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LINEAR EXTENSIONS OF A RANDOM PARTIAL ORDER

By NoGA ALON, BELA BOLLOBAS, GRAHAM BRIGHTWELL AND
SVANTE JANSON

Tel Aviv University, Cambridge University, London School of
Economics and Uppsala University

We study asymptotics of the number of linear extensions of the
random G, , partial order, where p is fixed and n — «. In particular, it is
shown that the distribution is asymptotically log-normal.

1. Introduction and results. One of the standard models for a random

partial order is the G, , order, defined as follows. Let < denote the natural
order on the vertex set [n] as {1,...,n}. A graph G on [n] induces a par-
tial order on that vertex set, namely, the transitive closure of the relation
{i <j and there is an edge ij}. That is, if each edge ij in G, with i <, is
directed from i to j,i <j iff there exists a directed path from i to j in G. The
random G, , order is obtained by applying this procedure to the random
graph G, ,. Here, as throughout, we let G, , denote a random graph in
Z(n, p), that is, a graph on [n] such that each possible edge appears with
probability p, independently of all other edges. We assume throughout that
O<p<landsetg=1-p.
This G, , order has previously been studied by Barak and Erdos [3], who
mvestlgated the width of the partial order, and by Albert and Frieze [1],
who studied its height and setup number. Our purpose in this paper is to
investigate another fundamental parameter of partial orders, namely, the
number of linear extensions. Recall that a linear extension of a partial order
(X, <) is a total order < on the same set X such that x <y whenever
x <y.

We define a linear extension of a graph G on [n] to be a linear extension of
the corresponding partial order. We denote by N(G) the number of linear
extensions of G. The purpose of the present paper is to study the number
N(G,, ) of linear orders that extend the G, , partial order; we also use N, ,
for thls random variable. Obviously, 1 <N, , < nl.

There is a simple formula for the expectatlon of N, ,. We define

(1.1) «(p) = TI (1-4q%).
k=1
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THEOREM 1. With the foregoing notation,

n 1 - qk
1.2 EN, , = .
(1-2) PGt 1-q
Hence, if p is fixed, 0 <p < 1,

1 n
(1.3) EN, , ~ K(p)(;) asn — o,

The asymptotic distribution of Nn, p for fixed p turns out to be log-normal.
THEOREM 2. Let p be fixed and n — . For some u= u(p)>0 and
oc?2=0%p)>0,

(14) IOg(Nn‘,/:%) - mn

with convergence of all moments. In particular,
log(N, ,) — Elog(N, ,)
(Var log(N, , ))1/2

—d N(O"TZ)’

(1.5) -, N(0,1).

We do not have an explicit expression for u(p) and o 2(p), but we can give
simple bounds for u( p).

THEOREM 3. Let Y have the shifted geometric distribution P(Y = k) =
pq* ', k> 1. Then

Elog(Y) = ilog(/’e)pq’“1 < u(p)
1

1/p — «
(1.6) <(1- x(p))log—{—”:—KT;l
< log;l)— = log(EY).

For p = 1/2 we obtain from (1.6) that 0.507 < u < 0.625 and 1.66 < e* <
1.87.

It may seem surprising that u < log(1/p), because Theorem 2 says that
N, , is concentrated about (e*)" [more precisely, N, , = exp(un + OP(\/}; ),
which thus is far less than the mean which is =< (1/p)". Some thought,
however, shows that Theorems 1 and 2 actually force e* < 1/p, because (1.4)
. implies that if n is sufficiently large, P(N, , > exp(un + ov/n)) > 0.1, and
thus (1/p)" > EN, , > 0.1e“V"(e*)" > (e*)".

The same phenomenon, that the variable is concentrated far below its
mean, also occurs in the case of a product X, =T1}Y, of iid. positive
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variables, where (assuming suitable moment conditions) log X, is asymptoti-
cally normal and X, is concentrated about exp(E log Y;)", which (by Jensen’s
inequality) is less than EX, = (EY;)". The variable N, , is more compli-
cated, but, as we will see in the proof, it has a somewhat similar structure.
We shall concentrate on the case where p is a constant, independent of n.

In this case, we may assume that a random graph and the corresponding
random partial order are defined as before on all of N, or Z, and define G,
as the restriction Gy, plln] Let N(i, ) be the number of hnear extensmns of
the restriction of the random partial order to (i, jl, so that N, , = N(0, n).
Then {N(i, j)} is supermultiplicative,’

(1.7) N(i, k) > N(i, ))NGj, k), i>j>k,
and Kingman’s subadditive ergodic theorem [10] applies to —log(N(i, &)).
Thus we have that (1/n)log(N,, ,) converges a.s. to a random variable ¢ a.s.,

which is easily shown to be constant; in fact, Theorem 2 implies & = u a.s.
This proves the following strong limit theorem.

THEOREM 4. If p is fixed, N,/ — e*P a.s. asn - =,
We can sharpen Theorem 4 as follows.

THEOREM 5. Let p be a constant with 0 < p < 1. For almost every Gy ,,
there is an ny(G, p) such that, for every n > n,,

15¢*(log n)*/?

nl/2p2

Ian,/pn N eﬂ(p)l = p

Our final result shows that log N(G) is sharply concentrated around its
mean.

THEOREM 6. Suppose that 0 < A < n'/* and that q¢ > 1/e. Then

AVn log n A2
P IlogN,,,p—np,(p)|>—pzi) s3exp(— )

6400

The assumption that g > 1/e here is purely for convenience: If the
assumption is dropped, a similar result with different constants can be
obtained. Results concerning deviations larger than those given by setting
A =n'* in Theorem 6 can also be obtained, but the lemmas in the proof are a
little simpler to state if this restriction is made. In Theorem 6, one should
think of p as being constant, but no restriction is actually needed on how
small p = p(n) can be. However, because log N, , < nlogn for all G, the
result is only meaningful if p has order larger than n~1/4,
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2. Proof of Theorem 1. There is a 1-1 correspondence between linear
orders < on({l,...,n} and permutations 7 of {1,..., n} given by
(2.1) i <jo (i) <m(i),
where <, as before, denotes the natural order. It is easily seen that <

extends the G, , partial order if and only if (i) < w(j) for all i,j,i <j,
connected by an edge in G, , or, equivalently,

(2.2) there is no edge i in G, , with i <j and 7 (i) > 7(Jj).
Consequently,
(23) ENn,p = ZP((22) hOldS) = Zq#(inversions in 7}

77' ™

and (1.2) reduces to a well-known formula for the generating function of the
number of inversions in permutations.

For later use, we also give a direct proof as follows.

We consider again the random partial order as defined on N, and let
N, = N(0, n), for simplicity omitting the subscript p. Let %, be the o-field
generated by the edge indicators I(ij is an edge), 1 <i <j < n; thus N, is
&,-measurable. Consider a particular linear order < on[n—1]=11,...,
n — 1} that extends the partial order there, and order [n — 1] according to
this order as i, > iy > -+ > i,_;. This linear order has n extensions to [n],
obtained by choosing % € {1,..., n} and then inserting n between i, _, and i,
(n>i,ifk=1and i,_; > nif k = n). The linear order on 7] constructed in
this way extends the partial order on [n] if and only if there are no edges i;n
with j < k. Consequently, the number of extensions of < to [n] that are
extensions of the partial order on [n] equals n A min{;: i;n is an edge}. Given
Z,_ 1, this is a random variable with the distribution of ¥ A n, where Y is the
geometric variable in Theorem 3. Hence, N, can be written as a sum

Nn-l
(24) N,- LY,
1
where Y™, given ,_,, are (dependent) random variables with the same
distribution as Y A n. Consequently
E(an'Zz—l) = E(Y A n)Nn—l

and

1-q"
- dq

EN, = E(Y An)EN,_, = EN,_,,

which gives (1.2) by induction.

3. Proof of Theorem 2.- Suppose that, for a given realization of the
_random graph G, , (or Gy ,), there is a vertex i, 1 <i < n, such that every
other vertex is connected to i by a directed path (directed either toward or
from ). Then, in the G, » bartial order, every other element is comparable
with vertex i. Thus i is a fixed point of every permutation that corresponds to
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a linear extension of the G, , order, and the number N, , = N(0, n) of such
orders factorizes as the product N(0, i)N(i, n); that is, equality holds in (1.7)
in this case.

We call such a vertex a post, and obtain, letting i,,i,,...,7,, be the
successive posts in {1,...,n}, a decomposition of N, , as a product of
NG, i;, ) (with i =1 and im+1 = n). The number of factors is random, and
we shall show later that the different factors are independent. However,
before we can make such a statement, it is necessary to show that, almost
surely, there do exist posts in the Gy , order, indeed infinitely many of them.

LEMMA 3.1. For every 0 < p <1 there is a constant C = C(p) > 1 such
that, for every sufficiently large k, the probability that none of the k elements
2k,4k,6Ek,...,2k2% is a post in Gy, , is at most C*,

ProOOF. Observe first that, for j > 1,
P(j comparable with 0|1,..., j — 1 comparable with 0) = 1 — ¢/,
so the probability that 0 is comparable with all elements 1,2,... is

o

jl:[l(l - q’) = k(p).

The same argument holds independently for the negative elements, so the
probability that 0 (or, by symmetry, any other element) is a post is «(p)?.

The event that none of the % elements 2%,4k%,6k,...2k? is a post in Gz,
is equivalent to the event that, for each of the elements 2jk (j =1,..., k),
there is an element n; of Z 1ncomparable with 2jk in the G, , partial order
We consider two events whose union contains this event, and show that each
of the two events has small probability.

(@) For each j, there is an element n; in the interval [(2j — Dk, (27 + 1k]
incomparable with 2k in the partial order.

This event is the conjunction of £ independent events, because the existence
of a suitable element n; depends only on those edges with both endpoints in
the interval [(27 — 1k,(2j + 1)k]. Each of these events has probability at
most the probability that 2% is not a post, which is 1 — x(p)2. Hence the
probability of this case is at most (1 — «(p)?)*.

(i1) For some j, every element in the interval [(2j — 1)k,(2j + 1E] is
comparable with 2k in the partial order, but there is an element 7; outside
this interval incomparable with 2 j&.

The probability of this event is at most 2k times the probability that O is
comparable with every element 1,2,..., %, but is 1ncomparable with some
element beyond k. This probability is at most

Z P(j + 1 incomparable with 0|1, ..., j comparable with 0)
=k
k+1

- i gi*1 =  __
j=k

p
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Combining the probabilities of events (i) and (ii), we see that

P(none of 2k, 4k, ...,2k? is a post) < (1 - K(p)z)k + 2kq**1/p.

Taking C(p) to be any constant such that C™! > max{l — «(p)?, q}, the
result follows. O

Equipped with this lemina, we are now in a position to prove a fair amount
about the sequence of posts and the structure of the random partial order.

LEMMA 3.2. The posts form a.s. a two-way infinite sequence, and the
indicator variables I(i is a post), —© < i < ®, form a stationary sequence.

ProoF. It is obvious that the sequence I(i is a post) is stationary. Conse-
quently, the events {i is the first post} have the same probability; because
these events are disjoint, the probability has to be 0. Hence the sequence of
posts has a.s. no first element. Similarly, there is a.s. no last element, so the
sequence of posts is either empty or two-way infinite.

However, Lemma 3.1 tells us that the probability that there is no post is
less than C~* for every k&, and hence is 0. Therefore, the sequence of posts is
a.s. two-way infinite. O

Let ...,U_;,U,, Uy, ... denote the random variables giving the positions of
the infinite sequence of posts, with (to be definite) U, being the first post at or
to the right of 0. We call the posets induced on the intervals [U;, U;, ] the
segments of the partial order. Note that segments overlap at the posts, but
that each edge is in at most one segment.

LEMMA 3.3. The various distances U, — U;, j = 0, are mutually inde-
pendent, identically distributed, random variables. In particular the events
{m is a post} are recurrent.

Given the set of posts, the distribution of the edges is as follows: The set of
edges inside each segment has a distribution depending only on the length of
the segment (ignoring an obvious translation); the sets of edges inside differ-
ent segments are independent; the edges that do not lie in a segment occur
with probability p, independently of each other and of the edges inside
segments.

ProoF. We prove that the distances between successive posts are mutu-
ally independent. By translation invariance, it suffices to prove that, if & is
any event depending only on the set of edges one of whose endpoints is to the
left of 0, then

P(m is the first post to the right of 0/ and 0 is a post)

3.1
(3.1) = P(m is the first post to the right of 0|0 is a post),
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because this implies that the distribution of U, (= U; — U,) is independent of
the distribution of the posts to the left of U, = 0. However, (3.1) holds,
because an element m to the right of the post at 0 is itself a post iff there is a
directed path from m to every nonnegative element of Z (because other
elements then have a directed path to m via 0), and this last event is
independent of &.

The remaining assertions are immediate. O

REMARK 38.1. Note that, as for all stationary recurrent sequences, the
distribution of U, — U_,, the length of the segment containing 0 and —1,
differs from the distribution of U; — U, (“the waiting time paradox”). See
(3.3) for the precise relation.

Lemma 3.3 implies that, if (X, <) is a finite poset with a minimal and a
maximal element, but no other elements comparable to every element of X,
then the probability that the segment between U; and Uj,, is isomorphic to
(X, <) is independent of the nature of any other segment Hence we can
consider the random G, , partial order as built up by successively choosing
segments, independently, from some fixed distribution, and amalgamating
them at the successive posts. (This picture is in fact slightly distorted by edge
effects at both ends.)

Before completing the proof of Theorem 2, we need a moment condition on
the lengths of the segments.

LEMMA 3.4. Let L be the random variable describing the length of the
segments:

P(L =1)=P(U, =1U, = 0), l>1.
Then EL" < « for every r < o0,
Similarly, if L= U, — U_, is the length of the segment containing 0
and —1,EL" < wforeveryr < oo,

PrOOF. Lemma 3.1 gives us that, for some C = C(p) > 1 and sufficiently
large &,

P(none of 2k,4k,...,2k? is a post|0 is a post)
< P(none of 2k, 4k, ...,2k? is a post) /P(0 is a post) < C_k/K(p)2.

Hence the probability that L is greater than 2?2 is at most C;* for some
, C(p) > 1 and sufficiently large %, which yields, for some C,(p) > 1,

(3.2) P(L>1) <C;V,

and the claim follows.
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For L we observe that
1
P(L =1) = Y P(—jis a post and [ — j is the next)
1

(3.3) . .
= [P(0is a post and [ is the next)

= Ik(p)’P(L =1).
Hence also EI” < ». O

REMARK 3.2. Summing (3.3) over [, we obtain EL = «(p)~2.

REMARK 3.3. Using a different argument, we can improve (3.2) to show
that

P(L >1) <c,exp(—cyl/logl),

but we do not know whether this can be improved to an exponential bound.

We may now complete the proof of Theorem 2. Let V; = log(N(0, U))), i > 0.
Further, let Wo=U,, Z,=V, and, for i>1, W;=U, —U,_,, Z;, =
V, = V,_; = log(N(U,_,, U))), where the last equality follows because U;_, is
a post. It follows from Lemma 3.3 that the two-dimensional random variables
(W,,Z,), i > 0, are independent, and that they have the same distribution for
i>1 ByLemma34 for any r < o, EW;” = EL" < » for i > 1 and EW{ <
EL’ < . Furthermore, 0 < Z; < log(W,)) < W, log(W,), so EZ! <, r <,
i>0.

We also observe that the events (W, = 3, Z, = log1} and {W; = 3, Z; = log 2}
both have positive probability, so W, and Z are not proportional and y?
Var(E(W,)Z, — E(Z))W,) > 0.

Define 7(n) = min{i: U, > n}, the index of the first post after n. We have
placed ourselves in the setting of Gut ([8], Section IV.2), except for the minor
complication that here we have variables (W,, Z,) with a distribution differ-
ent from (W,,Z,), i > 1. Theorem IV.2.3 in [8] is easily generalized to this
case by standard arguments, which we omit. The theorem then yields

Vr(n) 2
Vn

with convergence of all moments, where u= E(Z,)/E(W;) and o?% = y?
EW,)2 > 0.
Because V., ; <log(N, ) = log(N(0, n)) < Vi log(N, ,) — Vi)l <
Zoiny < L log L where L is the length of the segment contalmng n and
n+ 1. Because L = L for all n, Lemma 3.4 and Cramér’s theorem imply
that we can replace Vi) by log(N ., p) in (8.4), and the theorem follows. O

(3.4) -, N(0,0?%), asn — o,

REMARK 3.4. Say that a parameter f of partial orders is additive if
whenever the partially ordered set P is the linear sum of P, and P,, that is,
P is obtained by putting all of P, above P,, then f(P) = f(P,) + f(P,). Note
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that the logarithm of the number of linear extensions is an example of an
additive parameter. Our proof of Theorem 2 shows also that other additive
parameters of G, ,, for example the height and the number of incomparable

pairs, have asymptotic normal distributions; see [7], Theorem 8.

4. Proof of Theorem 3. We continue the argument in Section 2, intro-
ducing @, = N,/N,_,, n > 1 (with N, = 1). If m is the last post before n,
Q, = N(0,n)/N(0,n — 1) depends only on the set of edges {ij: m <i <j < n},
and it follows easily that @, converges in distribution to some variable Q..
Using (2.4) and Jensen’s (or Cauchy’s) inequality, we obtain

1 Nfl ()2
Y("
N, 1(,)

(4.1) Q<

and thus
EQZ<E(YAn)’<EY? <o,
which implies that {@,} and {log @,} are uniformly integrable and thus

1
(4.2) EQ.= limEQ, = imE(Y An) =EY = ;,
n—-o n—o
(4.3) Elog(N,) — Elog(N,_,) = Elog(Q,) — Elog(Q.),
which yields
1
(44) u = lim ;Elog(Nn) = Elog(Q.).-
n—o

By (2.4) and Jensen’s inequality again,

1 Nn—l
(4.5) log(@,) = Y log(Yi("))
Nn— 1 1
and thus Elog(Q,|%, _,) > Elog(Y A n), which yields
(4.6) = Elog(Q.) > Elog(Y).

Finally we observe that @, = 1 if and only if every { with 1 <i < n may be
connected to n by a directed path (cf. the definition of posts in Section 3).
Hence

n—1
(47) P(Q.=1)= lim P(Q, =1) = lim II'I (1-9¢""") =«(p)
and, by Jensen’s inequality,
Elog Q. = P(Q. * 1)E(log Q.1Q, # 1)

<P(Q. # 1)logE(Q.|Q. + 1)

EQ. — «
- (1= k(p)logm )

The theorem follows by (4.4), (4.6), (4.8) and the concavity of the logarithm. O

(4.8)
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5. Proof of Theorems 5 and 6. Our proofs of these results are based on
the following theorem, which in turn is based upon martingale inequalities
due to Azuma [2] and Hoeffding [9]. For further details, the reader is referred
to the articles by Bollobas [4], [5] or McDiarmid [11].

THEOREM 7. Suppose that H; U H, U -+ U H,, is a partition of [n]® into
m parts. Let Z(G) be a random variable depending on the random graph
G = G, , with vertex set [n], such that [Z(G) — Z(G')| < h whenever G and
G’ differ only on one of the H,. Then, for any real a, we have

a2
P(|z(G, ,) - EZ(G, ,)|>a) < 2exp(— W)

Ideally, we would like to apply Theorem 7 to the random variable log N(G),
with m =n and H; being the set of pairs (i, ) with i <j. The condition
|Z(G) — Z(G')| < h then amounts to saying that log N(G) does not change
much when the edges “downward” from one vertex are changed. Unfortu-
nately this is not quite true: In the worst case the addition of the single edge

between the two middle vertices can change N(G) from (n'/l2) to 1. Our

solution, as is often the case in applications of Theorem 7, is to consider a
slightly modified random variable in place of log N(G).

For G a graph with vertex set [n] and w a positive real number, let
N*(G,w) be the number of linear extensions < of G in which j <&
whenever j < k — 2w. In other words, N*(G,w) is the number of linear
extensions of the graph G* obtained from G by adding an edge between
vertices j and & whenever j < & — 2w.

We now apply Theorem 7 to Z(G) = log N*(G, w).

LEMMA 5.1. Let w and a be positive real numbers. Then

o2
w)—ElogN*(Gn,p,w)|>a)sZexp(— )

P(|log N*(G, T

»p?

ProoF. As indicated, we apply Theorem 7 with m =n, Z(G) = log
N*G,w) and H; ={(i, j): i <j},for j=1,...,n.

We wish to bound |Z(G) — Z(G')|, under the assumption that G and G’
differ only on the pairs in H;. Clearly we may assume that G contains none of
the edges from j to the vertices in {j — |2w],...,j — 1}, whilst G’ contains all
of them. Then, given a linear extension < of G*, we can convert it to a linear
extension <' of (G')* by putting all the vertices 1,...,j — 1 below all the

vertices j, ..., n, with the ordering inside each of the two subsets {1,...,j — 1}
and {j,...,n} the same in < as in <. Under this map,
at most [22“!) linear extensions < of G* are mapped onto any linear

[2w]
extension <’ of (G')*, because < can be determined from <’ by specify-
ing the relative positions of the vertices j — |2w],...,j + |2w] — 1. Hence
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N*(G,w) < NG, w)( ) and s0 2(@) - 2(@") < log( e} ) < 4w log2

[2w]
< 2/2w.
The result now follows from Theorem 7. O

To make use of Lemma 5.1, we need to show that, for an appropriate choice
of w = w(n, p), the random variable log N*(G,w) is not too different from
log N(G). Let us first make the following easy observation.

LEMMA 5.2. Let p be any constant. Then there is a constant C(p) such
that, for all n,

P(N(G, ,) #* N*(G, ,,w)) <n™?,
where w = [C(p) + 3log n/2p?].

Proor. If j and % are any vertices of G, the probability that j and % are
not related in the induced partial order is at most (1 — p2)/~*1-1 because
that is the probability that no vertex between j and % is adjacent to both.
Hence the probability that some pair (j, 2) with 2 — j > 2w is not related is
at most

il P () 2w
n )Y (1-p%) =—(1-p?
i=2w p

]SIOgn

n
< ;5‘(1 _ p2)2C(P)[(1 _ pz)l/p2

n
< —(1-p2)°Pr-s,
b
For a suitable value of C(p), this is the required result. O

To prove Theorem 6, we shall need some results that are rather stronger
than Lemma 5.2, to get the probability of failure down to the required level.
However, Lemma 5.2 is already sufficient for us to prove Theorem 5.

Proor oF THEOREM 5. For p fixed, take w as in Lemma 5.2, and n large
enough so that w < 2log n/p?. Now set a = 12n'/2(log n)*/?p~2. Lemma 5.1
tells us that

P(llog N*(G, ,,w) — Elog N*(G, ,,w)| > a) <2n79%/4

»P?
for every such n, and Lemma 5.2 gives

P(N(G, ,) # N*(G, , ,w)) <n %
Because log N(G) < n log n for every G, this implies that

E(log N(G,,,) — log N*(G, ,,w)) <logn/n.
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Combining these, we see that
(|log N(G, ,) — Elog N(G, ,)| > 13n*/2(log n)**p ‘2) <2n7%,

for n sufficiently large.
If we now consider the infinite random graph Gy ,, the Borel-Cantelli
lemma implies that, almost surely, there is an n, = nl()G p) such that

|log N(G,,,) — Elog N(G,_,)| < 13n1/2(log n)**p

for all n > n;.

To complete the proof, we require some bounds on the convergence of
(1/n)Elog N(G, ,) to its limit wu(p). We obtain such bounds by relating
N,,, , to N,

For G a graph with vertex set [2n], let G; be the graph Gl and G,
be the graph Glin+1,...,2n). Also let A(G) denote the average, over all lin-
ear extensions <; and <, of G, and G,, respectively, of the number of
linear extensions of G extending both <; and <,. Then we have

N(G) = Y Y. (number of linear extensions of G extending both <; and <;)
=<1 =2
= N(G,)N(G,) A(G)
and
Elog N,, , =2Elog N, , + Elog A(G, ,)

< 2Elog N, , + log(EA(G,,,))-

The expectation of A(G, ,)is just the expected number of linear extensions of
G extending any pair <1 and <, of linear extensions of the two halves It
was observed in [6] that this expectation increases to IT7_,(1 —g*)™*
1/k(p), as n — »; moreover A(G) > 1.

This means that w, = (1/n)Elog N, , satisfies

1
2 <2 <2 +1 )
nl‘l‘n n“’2n n#’n Og( K(p) )

log(1/x(p))
Hn < Pigp Sy + ———p

Hence, summing terms py:, — Mot-1,, We have

51 >w, > —1 ( ! )

We now have that, for almost every Gy ,, there is an n,(G, p) such that
|logN( )= nu(p)| < 14n'2(log n)**p~2

for all n > n,. This implies the result. O
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We now turn our attention to completing the proof of Theorem 6. Recall
that we wish to relate N(G) to N*(G, w), for suitable w, and that we require
our estimates to be correct with extremely high probability.

From now on, we set v = [4log n/log(1/¢)] and w = 4v/p.

Let P and Q be the following properties of graphs with vertex set [n]
(n>2).

P: There is a set S of order at most n'/2/log n such that
any two disjoint sets of vertices of size v, not intersec-
ting S, have an edge between them.

Q: There is a set T' of order at most 2n'/2 /log n such that
(i) for every vertex j of G, not in T, with j <n — w,
there are at least 2v neighbours of j among the
vertices j + 1,...,j + [w];
(i) for every vertex j of G, not in T, with j > w, there
are at least 2v neighbours of j among the vertices
J—lwl...,j—1

LEMMA 5.3. (i) The probability that G, , fails to have property P is at
most exp(—n'/2).

(i) The probability that G, , fails to have property Q is at most
2 exp(—n'/2).

ProOF. (i) We construct S by the following procedure. If the graph con-
tains disjoint sets A;, A,, both of size v, without an edge between them,
remove them from the graph, add the vertices in A; U A, to S and repeat. If
the procedure halts after at most n'/2/2v log n steps, then the original graph
clearly has property P. If not, then the graph contains at least n}/%2/2v log n
vertex disjoint pairs of sets of size v, with no edges between any of the pairs
of sets. The probability of this is at most

n/2 /(v log n) 72 /(20 log n) nt/? 1
(?;) C) < exp Slog 210gn—v10g3

< exp(—n'/?),
as desired.

(ii) Let us take any vertex j < n — w and estimate the probability that it
fails to have at least 2v neighbours in {j + 1,...,j + [w]}. Applying the
Chernoff bound P(Bi(N, p) < Np(1 — ¢&)) < exp(—&2pN/2), we see that this
is at most e ?*/%, because 2v < p[w]/2. Because log(1/q) < 1, we have
w > 16 (log n)/p, and so the probability that j is “bad” is at most » 2. Hence
. the probability that more than n'/2/log n vertices fail to have 2v neighbours
as required is at most

n _or\In'2/log nl _1\nY2/10
([nl/z/logn])(n 2) /len <(n 1) / gn=exP(_n1/2)~
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Similarly the probability that more than n'/%/log n vertices j > w fail to
have at least 2v neighbours in {j — [w],...,j — 1} is also at most
exp(—n~1/2), and the result follows. O

LEMMA 5.4. Let G be a graph on [n] with properties P and Q. Then there
is a set U of at most 11n'/2 /(p log n) vertices such that any two vertices j, k
not in U with |j — k| > 2[w] are comparable in the induced partial order.

\

ProoF. Let S and T be sets as in the definitions of properties P and Q,
respectively. Set V = {j: there are more than v vertices of S in either the set
{(j+1,...,7+[wl or the set {j — [w],...,j — 1}}, and set U =T U V. Note
that |V| < 2[w]1IS|/v < 9IS|/p. So

9|S| nl/2 9 11n1/2
Ul <IT| + > < 2 <

~ logn p plogn’
Suppose that neither j nor k is in U, and that £ — j > 2[w]. Then j is
adjacent to at least 2v vertices among {j + 1,...,j + [w]}, and at most v

of these vertices are in S. Let A be a set of v neighbours of j in {j + 1,...,
Jj +[wB\ S. Similarly let B be a set of v neighbours of k in {# — [w],...,
k — 1}\ S. Then there is an edge between some vertex x of A and some
vertex y of B. Thus we have j < x <y < k in the partial order induced by G.

O

LEMMA 5.5. Suppose that G satisfies properties P and Q. Then N(G)/
N*(G,w) < exp(11n'/2/p).

PrOOF. Let U be a set of vertices as given by Lemma 5.4. Note that G and
G* induce the same partial order on U =[n]\ U. Hence for any linear
extension < of G, there is a linear extension <* of G* extending <|z Any
such map, taking < to <*, is such that at most n!lU! linear extensions =<
are mapped onto any one linear extension <*, because < is determined
by <* and the positions of the vertices in U. The result now follows. O

PROOF OF THEOREM 6. First recall Lemma 5.1, which says that

P(|log N*(G,, ,,w) — Elog N*(G, ,,w)| > a)

(5.2) a®
2 —_
= exp( 16 nw? )

for every positive real a,w.

If G satisfies properties P and Q, then, by Lemma 5.5, we have 0 <
log N(G) — log N*(G,w) < 11n'/2/p. By Lemma 5.3, the probability that
G, , fails to satisfy properties P and Q is at most 3 exp(—n'/?); hence

(56.3) P(log N(G, ,) — log N*(G, ,,w) > 11n'/%/p) < 8exp(—n'/?).



122 N. ALON, B. BOLLOBAS, G. BRIGHTWELL AND S. JANSON

Because N(G) < n! for every G, this also implies that
E(log N(G,,,) — log N*(G, ,,w))
(54) <11nY2%/p
+ 3exp(—n'?)nlogn < 12n*?/p.

Recall that [Elog N(G, ,) — nu(p)| < log(1/«(p)) by (5.1); moreover, rather
crudely,

1 B * X © q* 1
(5.5) log( K(p)) = k§1 —log(1 - ¢*) < kg,l? <27
Because the conclusion is trivially true for A < 80, we may assume 80 < A <
nl/* We set
Wnw
(5.6) a= 35

and recall that w = 4[4log n/log(1/¢9)]/p < 16 (log n)/p® + 4/p. Now, if
log N*(G, ,,w) — Elog N*G, ,,w)l < a and |[log N(@G, ,) — log
N*(@G, , w)I < 11nY2/p, then by these estimates,

|log N(G, ,) — nu(p)|
<|logN( )~ logN*(np,w)l
+|logN*( G, ,,w) — Elog N*( np,w)|
+|E(log N*(G,,,,w) — log N(G, ,))| +|Elog N(G,, ,) — nu(p)|
11n'/2 12n1/2 1 23n1/2 1
( )<a+ L

IA

+a+ —— +log +
p p k(p) p p?

MWnlogn (16 N 4p N 23p N 1 An logn
< —|— < .
- p? 20  20logn  Alogn  Anlogn p?

Therefore, using (5.2), (5.6) and (5.3),

An log n
P(llogN(Gn’p) - n,u,(p)| > ——pz——)
<P(|logN*( G, , »w) — Elog N*( np,w)|>a)
‘ 11n'/2
+P(logN( ) —log N*(G, ,,w) > - )

2

6400

—)\2
s2exp( ) 3exp(— n1/2)<3exp(6400)

as desired. O
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