989), Shor (1986) and Rhee and Talagrand
(1988)]. A maximum UR matching for n crosses and n dots, distributed
uniformly and independently in a square, has

E[U,] =0O(Vnlog¥*n), E[H,] =0(/n log®*n).
In addition, there exists a constant B > 0 such that
P(U, < BVn log®/* n)>1-n-Vier
for all n sufficiently large.

A UR matching remains a UR matching if the 2n points are displaced
vertically, as long as they stay in the same vertical order. Then Theorem 2
also applies to points with independent x coordinates, uniformly distributed
on [0,1], and with any distribution of y coordinates that keeps all (2n)!
orderings equally likely. For several other ways of stating the hypotheses
without affecting the result, see Coffman and Lueker [(1991), page 53].

Theorem 2 does not apply directly to SR matchings because, as already
noted, N initial crosses Cf,...,CI(\’, of an SR matching lie on the x axis;
SR matchings can contain wrap-around lines and the dots and crosses
of SR matchings alternate. However, the proof of Theorem 1 adapts Theorem
© 2 to SR matchings in such a way that the result for E[ H,] gives the desired
bounds on E[d,]. The proof requires three preliminary lemmas. The first
shows that the random problems of Theorem 2, although lacking the property
that dots and crosses must alternate, have a similar but weaker property.
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Define m = |ynlogn| and let I,,, ={Cy,...,C,.,,; D1,..., D, )} be a
random UR matching problem of Theorem 2. Let Z be a list of the C;’s and
D;s in decreasing order of their y coordinates. Define the random variable
z;=+1lor —1,1<i < 2(n + m), according as the ith point listed in Z is a
cross or a dot, respectively.

LEMMA 1. Let
J
(4.1) S(n+m)=max ) z
L 1<j<2n+m) joq

denote the maximum excess of crosses over dots encountered in a scan of the
list Z. Then

1
(4.2) P(6c(n +m) >m)=0(;z—).
By symmetry,

1
(4.3) P(8p(n +m) >m)=0(;),

where 8p(n + m) is the maximum excess of dots over crosses in a scan of Z.

The Appendix proves Lemma 1.

A problem {C,,...,C,; D,,...,D,} is alternating if the crosses and dots
have independent x coordinates, uniformly distributed on [0, 1], but the
points in order of decreasing y coordinate are D,,C,, D,,...,D,,C,. Lemma
2 uses Lemma 1 to prove that Theorem 2 holds even when restricted to
alternating problems. In Lemma 2, M, denotes a maximum UR matching for
the problems of Theorem 2; then U, denotes the number of points left
unmatched by M,. The notation M, U¥, H is defined for alternating
problems in analogy with M,,,U,, H,,.

LEMMA 2. An alternating UR matching problem for n crosses and n dots,
with all x coordinates independently and uniformly distributed on [0, 1], has

E[U¥] = ©(Vn log¥*n), E[H}]=0(Vn log’*n).
Moreover, there exists a constant B > 0 such that
P(U¥ < BVn log¥*n) > 1 — n~Veer
for all n sufficiently large.
PrROOF OF E[U*] = O(n log®* n). Define m =|y/nlogn| and the ran-

"dom problem I, . as in Lemma 1. Consider a maximum UR matching M, .,
of I The proof constructs from M, ,,, a UR matching for a random

n+m*

alternating problem and then shows that the new matching satisfies the
upper bound. Define the subset I, = {C,,.1,...,C, . n; Dy,..., D,} and let K,
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be the matching in M, ,, restricted to points in I,, that is, a point of I, is
matched in K, if and only if it is matched in M, , ,,, and to a point also in I,.
I, and I, ., differ by 2m points, so the number V, of unmatched points in
K, is at most 2m + U, . Because m = |[/nlog n |, Theorem 2 shows that
E[U,, .1 =0Wn log®* n), so
(4.4) E[V,] =E[U,,,] + O(Ynlogn) = O(Vn log¥* n).

Next, change the y coordinates of points of I, to obtain the alternating
problem I} ={C%,...,C¥; D%,..., D¥}, where the x coordinates of C¥ and
D} are, respectively, those of C;,,, and D;, 1 <i < n. To make I} alternat-
ing, the y coordinates of C} and D} can be, respectively, —i/n and —(2i —
1)/@n),1<i<n.

Construct the UR matching K} of points in I* such that D is matched to
C; if and only if (a) D, is matched to C;,,, in K, and (b) C} is above D},
J <i. Let W, be the number of points matched in K, but not K*, so that
V¥ =V, + W, gives the number of unmatched points in K¥. The goal is now
to show that E[W,] is so small that E[V,*] and E[V,] have the same
asymptotic bound in (4.4). The upper bound will then follow, because a
maximum UR matching of I;' has at most as many unmatched points as K};
that is, U} < V*.

To estimate E[W,], suppose D, and C,,, are matched in K,, but the
corresponding points D} and C} are not matched in K. Then C} is below
Df in Iy G.e., j > i), but C,, , is above D, in I,. This means thatin I,,,, the
crosses Cy,...,C;,,, are all above D;, i <j. This in turn implies that
8c(I, ) >j+ m —i>m, an event having probability O(1/n) by Lemma 1.
The bound W, < n holds trivially, so E[W,] <n-0(1/n) = O(1) and

E[V;] = E[V,] + E[W,] = O(/n log"* )
by (4.4). O

PrOOF OF E[U*] = Q(/n log®* n). The proof here is complementary to
the preceding proof. Here, define I, ={C,,...,C,;D,,,,...,D,,,} and the
alternating problem I* = {C},...,C¥; D%,..., D¥}, where C} and D} have
the same x coordinates as C; and D, ,,, respectively, 1 <i < n. Now con-
sider the maximum UR matching M of I* leaving U} points unmatched.
Construct a matching K, for I, so that D,,,, and C; are matched in K, if
and only if (a) D} and C} are matched in M)’ and (b) C; is up and to the
right of D, ,,. By Theorem 2 the expected number of unmatched points in K,
has the estimate

(4.5) E[V,] = Q(Vn log¥* n).

Let W, be the number of points matched in M;* but unmatched in K,, so
that V, = U + W,. Suppose that D,,, and C; are unmatched in K,, but
Df and Cf are matched in M}, and hence j <i. Then in I,
the dots D,...,D,,,, are all above C;. Together with j <i, this implies
that 6,(1,,,) = m. As before, this leads to E[W,] = O(1) by Lemma 1.



814 E. G. COFFMAN, JR., E. N. GILBERT AND P. W. SHOR

Then (4.5) and E[V,] = E[U;] + O(1) imply the lower bound E[U*] =
QWn log¥* n). O

Karp, Luby, and Marchetti-Spaccamela (1984) prove that the following
simple algorithm gives maximum UR matchings for problems I,: Scan the
dots in order of decreasing y coordinate, matching each new dot D to the
leftmost unmatched cross, if any, that lies above and to the right of D. Our
final lemma proves an analogous optimality result for SR matchings.

SR matchings are special instances of full matchings that would be
obtained from Figure 1 if the dot (point P) still moved counterclockwise, but
did not necessarily stop at the first cross encountered. Like SR matchings,
full matchings map into a unit square with N crosses on the x axis, an
alternating problem I, and n matching lines. A line still moves upward and
to the right with a gap if it is a wrap-around line, but it can end at any
unused cross.

LEMMA 3. Among full matchings, the SR matching has the smallest sum
of horizontal components.

The Appendix gives a short proof.

The ground is now prepared for a proof of Theorem 1. Apart from initial
sets of crosses, the proof deals only with alternating problems; the asterisk
notation of Lemma 2 is no longer needed. The proof requires asymptotic
upper and lower bounds on the mean of HS =d; + - +d, in an SR match-
ing. Both begin by deriving a bound for a special limiting case with N — «
and n — », keeping

n=n(k,N)=|cN2%/log’* N|,

where k is a positive constant to be determined. All bounds are independent
of the configuration of initial crosses.

Lower bound. Consider n = n(k,, N) steps of the SR process with «;
unspecified for the moment. Cut the cylinder of Figure 3(a) by a vertical line
at an angle uniformly distributed around the cylinder and independent of the
N initial crosses. Then construct Figure 3(b). Define 5(x) to be the number of
matching lines that cross a vertical line at coordinate x, 0 < x < 1. Then

(4.6) E[HS] = j(;lE[n(x)] dx.

The random way that the cylinder of Figure 3(a) was cut ensures that
E[n(x)] is independent of x and of the configuration of crosses at the top of
the cylinder. Then E[7(x)] = E[n(1)] and by (4.6), E[ H5] = E[7(1)]; that is,
‘E[ H®] is the expected number of wrap-around lines.

Now remove from the SR matching all wrap-around lines, the N crosses
C? of the initial state and all lines incident to the C?. What remains is a UR
matching with an expected number of unmatched dots, E[V, ], that is at most
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the expected number E[7(1)] of removed wrap-around lines plus the number
N of initial crosses:

(4.7) E[V,] < E[n(1)] + N.

By Lemma 2, E[V,] = Q(/n log®*n), so with «, sufficiently large, the
substitution n = n(«;, N) shows that there exists a y > 1 such that E[V,] >
YN for all N sufficiently large. Then (4.7) implies that E[7%(1)] = Q(N).
Finally, the average of the d, over the n(k,, N) iterations is then

BlH] _ Eln(V)] :Q(M)

n n N

To obtain the lower bound of Theorem 1, run the SR process for at least
N? steps. Break this sequence into a large number (of order log®% N, at
least) of consecutive trials of n(k;, N) steps each. The bound just derived
applies to each trial, so the lower bound of Theorem 1 must apply to the
entire sequence.

Upper bound. Now begin with a sequence of n = n(k,, N) steps of the SR
process. The argument uses Lemma 3, which shows that the expected sum of
horizontal components in any full matching is an upper bound on- E[ H5]. An
algorithm for constructing a suitable full matching follows.

ALGORITHM A. N initial crosses and an alternating problem I, form the
input. As a preliminary step, construct a maximum UR matching M, for I,
and let U, be the number of points M, fails to match. As noted prior to
Lemma 3, M, can be found by the algorithm of Karp, Luby and Marchetti-
Spaccamela (1984). If M, leaves more than N dots unmatched, that is, if
U, > 2N, then discard M, and let the SR matching itself be the output of the
algorithm. But if U, < 2N, then extend M, to a full matching by pairing the
U, /2 unmatched dots with U, /2 of the N initial crosses in any way (this step
may introduce wrap-around lines). The resulting matching is then the output
of the algorithm.

Let H; denote the sum of horizontal components in the full matching
constructed by Algorithm A. H, is defined similarly for M,. If U, < 2N, then
H# < H, + N. The bound H? < n holds trivially, so

(4.8) E[H?] <E[H,] + N + nP(U, > 2N).

Now with n = n(k,, N) and N sufficiently large, «,.> 0 can be chosen so that
U, < 2N with probability at least 1 — n~ Vogn With B as given in Lemma 2,
a simple calculation shows that any k,, 0 < k, < V2 /B2, will do. Then
because E[ H,] = O(Vn log®/* n) by Lemma 2, (4.8) gives

E[HA] <O(Wn log¥*n) + N + n-n Vien = O(N)
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and

E[HS] E[HZ] ( log®/2 N)
< =0 .
N
Again, the proof for any number n > N2 of steps follows by breaking the

sequence of n steps into consecutive trials of length n(x,, N) and applying
the bound just derived. O

n n

APPENDIX
Proofs of Lemmas 1 and 3.

PrROOF OF LEMMA 1. The proof can be put in terms of random walks that
start at level 0 and make 2r steps z;, equally likely to be +1 or —1. Let u(k)
be the probability that such a walk ends at level 2k and suppose & > 0. The
walk has r + k positive steps and r — & negative steps, so

u(k) = (r%r"k)/zh.

All such walks ending at 2k visit level k2 at some step. Take any such walk
and reflect the part of the walk following the last visit to level k& about level
k; the reflected walk ends at level 0. The reflection principle [Feller (1957),
Section II1.2] then shows that walks starting at level 0, reaching level %2 and
ending at level 0, all in 2r steps, also have probability u(%). The conditional
probability that a walk reaches level &, given that it starts and ends at level
0, is then u(k)/u(0).

In (4.2), P(8,(n + m) > m) is the probability that a random walk, begin-
ning at level 0 and ending at level 0 after 2r = 2(n + m) steps, reaches level
k =m + 1. Then

P(s By = A5)
> = e———
( C(r) = ) u(O)
rir! r(r=1) - (r+1-k&)
S (r+R)(r—k) (r+1D)(r+2)(r+k)’
Combine the jth factors of numerator and denominator into
r+1-—j 2j—-1 2j—-1 2j—-1
—_—=1- 1- ,
r+k

< exp| —
r+j r+j r+k p(

so that

1483+ +(2k—-1) k2
r+k }—eXp_r+k )

P(8:(r)=k) < exp{—

To obtain (4.2), substitute n + m for r and m + 1 for k, with m = [Vn log n|.
Od
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PROOF OF LEMMA 3. Let MS and MY be, respectively, the SR matching
and an arbitrary, but different full matching on the same problem. Let D be
the highest dot matched to different crosses, to C in M¥ and C' in MS.
Assume without loss of generality that the line between D and C is not a
wrap-around line (a cylinder having the matching M¥ can always be cut
along a vertical so that this property holds). C’ is closer on the right of D
than C because D is the first dot where M¥ and M® disagree. Either or both
of C and C’ may be one of the initial crosses.

Change MY by pairing D with C'. If C’ is unmatched in M¥, then the
new matching is a valid full matching with a smaller sum of horizontal edge
components. On the other hand, if a dot D’ is paired with C’ in M7, then
pair D’ with C. The result is shown in Figure 5, in which D’ is to the left of
C’, between C' and C, or to the right of C. In each case, the sum of the
horizontal components has not increased.

(a) D’ toleft of C’; sum of horizontal
edge components unchanged

(c) D’ to right of C; sum
of horizontal edge
components is unchanged

(b) D’ between C’ and C;
sum of horizontal edge
components is reduced

F16. 5. Transforming a full matching. Dashed and solid lines are, respectively, new and old
lines.
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Repeating the preceding transformation at most n times converts M7 into
M? without increasing the sum of horizontal components. O

REFERENCES

COFFMAN, E. G., JR. and LUEKER, G. S. (1991). Probabilistic Analysis of Packing and Partitioning
Algorithms. Wiley, New York.

CorrMaN, E. G., Jr. and Horri, M. (1986). Queueing models of secondary storage devices.
Queueing Syst. 2 129-168.

FELLER, W. (1957). An Introduction to Probability Theory and Its Applications 1, 2nd ed. Wiley,
New York.

FRrIEDMAN, N. A. (1970). Introduction to Ergodic Theory. Van Nostrand Reinhold, New York.

FuLLER, S. H. and BASKETT, F. (1975). An analysis of drum storage units. J. Assoc. Comput.
Mach. 22 83-105.

Karp, R. M., LUBY, M. and MARCHETTI-SPACCAMELA, A. (1984). A probabilistic analysis of multidi-
mensional bin packing problems. In Proceedings of the 16th Annual ACM Symposium
on Theory of Computing 289-298, Assoc. Comput. Mach., New York.

LEIGHTON, F. T. and SHOR, P. W. (1989). Tight bounds for minimax grid matching with applica-
tions to the average-case analysis of algorithms. Combinatorica 9 161-187.

RHEE, W. T. and TALAGRAND, M. (1988). Exact bounds for the stochastic upward matching
problem. Trans. Amer. Math. Soc. 307 109-125.

SHOR, P. W. (1986). The average-case analysis of some on-line algorithms for bin packing.
Combinatorica 6 179-200.

AT & T BELL LABORATORIES
600 MOUNTAIN AVENUE
MURRAY HiLL, NEW JERSEY 07974-2070



