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STABILITY OF GENERALIZED JACKSON NETWORKS*

By S. P. MEYN AND D. DowN

University of Illinois at Urbana-Champaign

In this paper we study open generalized Jackson networks with
general arrival streams and general service time distributions. Assuming
that the arrival rate does not exceed the network capacity and that the
service times possess conditionally bounded second moments, we deduce
stability of the network by bounding the expected waiting time for a
customer entering the network. For Markovian networks we obtain con-
vergence of the total work in the system, as well as the mean queue size
and mean customer delay, to a unique finite steady state value.

1. Introduction. The study of (generalized) Jackson networks can be
traced back to their namesake [13], who considered networks with Poisson
inputs and exponential service times and showed that the invariant probabil-
ity for the process has a simple product form. Several generalizations of these
results are derived by Kelly [15]. The foregoing assumptions on the arrival
streams and service times were made to greatly simplify the analysis of these
networks. The relaxing of these assumptions was the subject of the work by
Borovkov [4], where a model similar to our Markovian network is considered.
The finite buffer case is treated in Konstantopoulos and Walrand [18], and
general point process arrival streams and general service processes are
considered for networks without feedback [17]. Ergodicity for closed general-
ized Jackson networks is treated by Kaspi and Mandelbaum [14].

Cruz [5, 6] has performed an analysis of deterministic multiclass networks,
but in the analysis there is difficulty handling feedback of customers within
the network, a situation that we will address. Also in a deterministic set-
ting are the results of Kumar and co-workers [20, 22, 30] that consider the
stability properties of general multiclass networks.

Sigman considers open queueing networks [32]. This work has brought
forth several ideas that have proved important in the methods of analysis
contained in this paper.

In this paper we devise a stability proof based upon induction on the
number of nodes in the network. This simplifies the analysis of multinode
networks, and the test function approach used eliminates the need to search
for the existence of a regeneration time [2] or a suitable “small subset” of the
state space [27, 29]. From this proof we obtain mean boundedness of
the queue lengths and under slightly stronger conditions we show that the

, Received November 1991; revised May 1993.

IISupported in part by University of Illinois Research Board Grant 1-2-69637.

AMS 1991 subject classifications. 68M20, 60J10.

Key words and phrases. Queueing networks, Harris recurrence, general state space Markov
processes.

124

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Applied Probability . EE@IS

%9

]
5%

A

®

www.jstor.org



STABILITY OF GENERALIZED JACKSON NETWORKS 125

expectation of the queue lengths, customer delay and total work converge to
finite steady state values. Some of the results reported here were previously
published in abridged form [24]. The general form of the test function that we
use is suggested in Kingman [16], where quadratic functions are used to
characterize ergodicity of random walks on an orthant. Quadratic functions
have recently been used to obtain performance bounds [31] and conditions for
stability [19] for general exponential queueing networks.

The organization of the paper is as follows. The first part of Section 2
contains a complete analysis of the single queue network. This is the basis for
the rest of the section, in which an inductive argument is used for a network
of queues. We show that the delay expected by a customer entering the
network is bounded, the results being obtained for non-Markovian networks
for which the interarrival times are not necessarily independent and identi-
cally distributed (i.i.d.). Section 3 considers arrival streams that are renewal
processes, in which case we model the system as a continuous time parameter
Markov process. Recent work by Meyn and Tweedie [25, 26, 28] is used to
obtain Harris ergodicity for the network, as well as mean boundedness of
WIP (work in progress) and queue size.

2. Stability of open Jackson networks.

2.1. The single queue. We begin with the simplest case, a single queue. In
this situation, we have customers arriving at the system with local rate y
and, after waiting for service, they are processed by a server with service rate
u. Upon completing service, a customer leaves the system with probability
ro > 0, and reenters the queue with probability 1 — ry.

The load condition that must be satisfied in this case is clearly

(1) p=—<1,
m

where A = y/r,.

Let @, == (gz), s € R, , where, at time s, @, denotes the queue length, not
including the customer in service, and B, is the time the current customer
has been in service. We let N, denote the number of exogenous arrivals that
occur in the interval (0, ¢], and %, denote a given filtration that is richer than
o{N,,®,: r < s} and for which all of the service times and routing initiated at
a time greater than s are independent of .

The following standing assumptions will be made concerning the arrival
stream and the system.

AssUMPTION Al. There exist deterministic constants v and L such that

E[N,,, -N,|Z] <vyt+L, s,teR,.
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AssUMPTION A2. The arrival stream, service times and customer routing
are mutually independent. The service times are ii.d. with common mean
1/p and finite second moment.

Assumption Al describes precisely how the local rate of customers to the
system is bounded by y. For a renewal process with mean interarrival time
v~1, it follows from the strong Markov property and ergodicity of the forward
process that Al is satisfied (cf. [2]). Previous papers [5, 6, 22] assume a
deterministic version of Al without a conditional expectation.

It is important to note here that Al is called the local rate of arrival
because it rules out the phenomenon of a “large” number of arrivals occurring
in small intervals of time. This is as opposed to infinite time horizon or
long-term formulations of rate such as

N(t)

(2) lim sup

t—o

An example will serve to illustrate the consequences of considering Al as a
definition of arrival rate.

Consider a single server with service times deterministic of length 2. The
arrival sequence is described by a regenerative sequence of interarrival times
T(n), where a cycle is defined as follows: Let N be a nonnegative integer-
valued random variable with finite first moment and infinite second moment.
There are N + 1 arrivals during a cycle. Now, for j =1,..., N, T(j) = 1 and
‘T(N + 1) = N + 3. The work load is a positive recurrent regenerative pro-
cess, because the long-term arrival rate as defined by (2) is less than the
service rate. This is a result of the last interarrival time within the cycle
being so large as to empty the system. However, the average delay in the
system is infinite, as demonstrated in the following calculation. For a regen-
erative cycle, define D(n) as the delay in queue of arrival n. It is easy to see
that for j = 1,..., N, D(j) =j and D(N + 1) = 0. Thus the average delay is
given by E[ N(N + 1)/2]/E[ N1, which is infinite. This arrival process satis-
fies Al, but with y = 1, which of course is not small enough for our purposes.

Assumption A2 may be generalized somewhat; for instance, the condition
that the service times are i.i.d. can be substantially relaxed. We do not
consider this more general framework in this paper.

Our goal is to bound the mean waiting time for a customer entering
service, which is closely related to the total work in the system, measured
in units of time. This objective forces us to assume that the service times
possess bounded second moments. If this condition is violated, then the
expected queue size in steady state may be infinite, so we cannot expect to
obtain uniform bounds on the expected work in the system in this case (cf. [2],
Theorem 2.1, page 184).

We denote the total work in the system at time ¢ by W,, which is the total
amount of service time that the customers that are in the queue at time ¢ will
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receive. We note that E[W,] is equal to the expected amount of time required
for the system to empty from time ¢, given that no new arrivals occur.

The main result of this section shows that our conditions imply that the
network is stable in the mean. In the next subsection, this result is general-
ized to multidimensional networks by induction on the number of nodes in
the system.

THEOREM 2.1. If Assumptions A1 and A2 hold, and if the load condition
(1) is satisfied, then there exist constants T, b < , that are independent of the
initial condition of the network, such that

1 1 7 9
Efo E[Ws]dssb+Ef0 E[W?]ds, ReR,.
In particular,

1
lim sup EIRE[WS] ds < b.
0

Row

The proof is postponed to the end of this subsection.
Over the time interval (s, ¢] we define the total change in work W, — W,
and the total work to enter the system (), , by

R;
(3) Wt_Ws=Qs,t_Ts,t’ Qs,t= Z Zsj,k’
N,<j<N, k=1

where R; is the number of times that customer j revisits the system, T, , is
the amount of time that the system is busy in [s, ¢] and the service times
{8, ;} are ii.d. with common mean 1/u.

We may arrive at a bound on the work arriving at the system, similar to
our assumption on the arrival stream, using Assumptions Al and A2:

(4) E[Q, 7] < %(t—s) +L=p(t—s)+L,

where L = L/ p.
We may now state and prove the following negative drift property for the
expected work in the queue: .

LEMMA 2.2. There exist constants T and b, independent of s € R, such
that for all initial buffer levels @, and residual service times Y,

1 7
E[?fo Witdtlz] < E[Wllz] - E[W|7] + .
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ProOF. From (3) we have
E[W,s%—t"gs-] = E[(W,s + Qs,s+t - Ts,s+t)2

7]

- E[w2%] + E[(Q, ,.) %] + E[T2,. |7]
+ 2E[W,Q, .. |7] - 2E[W,T, .. |F]
—2E[Q /T, o4 i|F]

< E[w2|7] + 2E[W,|%](pt + L)
—2E[W,T, ., |%] + O(t?),

where the term O(t?) is deterministic and does not depend on s.

Ignoring the work that arrives from outside the network in (s, s + t] gives
the bound E[W,T, ,, 7] > E[W(W, A t)|F,] > tE[W,|F] — ¢2, where the sec-
ond inequality follows from applying the bound

x(xAT) 2T -T2,
valid for any x,T > 0. The inequality (5) then gives
E[W.2 |%] < E[W2|7] + 2( ot + D)E[W,15]
- 2tE[W,|7]] + O(¢?).
Integrating both sides over ¢ we obtain the result. O

(5)

(6)

For stability we apply the following result:

LEMMA 2.3. Let ag, b,, s € R,, be positive finite-valued measurable func-

s? 8’

tions on R_. If for some fixed B > 0, T > 0,
1 .7
(7) Tfoasﬂdtsas—bs+3, seR,,
then for all R > 0,
1 g 1 7
Ef() btdtSB-l'Eantdt.

PrOOF. Let R > 0 and average (7) over s to obtain

é—f:asds - %jjbsds +B> Elf]oT{foRamds} dt

- RIT]OT{]ORas ds ~ ['a,ds + [RR”as ds} dt

1 r 1 7
ZEOasd ——Ej;)asds.

Cancelling and rearranging terms gives the result. O

We conclude this section with the proof of Theorem 2.1.
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ProOF OF THEOREM 2.1. The result follows immediately from Lemmas 2.2
and 2.3 on taking a, = E[W?], b, = E[W,]. O

We remark that in the single queue case, the average over T is not
necessary. Equation (6) is stronger than Foster’s criterion and may be shown
to imply Theorem 2.1 directly (see [21, 27]). The reason for taking this step
is that, since this step is necessary in our stability proof for networks, it is
convenient to illustrate the technique first on this simple model.

2.2. Networks of queues. We now consider networks composed of a collec-
tion of d queues. Customers arrive in d separate arrival streams, one for
each node in the network. A customer waits in its node of arrival until it can
obtain service, and is then routed to another buffer in the network under a
random routing policy. This procedure repeats itself until the customer leaves
the network.

The required service time at queue i € I == {1,..., d} has a general distri-
bution with mean 1/pu;, and customers arrive to node i from outside the
network at local rate v;.

Whenever a job has completed service at queue i, it is routed to queue j
with probability r;; and leaves the system with probability r;,. The network
is assumed open, that is, every job entering the system may leave the system
with positive probability and will be called a (generalized) Jackson network.

Let @, denote the vector whose components indicate the queue lengths (not
including the customers that may be in service) of the buffers in the system
and let the vector B, denote the times that the current customers have been
in service (set to zero if the server is free) at time ¢. The stochastic process

P, = g: , t € R,, is thus seen to evolve on X = Z¢ X R<.

Let N,(i) denote the number of exogenous arrivals that occur in the
interval (0, ¢] at node i and let Y,(i) be the residual service time at node i (set
to zero if the server is free). Let (£.) be a filtration for which the stochastic
process {®,} is (,)-adapted and for which all of the service times and routing
initiated at a time greater than r are independent of #,. We also require
E[Y,(D)IZ] = E[Y, (D) B,(D)].

Our conditions on the network are made precise in the following assump-
tions:

AssuMPTION B1l. For each i €1, there exist deterministic constants vy,
and L, such that

E[N..()) —N,()|Z] < vt + L,  s,tER,.
AssuMPTION B2. The arrival streams, service times and customer routing

are mutually independent. The service times at each node are ii.d. with
common mean 1/u,.



130 S. MEYN AND D. DOWN

AssuMPTION B3. The network is open: Any customer entering the network
may leave it.

AssuMPTION B4. At each node i € I we have for a generic service time
S,(D),
E[S.(i) —¢|Si(i) >¢] <S8, ¢=0,

where S is a deterministic constant.

As noted before, Assumption Bl is easily verified if we specialize our
arrival processes to be renewal processes.

Through condition B4, we have imposed stronger conditions on the service
times. This is to avoid a situation known as blocking. In our proof, we will
consider the case when the state of the system is “large” and prove a drift
condition for the network. We will see that if at one node the residual service
time is large, then work at that node will decrease but the rest of the network
may be starved for work.

It may be shown that Assumption B4 is equivalent to condition (1) of
Borovkov [4]. Indeed, the calculation on page 414 of [4] implies that under
B4, or condition (1) of [4], there exist constants E, 8, independent of ¢ € R,
such that

E[exp(8(Sy(i) — ))|S:(i) > ¢] <E.

This bound together with the assumptions on the o-algebra &, imply that we
also have the following bound for the residual service times:

Elexp(8Y,(i))|%] = E[exp(8(S,(i) — t))[Sy(i) > ¢] (¢ = B,(i))

<E, i€l s>0.
Let {A;} denote the constants defined by the traffic equations
=Yt ) Ajrj;.
Jjel

When the system is stable, the local rate at which customers arrive at the ith
queue is equal to A;. The load condition that we will now assume to be
satisfied is

(8) o; :=£<1 for each i € I.
M
In a similar manner as for the single queue, W,(i) is defined as the total
service time that node i will use to service all of the customers that are in the
system at time ¢. We stress that this quantity includes the time that node i
* will spend servicing a customer that is at a different node at time ¢, but will
eventually arrive at node i. The total work in the system at time ¢ is given by

W, = Z W.(2).

iel
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The main result of this section is the following generalization of Theorem
2.1. This follows directly from the drift property obtained in Lemma 2.5.

THEOREM 2.4. If Assumptions B1-B4 hold and if the load condition (8) is
satisfied, then there exist constants T,b < «, that are independent of the
initial condition of the network, such that

1 g 1 7 5
Efo E[Ws]dssb+Ef0 E[W?]ds, ReR,.
In particular,

lim sup — f E[W.] ds <b.
Row

In Section 3 we will show that when the input to the system is a
spread-out renewal process, the expectation E[ W,] converges to a finite steady
state value. Hence, in this case the average over s € R, is not necessary.

The following functions on X will play the role of Lyapunov functions in our
stability proof:

d
Va(®) = L E[W,(i)|7]",
i=1
(9) 4
Vi(®) = L E[W()|7].
im
Because future service times and customer routing are assumed independent
of &, it is easy to see, by Assumption B2, that V; and V, are well defined
functions on X.
Let le (1) denote the work arriving from arrival stream [, in the time
interval (s t], to be completed by node i. This quantity may be written
explicitly as

R

0.0 = X XS,

N(D<j<NQ) k=1

where N,(!) is the number of arrivals from the /th stream in (0, s], the
service times {S} ,(i)} at node i are ii.d. random variables with mean 1/,
and Rl(z) denotes the number of times that the.jth customer from arrival
stream { visits node i.
We let Q, ,(i) denote the total work that is destined for node Z, arriving in
the time interval (s, ¢]:

Q,,.(1) = E 05,.(8).
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We may write a bound similar to (4) for the total expected work arriving to
the system in the time interval (s, ], to be completed by node i:

(10) E[Q, .())|%] < p(t —5) + L,

where L, =L;/p,. This bound follows from our assumptions on (%),
Assumptions B1 and B2 and the traffic equations.

We find that centering the random variable V,(®,, ,) simplifies the analy-
sis, allowing us to examine a simpler term than V,(®, ) itself. The centering
is as follows:

E[Vy(®,,)|5]
(11) = E[(E[Ws+t|'7s+t] - E[Ws‘+t|'7s] + E[W,s+t|'7s])2

7]

- E[(E[Ws“|.9§+,] — E[W,, |#])*

7| + ElW,. |7]"

By Assumpéions B1 and B2, the first term on the right-hand side of (11) is
O(t?), so we need analyze only the second term, for which it is easy to obtain
a drift.

The following result together with Lemma 2.3 and Jensen’s inequality
immediately gives Theorem 2.4.

LEMMA 2.5. Suppose that conditions B1-B4 and the load condition (8)
are satisfied. Then there exist constants T and b, which depend only on the
service time distributions, the constants (X;) and (L,), the routing and
topology of the network, and, in particular, are independent of s € R, such
that for all initial buffer levels and residual service times,

(12) E[lfTVZ(cpm) dthz;] < V(D) — Vi(®,) + b a.s.
Ty

An inductive proof of this result comprises the remainder of this section.

Applying a centering argument, as in (11), and Jensen’s inequality to the
bound obtained in Lemma 2.2 we see that (12) holds in the single node case.
For the general d-node case we will isolate a single node, which we will take
as node 1, whose buffer is essentially “full.” For this node, a drift property of
the form (12) has essentially been established in Lemma 2.2. For the remain-
der of the network, we view the output of node 1 as an exogenous input. Up
until the first time that node 1 is empty, this fictitious input supplies an
adequate amount of work to the remainder of the network. By induction, the
(d — 1) node network processes work at the rate it arrives. We will show that
this reasoning leads to (12).

The corollary to Proposition 2.6 justifies the notion that queue 1 supplies
‘an adequate amount of work to the remainder of the network, and Lemma 2.7
shows that a stable network completes work at the rate it arrives.

Consider a duplicate of the network under study here with state process @,
and busy time Ty, :» t € R,. We assume that the two networks are identical,
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except that Q,(7) > Q,(j), j € I. Specifically, in each network, the jth cus-
tomer to arrive at node i will require the same amount of service and upon
completion of service, will be routed to the same machine.

PROPOSITION 2.6. The busy times for the two networks are related by
T, (i) = Tg (i) a.s.

Proor. We first note that the problem is a deterministic one, as we fix
common sample paths for the service times, arrival processes and customer
routing. '

Let t, denote the kth instant at which a service is completed in either the
new or the original network. The variables ¢,(i) and /(i) are the times of the
Jth service completion at node i for the original and new networks, respec-
tively. We are also concerned with the number of arrivals to a specific node
by time ¢, which we define to be the total number of customers that are in
queue or in service at time #, plus those that have already been serviced by
time ¢. The proof will be by induction, with the following induction hypothesis:

At time ¢, for all i € I:

(a) For each j, ¢;(i) < ¢j(i) when ¢,(i), t;(i) < t,.
(b) {Number of arrivals to node i in [0,¢,] for the original network} >
{number of arrivals to node i in [0, £,] for the new network}.

Once we perform the proof of this hypothesis, the proposition follows easily.

Consider & = 1. The result (a) is true because the first service completion
will be due to either a customer with positive residual service time or a
customer arriving from outside the system to an empty queue. The result (b)
follows from (a), the fact that the outside arrival streams are identical for
both networks, and the assumption on the initial queue sizes.

We will now assume the result for 1 <j < k& and show that it is true for
k + 1. There are two cases to be examined here. Fix attention to a single node
jelL

If a service is completed at node j at time ¢, ; in the original network, the
result (a) is clear. For the result (b), we see that it holds from (a) that the
outside arrival streams are identical for both networks and that we have
fixed a common sample path for customer routing in both networks.

If a service is completed at ¢, ; for the /th customer serviced at node j in
the new network, then we have (a), as if we look back to when the Ith
customer arrived to the queue, we can conclude that as outside arrivals occur
at identical times and as (by the induction hypothesis) arrivals from within
the network occur earlier in the original network, the [th arrival occurs
earlier in the original network, implying (a). As before, the result (b) is then
obvious. O .

Proposition 2.6 also yields the following related result. Analogous to the
construction for Proposition 2.6, we consider a duplicate of the network under
study with state process ®; and busy time T¢',, t € R,. We assume that the
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two networks are identical, except that N*(j) = N,(j) + AN,(j) and Q}(j) =
Qo)) + AQy()), 1 <j < d, where AQ,(j) > 0 and AN,(}) is increasing, j € I.

COROLLARY. The busy times for the two networks are related by T¢ (i) >
T, G),iel t>0.

PrOOF. Create a (fictitious) queue with buffer levels @,(d + 1) and
Q¥(d + 1) in the original and new networks, respectively. Assume that @}
(d + 1) = © and that service times and routing from node d + 1 are such
that parts are released and routed to account for the differences in arrival
streams [i.e., n parts are released from the fictitious queue and routed to
queue j every time AN,-(j) — AN,(j) = n]. If we also assume that @,
(d +1) =0, t > 0, then Proposition 2.6 yields the required result. O

We now show how (12) may be used to bound the average work done in a
given time interval:

LEMMA 2.7. If the conclusions of Lemma 2.5 hold, then there exists a
deterministic constant C = C(b,T') such that

1 g ) 1 g )
E[Efo T, .(2)dt 'gs] = E[Efo O, o4,(7) di 3‘2} -C,

R,seR,,iel

ProoOF. Define T, (i) to be the busy time on [s, s + ¢] when the queue
lengths Q.(j), 1 <j <d, are reduced to zero and all other properties of
the network are held constant. Define W% (i) in a similar manner. Using
Proposition 2.6 we have

Ts,s+t(i) = T's?s-#t(i)'
Since we search for a lower bound on T ,.,, we may work with T, (i)
and W', ,(i) in the proof.
In this case we have
ng—t(l) >4 Qs,s+t(i) - Trs(?s+t(i)
and hence by (12),
1 g . . 1 .7 PR
Ej;) E[Qs,s+t(l) - Ts?s«i—t(l)l'gs] dt <b + ig] E/;) E[qurt(l’)|‘qs—] dt.
The quantity E[(W). (i)IZ,]* is bounded by E[(Q, .G + Y,(i) + DIF]%,
t < T, which is uniformly bounded in s € R, by Assumptions B1, B2 and B4,

so the bound above implies the result. O

ProoOF OoF LEMMA 2.5. We proceed with this proof by induction on d, the
number of nodes in the network. For notational simplicity, we assume that
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s = 0, as we have assumed that the upper bound on the local arrival stream
rate is not dependent on the initial time s.

From the remarks following Lemma 2.5 we see that the lemma is true for
d = 1. We will assume the result for a network with (d — 1) nodes and show
that the result is true for a network with d nodes.

Set

A,={xeXix;<kfori<d}, keZ,.

Hence when &, € A,, each buffer contains no more than % customers. In our
proof we will frequently consider the process when &, € A. Under this
condition we will assume without loss of generality that @,(1) = max; @,().
We may relabel the nodes in the system if this is not the case. Hence
throughout the proof we assume that @,(1), the buffer length at node 1, is
greater than or equal to 2 whenever &, € Aj.

We see from B2, B3 and B4 that there are constants ¢; and ¢, such that

E[Wo(1)|F0] = ¢1@Qq(1),
Qo(1) = cy(Vi(Py) — dS¥),

where S* is equal to S times an upper bound for the expected number of
nodes a customer visits.

We will let & denote the class of continuous positive functions on R,.
Functions in E are assumed deterministic, but may depend on deterministic
properties of the network such as the service time distributions, or y; and L,.
We let ¢ denote a generic element of =, whose precise definition may differ at
each appearance.

Under these conventions, and the assumptions of the lemma, we may
obtain a downward drift for the work at the first node as follows: In a manner
similar to the single queue case we may write

(13)

E[W.(1)[5]" < E[Wo(1)|70]” + 2E[Wo(1)|70] ( pat +Ly)

(14)
— 2E[Wo (D[] E[To,(1)|55] + £(2).

By ignoring the time that queue 1 is busy servicing customers that arrive to
node 1 in [0, ¢], we may make the estimate

E[To,(D)]5] = E[(Wo(1) A t)]57],

where Wo(l) is the work to be done by node 1 on customers that are waiting
at queue 1 at time 0, not including any work done on a subsequent visit. More
specifically, Wy(1) = Y,(1) + 2P S,, where S, are generic i.i.d. service times
.at node 1. 3

Thus we may find &, sufficiently large so that EfW,(1) A ¢t|F] > (1 - 1A -
p1)/2)t for @, € Aj . The constant &, depends only on ¢ and the service time
distribution.
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This and (14) give the bound
E[W.(1)|%]” < E[Wo(1)|5]° + 2E[Wo(1)|7] (o1t + Ly)

(15)
(1 + p)E[Wy(1)|55] + £(2)

for all , € A5, .
Examining any i € {2,..., d} we find that
E[W,(i)|55]° < E[W,(0)5]" + 2E[W,(0) 5] E[Q0,(3)|55)
— 2E[T,, ,(8) |F] E[Wo(2) |Fo] + &(2).

Now, if we average both sides over ¢, we see that

(16)

1 2
_fffOTE[Wt(i)lgrO] dt
(17) < E[Wo(i)|55]” + 2E[Wo (i) | 7]

1
X [ (E[90, ()15 ~ ELTo, ()] it + £(T).

We now use the induction hypothesis to bound

1
7 (El20,(D7] ~ E[To, ()573]) .

Consider a network possessing (d — 1) nodes labeled (2,3,...,d). Cus-
tomers arrive at local rate y; from the external arrival streams and, from
an independent source, customers enter at local rate A; and enter the ith
queue with probability r;;, i > 2, and are removed from the network with
‘probability r,; + ryo.

The traffic equations for this system are

d
(18) Np= Y N+ Mry; +y,  2<i<d.
j=2
These are in fact the traffic equations for the original system, so
(19) X, = A, 2<i=<d.
Hence, by induction, this system is stable in the sense of Theorem 2.4.

We now return to the original system, concentrating on nodes {(2,..., d}.
The main idea of the proof is that for a fixed time horizon [0, T'], if &, is large
and &, € Aj , then from nodes 2 — d we obtain the (d — 1) node network
described previously, but with the local rate A,r,; increased to w,r;;. From
nodes 2 — d we construct a specific realization of the (d — 1) node network
described previously, which we will call the slow subsystem. We consider the
subsystem consisting of nodes 2 — d as the corresponding fast subsystem,
whose total local input rate at node i is y; + pury;, 2 <i < d.

Consider the network consisting of nodes 2 — d with the output of node 1
considered as an input. Any customer exiting nodes 2 — d and entering the
queue at node 1 will be considered an exiting customer by this network,
which will be henceforth called the fast subsystem. We will reduce the output
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of node 1 to obtain an analogous slow subsystem as follows: Each time a
customer completes service at node 1 a weighted coin is tossed, which is
independent of the network and previous coin experiments, with probability
of tails equal to p;. When a “head” is obtained, this customer is removed from
the system. If a “tail” is obtained, then this customer is routed to another
queue or exits the system as if the coin tossing experiment did not take place.

By B4 there exists a constant L, such that for each T' € R, there exists
ko = ko(T) € E so large that for ®, € A5 and 2 <i <d,

N -1 £ # customers routed from node 1 to node :
(20) 171t ~ Bo < Bl ip the time interval (0, ¢] |.%

< M7yt + Ly, 0<t<T.

If node 1 never empties, then the slow subsystem satisfies the conditions of
Theorem 2.4 and the traffic equations for the subsystem are given as in (18).
Let Q%" denote the work entering the slow subsystem during the time
interval (0, ¢], where the limited output stream from node 1 is considered an
exogenous input. The lower bound in (20) implies that for some c; > 0,

(21)  E[Q3%(i)|F] = E[Q (D)|F] —¢5, 0<t<T,2<i<d,
for &, € A3, .

We now apply the induction hypothesis: We see from (18) that the slow
subsystem satisfies the conditions of Theorem 2.4. Letting TS}?w(i) denote the

busy time at node i for the slow subsystem, we may conclude by induction
and Lemma 2.7 that

T

where ¢, < « and is independent of T

The corollary to Proposition 2.6 allows us to remove the limits on the
output from node 1: From this corollary, the foregoing bound and (21) we
have

1 1
E[TfOTTOS}‘;W(i) dtl%] > E[—fOTQ%""tW(i) dtl%] —c,, 2<i<d,

1 .7 .
E[; [ To,.(3) dtl%]
0
(22) 1 p
zE[—[ QOt(i)dtI%] —cy—c,, 2<i<d,
T /o !

for @, € A} .
Applying (22) to (17) we see that for some constant cj,

d 1 T 2 d 2
L [ EW@)I5]" dt < T E[Wo()|]
i=2 = 70 . i=2
(23) p

+ e X E[Wo(0)|] + &(T)

i=2
c
for ®, € Aj .
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We are finally ready to examine the network as a whole. From (11) we
have

d
E[Va(@)[7] = L EW()I7]" + £(1).

Combining (15), which exhibits the drift property for the work at node 1, and
the bound (23) obtained for the remaining (d — 1) nodes gives

1 .7 d 1 .7 . 2
E[; fo %(d%)dtl%} =X E[f fo M(z)dtl%] dt + £(T)

< Vi) ~ 5(1 - p) TE[Wy(1)|57]
+ LE[Wo(1)|7]
+ c5i;i2E[W0(i)|93] + ¢(T).
Applying (13), we see that

1 7 1
E[ﬂo Va(®0) dtl%] < Va(®o) = erea(1 = p) TVY(®o)
+(2Z1 +c5 +cy dS*)Vl((DO) + &(T).

This result only holds for ®, € A , where k, = £,(T') < . However, since
El(1/T)[§ V(@) dtlF] = O(T?) for @, € A, , we may generalize this bound
to all initial conditions, and we thereby obtain the result for sufficiently
large T. O

3. Markovian networks. In this section we construct a Markovian
state process for the network and apply recent results from the theory of
continuous time Markov processes to obtain ergodicity for the state process,
and hence also convergence of the mean value of most of the variables of
interest for the network.

We begin with a brief review of the general results that will be needed to
prove our main results.

3.1. Continuous components and Harris ergodicity. We present here
some restricted versions of previous results [25, 26; 28]. These results will
be applied in the following text to refine our stability theorem for Jackson

networks. .
" Suppose that ¥ is a strong Markov process whose sample paths are right
continuous. We assume that the process evolves on a locally compact and
separable state space Y, with Borel o-field %(Y), and that the process ¥ is
temporally homogeneous (see [11]).
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The Markov process ¥ is called Harris recurrent if there exists a probabil-
ity ¢ such that the following implication holds:

(24) ¢{A} >0 =P {Venters A} =1, yeV.

That is, the process visits any set A of positive ¢-measure with probability 1.

If the process satisfies the criterion (24), then it is also Harris recurrent in
the sense of [3], so that the following formally stronger condition holds: For a
probability » on Y,

v{ A} >0=>Py{f°°|]{‘lfs'eA}ds=0°} =1, yeY.
0

Hence by a theorem in [3] (see also [11]), a Harris recurrent Markov process
possesses a unique, up to scalar multiples, o-finite invariant measure 7. If
the invariant measure is in fact finite, then we normalize it to be an invariant
probability. In this case, ¥ is called positive Harris recurrent.

Let 6° denote the shift operator on sample space, defined so that
0°f(,) =f(¥,,,), t € R,. For a random variable Z on the sample space,
we define Z, = 9°Z. If ¥ is positive Harris recurrent, then the process {Z,} is
strictly stationary when ¥, ~ .

Harris recurrent Markov processes enjoy a number of important ergodic
properties, the most general of which is illustrated in the following theorem.

THEOREM 3.1. If V¥ is positive Harris recurrent with invariant probability
@, then for each initial condition y € Y and any positive random variable Z
on the sample space,

. 1.7
lim Tfo Z,ds=E,[Z] a.s.[P)].

T—

A kernel T is called a continuous component of a function K: (Y, &(Y)) —
R, if:
1. For A € &(Y), the function T'(:, A) is lower semicontinuous.
2. For all y € Y and A € %(Y), the measure T(y, - ) satisfies

K(y,A)>T(y,A).
The continuous component T is called nontrivial at y if T(y,Y) > 0.

Suppose that a is a distribution function on R, and define the Markov
transition function K, as

(25) K, = [P'da(t),

where (P': ¢t € R,) denotes the processes’ transition semigroup. If a is the
increment distribution of the undelayed renewal process {t,}, then K, is
the transition function for the Markov chain {¥,: k € Z_}.

We will be concerned here with continuous components of the Markov
transition function K, as defined in (25). A process will be called a T-process
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if for some distribution a, the K, -chain admits a continuous component 7'
that is nontrivial for all y € Y. It is shown in [28] that a diffusion process is
a T-process if its generator is hypoelliptic. We show in the succeeding text
that the network under study in this paper is a T-process if the arrival
stream satisfies certain regularity conditions.

A crucial property of T-processes is that they allow a close connection
between Harris ergodicity and tightness of the distributions of a Markov
process. We call the process ¥ bounded in probability on average (cf. [23]) if
for all y € Y and & > 0, there exists a compact set C C Y such that

1
lim sup ?fTPy{\Ifs € Cds < e.
0

T — o0

This condition is implied by tightness for the family of probabilities

{%fOTPt(y,~)dt:T> o}

for each fixed y €Y.

It is shown [26] that boundedness in probability is equivalent to a general-
ization of positive Harris recurrence for a T-process. To obtain Harris recur-
rence, the following solidarity property for the process is necessary. A state
y* is called reachable if [§ P'(y,0)dt > 0 for every open set O containing y*
and every y € Y. If ®@ is Harris recurrent, then the set of all reachable states
is equal to the support of the invariant measure for the process.

The process V¥ is called ergodic if there exists an invariant probability =
such that for every y €,

lim || P!(y, ) — = = 0.
t—> o

THEOREM 3.2. Suppose that V is a T-process that possesses a reachable
state. Then:

(@) ¥ is bounded in probability on average if and only if ¥ is positive
Harris recurrent.

(i1) Suppose that V¥ is bounded in probability on average and that for
a lattice distribution a, the kernel K, possesses an everywhere nontrivial
continuous component. Then ¥ is ergodic.

ProOF. Result (i) follows from the Doeblin decomposition [34, 26] and the
observation that the closure of distinct Harris sets is disjoint for a T-process.
, Theorem 7.1 of [26] establishes the limit theorem for all initial conditions. O

'Under the conditions of Theorem 3.2 the expectation of bounded functions
of the process converge to a steady state value for all initial conditions. To
generalize this result to unbounded functions we need the concept of the
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f-norm | ull;. For any positive measurable function f> 1 and any signed
measure u on FH(X) we write

Il = sup | u(g)l.
lgl<f
Note that the total variation norm || ull is || ulls in the special case where
f = 1. We call ¥ f-ergodic if:

1. V¥ is ergodic with invariant probability .
2. [fdm < o, .
3. For each initial condition y €Y,

tim | P/(5,) = 7l= .

The following result is taken from [26].

THEOREM 3.3. Suppose that for a lattice distribution a, the kernel K,
possesses an everywhere nontrivial continuous component, and suppose that a
reachable state exists. Let f: Y — [1,©) satisfy for constants 6 > 0, c5 < ®,

Pf<csf, 0<s<3é.
Suppose that A is compact, t > 0, and that the expectation

t+ 0,
(26) Ey[ [0 ds]
is everywhere finite and uniformly bounded for y € A. Then ¥V is f-ergodic.

The quantity ¢ + 67, is equal to the first time s > ¢ that the process
enters the set A. The event may not occur, in which case we set ¢ + 0’7y = .
A simple method for estimating the expectation (26), based upon the drift
property for the network obtained in Lemma 2.5, is illustrated in the next
section. An analogous technique based upon the infinitesimal generator for
the process is developed in [28].

We now show how all of these results may be applied to the process under
study in this paper.

3.2. Markovian Jackson networks. Here we prove what is perhaps the
most important result of the paper. First we construct a Markovian state
process ¥ for the network, and then we proceed to establish the conditions of
Theorem 3.3. '

Suppose that N(s) is a counting process for a delayed renewal process,
with deterministic delay F, € R,. We let ¢, denote the kth jump of N(s),

'k > 1, which are also the times at which an arrival to the network occurs.
Suppose that there exists a separate, Bernoulli routing policy that is indepen-
dent of N(s) and independent of the routing in the network and the ser-
vice times, such that at time ¢t,, a single customer is routed to node i with
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probability p;. We let I, denote the node that is chosen at time ¢, and let
{N;(s): i € I} denote the resulting arrival streams.

We define ¥, = ;‘), t € R,, where {F,} denotes the forward process for the

renewal process. Under the conditions of this section, the process ¥ serves as
a Markovian state process for the network:

LEMMA 3.4. The stochastic process V is a temporally homogeneous, strong
Markov process with right continuous sample paths, whose state space Y is
equal to X X R,.

The proof essentially follows the proof of Proposition 1.5, page 108 of [2], or
see [7, 8].

For k > 2 we define v, = ¢, — ¢, _,. The random variables {v,: £ > 2} are
iid., with common distribution denoted v. We let y~! denote the common
mean of v,, which we assume is finite. Under this condition the forward
process itself is bounded in probability on average and possesses a unique
invariant probability (see page 142 of [2]).

For i €1, let v, = p,y. We let

.gs:= O'{CD,.,F,,FkIrSS,tk SS}.

Applying Theorem 2.4(iii) on page 113 of [2] we see that these arrival
streams satisfy the assumptions introduced in Section 2:

LEMMA 8.5. The arrival streams constructed in this section satisfy for all s,
tand i,

E[N:(s +¢) = N(s)|F] < vt +C,
where C; is a deterministic constant.

This combined with Theorem 2.4 and the stability properties of the forward
process immediately imply the following lemma.

LEMMA 3.6. If the load condition (8) holds for the Markovian network,
then the process ¥V is bounded in probability on average.

By strengthening slightly the assumptions on the arrival stream we can
construct a continuous component, which will allow us to say far more.
Suppose that the interarrival distribution v is not supported on a bounded
subset of R, and that v is spread out. These conditions are listed here:

The distribution » is unbounded, so that v{{L,x)} >0
for all L >0, and for some k, > 2, the (¥, — 1)-fold con-
volution »*o~1" ig nonsingular with respect to Lebesgue
measure.

(27)
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It is well known that the spread-out condition is equivalent to Harris
ergodicity of the forward process (cf. Corollary 1.5, page 142 of [2], or [1].
Under this condition we may construct a continuous component for the
process:

LEMMA 3.7. If the interarrival distribution satisfies (27), then for a lattice
distribution a, the kernel K, possesses an everywhere nontrivial continuous
component, and the state 0 € Y is reachable for the Markov process V.

The proof of Lemma 3.7 is included in the following text.
Using Lemma 3.7 and Lemma 2.5 we may prove the following ergodic
theorem for Jackson networks:

THEOREM 3.8. If the load condition (8) holds for the network, and if the
interarrival distribution satisfies (27), then 'V is f-ergodic, with f(¥) = f(?) =
1 + V(®). In particular, we have

tling; E,[Q.(1)] = E.[Qo(¥)],

1o : :
lim 7 [E,[@(0)] df = E,[Q(D)] a.s.
for every initial condition y € Y.

Sigman [32] also obtains Harris ergodicity for Markovian networks where
the analysis is largely restricted to the two node case. The generality of the
assumptions and proof technique of [32] rule out the possibility of obtaining
bounds on the expected work in the system.

Borovkov [4] also obtains Harris ergodicity for generalized Jackson net-
works. However, there is a difficulty with this work in that hypothesized
arrival rates of customers to each node in the network are employed before
any stability result has been established.

The proof of Theorem 3.8, given the foregoing results, is relatively straight-
forward.

PrOOF OF THEOREM 3.8. Under the conditions of the theorem we have,

from Lemma 2.5 and the Markovian hypotheses, that for all large T' > 0 there
exists b < o such that

1 r
(28) T PVa(3) ds < Vo(y) = Vi(y) +8,  yeY.

Define B;(¥,) = B,(i). From B4, we find that for suitably large T, there exists
¢ < o such that

1 .7 1
(29) Tfo E,[B/(¥)]ds < 5Bi(¥%) +¢, yeY.
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Define V,(®,) = V,(®,) + £¢_, B,(®,). From the preceding bounds we see
that we can find a compact set A C Y suitably large so that

1 7 1
(30) 7L PVa(y) ds <Vo(y) = 5f(3),  y A,

where f(y) = Vi(y) + 1, y € Y. This is as a result of considering three cases.
If y € A° due to a large initial queue size, then (30) follows from (28).
Similarly, if y € A° due to a large initial backward recurrence time, then (30)
follows from (29). Otherwise, (30) follows from the fact that there are no new
arrivals to the system.

Let 7, denote the first entrance time to A. On substituting ¥, for y in (30),
integrating from ¢ = 0 to 7, A n and taking expectations, we have for any
nez,,

1 Tann (T o
?Ey[fo [OP V3(\Ift)dsdt]

TaAD 1 TaAN
< Ey[fOA Va('¥,) dt] - 5Ey[/o" (%, dt].
By the Markov property, the left-hand side of this inequality is greater than
TAAD T
Ey[/o V(%) dt] - Ey[fo Vy(®,) dt],
which immediately gives the bound
TAAR T
gey[[o" £(%,) dt] < Ey[/o Va('P,) dt].
Letting n — « we have by the monotone convergence theorem,
(31) Ey[ [ v dt] <U(y), vyeX,

where U(y) = 2E.[ [{ V4(¥,) dt].
From (31) we also have for any s € R,

(32) fP%y,dz)Ez[ [7Few) dt] <P°U(y) = 2Ey[
0 s
which shows that

Ey[[o“"s"‘f(qr,) dt] - Ey[fosf(\lf,) dt]

s+ T

Vi(¥,) dt],

(33) )
+/Ps(y,dz)Ez[f0Af(‘I',) dt]

is everywhere finite and uniformly bounded for y in compact subsets of Y. In
particular, (383) is uniformly bounded on A.

Finally, from (10) we may find K < « such that
(34) P°f(y) <f(y) + Ks, yeY,seR,
Hence from Lemma 3.7 and (32), (33) and (34) we see that the conditions of
Theorem 3.3 are satisfied, which completes the proof of the theorem. O
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ProOF OF LEMMA 3.7. The random variables {v,} are i.i.d. with common
distribution v, and by assumption there exists j, = 2, — 1 > 1 such that p*do
is nonsingular with respect to Lebesgue measure. That is, there exists a
positive function p on R, with

(35) v*io(dx) 2 p(x) dx and [ p(x)dzx > 0.
0

For arbitrary I € 7, let R; denote the bounded open rectangle in Y defined
as

R, ={0,...,1}* x[0,0)¢ x[0,1).

We first construct a continuous component that is nontrivial on R,.
We estimate, for large n, the probability P"(¥,,{0} X A) for ¥, € R,
A € B(R.,) as follows: For large n we have,

ko n
Pr(¥,,{0} x A) > P%{ob,, =0,F, €A, .22 VS 5 Uhger 2 2n}
i

(36) .
0 n
> P{ELJ,F,L EA, 22 Vi < 55 Vg1 2 2n},
is

where E; ; denotes the event that no customer is routed to the same queue
twice and that each of the first d(dl + k) services take no more than L units
of time. The quantity d(dl + k) is an upper bound on the number of services
required for the customers initially waiting in the queues, and for the
k, customers that arrive before time n. L is chosen large enough so that
o= P(EL ) >0.
Since E; ; is independent of {F,: 0 < ¢ < »} we have from (36),

P(¥,,{0} x A)

i—e 2
ko ko "
=30P{(vk0+1+ Yv,—n+F,| €A, .szisg,vko+122n}
iz

o  ,00

= 30](.) j; {(r+s—n+F,) EA}I]{S < g—}]l{r > 2n}vio* (ds)v(dr)

0,00

301;) fo {(r+s—n+F,) EA}Il{s < g—}]l{r > 2n}p(s)dsv(dr).

\%

Define
Ti(Fy, A) = &9 [ W(r+s—n+F,) <A
0“0

n
X ]l{s < E}l]{r > 2n}p(s) dsv(dr).
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By construction we have for any set R X A € #(X X R,) and any ¥, € R,,
P"(¥y, R X A) > 8, R)T}(F,, A),
where §, is the unit mass concentrated on 0 € X. It is easy to see that T} is a

continuous function of F, and by construction, T;(¥F,,X) > 0 for all F, < .
Hence the kernel

T)(¥Y, R X A) =I{¥, € R,}8,{R}T;(F,, A)

is a continuous component of P", which is nontrivial for ¥, € R,.

We now construct a continuous component that is everywhere nontrivial.
Letting n; denote an integer time at which P"* admits a continuous compo-
nent 7} that is nontrivial on R;, we define the distribution ¢ on R, as

a= ) 27,
=1
and the kernel T as
T= 3 27'T,.

=1

Then T is a continuous component of K, that is everywhere nontrivial.
It is also easy to see that y* = 0 € Y is reachable, and this concludes the
proof. O

4. Conclusion. We have presented a proof of stability for generalized
Jackson networks in a non-Markovian seting. In the special case of Markovian
networks we have made use of previous results [26, 28] to show that the
“expected value of the queue lengths, work in the system and customer delay
all converge to their steady state values.

The appeal of our methodology is that it is conceptually simple, and the
burden of constructing a Markovian model may be lifted. We believe that
these methods will be applicable to more complex models that arise in areas
such as manufacturing and communications networks.

Work has been done on strengthening these results to exponential ergodi-
city. Spieksma and Tweedie [33] (and generalized in [27]) show that if for
some function V, a compact set C and constants 7' and b the following drift
property is satisfied,

E[V(®,.7)|%] < V(®,) — 1+ bl{®, € C)

and if the increments V(®,, ;) — V(®,) are suitably bounded, then the test
function V*(x) = exp(8V(x)) satisfies

B[V, |%] < AVZ + b,
where A < 1. These conditions are satisfied for this model with
(37) V(x) =Vy(x)+F(x)+1=E[W,] +F(x)+1

whenever the distribution of the interarrival times has exponentially decay-
ing tails, and from this we get the following theorem.
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THEOREM 4.1. If the load condition (8) holds for the network, and if the
interarrival distribution possesses a moment generating function defined in
a neighborhood of the origin, then ¥V is geometrically ergodic. Furthermore,
letting m denote the invariant probability for the process, we have

IPt(y,-) — a{}llv- <RV*(y)p!, €Y,

with R < ©, p < 1 and V given by (37).

The proof follows from Theorem 16.0.1 of [27] as generalized to continuous
time processes in [9].

Fayolle, Malyshev, Mensikov and Sidorenko [10] have previously
established geometric ergodicity in the special case of Poisson arrivals and
exponential service times.

It may be shown that a functional central limit theorem holds for the
Markov process, allowing a suitably normalized version of the queue lengths
to be approximated by a Brownian motion. The reader is referred to [12] for a
development of this result.

Of course, an important aspect of network analysis is performance. A topic
of future interest would be deriving tight bounds on the customer delay and
the queue lengths for the network. It is our hope that these results will lend
themselves to such calculations.
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