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A LIMIT THEOREM FOR LINEAR BOUNDARY VALUE
PROBLEMS IN RANDOM MEDIA'

By JEAN-PIERRE FOUQUE AND ELY MERZBACH

Ecole Polytechnique and Bar-Ilan University

The asymptotic behavior of the solutions of linear equations with
random coefficients, random external forces and with affine boundary
conditions is studied, motivated by a transmission—reflection problem for
a one-dimensional wave equation in a random slab. The fluctuations of the
coefficients are on a small scale in such a way that our problem is a
diffusion-approximation problem except that we impose boundary condi-
tions which force the solution to be anticipating. In the limit we obtain
linear stochastic differential equations with affine boundary conditions,
studied by Ocone and Pardoux. Our main tools are diffusion approxima-
tion results (Papanicolaou, Stroock and Varadhan or Ethier and Kurtz)
and the properties of the limiting equations involving generalized
Stratonovich integrals (Ocone and Pardoux). As an application, the trans-
mission-reflection problem is discussed. We prove that the solution has a
density with respect to the Lebesgue measure and satisfies the Markov
field property.

1. Introduction. A one-dimensional monochromatic wave equation de-
fined on an interval can be written as a finite-dimensional linear equation
with boundary conditions corresponding to a two-point boundary value prob-
lem. Moreover, if the coefficients of the equation are random processes
fluctuating on a small scale, one can rescale the problem in such a way that it
is in the diffusion-approximation regime. (Details will be given in Section 4.)

The aim of this paper is to study the asymptotic behavior of the solutions
of linear equations with random coefficients, random external forces and with
affine boundary conditions. Clearly, these solutions are anticipating. The
main tools used here are diffusion-approximation results, following Papanico-
laou, Stroock and Varadhan [9], or Ethier and Kurtz [3], and properties of the
limiting equation developed by Ocone and Pardoux [7].

In Section 2 we study a general linear diffusion-approximation problem
with boundary conditions, corresponding to an initial value problem. Using
classical diffusion-approximation results, we identify the limiting diffusion
process and give some examples.

Section 3 is devoted to the same problem, with boundary conditions
corresponding to a two-point boundary value problem. The limiting process is
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550 J.-P. FOUQUE AND E. MERZBACH

identified as the unique solution of a linear stochastic differential equation
with affine boundary conditions studied in [7]. The stochastic integrals in-
volved here are generalized Stratonovich integrals.

In Section 4, as an application, a problem studied by G. Papanicolaou is
discussed. We show how a transmission—reflection problem for a one-dimen-
sional wave equation in a random slab is a particular case of the general
result obtained previously. We then apply a result of [7] to prove the
existence of a probability density for the limiting wave field.

Section 5 deals with the Markov property. We show that the limiting field
is not Markovian, and we extend a result of [7] to prove that it is a Markov
field.

2. Notations and the initial value problem. The coefficients of the
equations studied in this paper will be random as functions of a “driving”
Markov process (Z,), . , defined in R" or in a compact subset of R".

We shall assume that this process has a unique invariant probability
measure u, under which it is ergodic, and that the Fredholm alternative
holds for its infinitesimal generator L(Z), which then has an inverse on
functions centered under the probability u. We will denote by (Q, %, (%), o,
P) a stochastic basis for (Z,) such that under P the law of Z, is u for every
t > 0. All the expectations will be with respect to P. As examples we may
think of a Markov process on a compact space satisfying the Doeblin condi-
tion or the Markov diffusion processes in R" studied in [1].

This process Z, will be varying on a small scale £ with 0 < ¢ < 1. We
shall denote by (Z;) the rescaled process (Z, ,,2).

We study the following differential equation in R? for 0 < ¢ < 1:
ax; 1 (¢t . t . .1 . .
(1) P —{ B(s,Zt)+A(8,Zt)}Xt+8b(t,Zt)+a(t,Zt)

£
with the following centering condition:
E{B(7,Z,)} = E{b(t,Z,)} =0 foreveryr>0,¢=>0,

where A and B are bounded smooth functions from R, X R" into .#,,,, the
space of real d X d matrices, and a and b are bounded smooth functions
from R, X R" into R

We assume that A(r,z) and B(r, z) are periodic in 7 with period T
independent of z.

We shall use the following notations:

1 _
?LTE{A(T,ZO)}dT=A and E{a(t,Z,)} = a(t).

Note that a fast-varying variable 7 =t/ appears in A and B, while the
slowly-varying variable ¢ appears in the “random external force”
1/8)b(t, ZE) + alt, Zf) added to the linear part of (1).



RANDOM LINEAR BOUNDARY VALUE PROBLEMS 551

In order to describe the limiting equation, we shall assume that the
following integrals are well-defined and finite:

fo —1—‘]() E{B, j(7,Z,) By, (7, Z,)} dr ds,
fo ?/(‘) E{B; ;(7,Zy)by(t,Z,)} dr ds,

w1 T ‘
fo ?'[o E(b,(t,Z,)B;, (7,Z,)}drds

and
,’:E{bi(t’ Z,)bi(t,Z,)} ds

for every i,j,k,1 =0,1,...,d. We also assume that the last two expressions
are smooth as functions of the variable ¢ for 0 < ¢ < 1. To avoid painful lists
of hypotheses we assume, as much as needed, regularity and boundedness
properties on the coefficients.

Equation (1) will be studied with the following affine boundary condition:

(1a) Fo X5+ F\X{ =,

where F,, F, €4#,,,, f € R? are given and rank(F,:F,) = d. In particular
(1a) includes the case of periodic solutions by choosing F, = —F, =1,,, and
f= ORd'

In our application we shall be interested in the case of a two-point
boundary value problem: for 0 <! < d, writing F, = (F(;"’), F, = ( ,‘fi), with

Fy e, with rank I, and F| = €#,_,,, with rank (d - 1), if f= (;)
1

with f, € R! and f; € R¢~!, (1a) becomes

(1b) FoXs=fo, FiX7=f,

with rank (F:F;) = d being satisfied.

Before studying (1) with (1a), we shall recall the classical result for the
initial value problem, with

(1c) Xe =x,€ R4

We first notice that (1), with the initial value condition, has a unique
solution (X7); an explicit form will be given in Section 3 by using the
variation-of-constants formula. We shall consider this solution as a continu-
ous process in R9.

The pair (X7, Z¢) is a nonhomogeneous Markov process in R¢ X R" with
infinitesimal generator L,(X°*, Z¢) given by

L o[l fz)
+=b(t, 2) +a(t,z)) V.



552 J.-P. FOUQUE AND E. MERZBACH

Using a general result of Papanicolaou, Stroock and Varadhan (Theorem
2.8 in [9]), we have that (X/) converges in distribution, as & \ 0, to a Markov
diffusion (X,) on R? with infinitesimal generator L,(X) given by

L(X)—f / {((B(7,2Z0)x + b(t, Zy)) - V)
@) X((B(7,Z,)x + b(t,2,)) - V,)} dr ds
+(Ax +a(z)) - v,

This can be written in the form

2

1 d d d J
(4) L(X) = 9 Y Lo gt + .glﬁj(t’x)g

i=1j-1 ‘“Ci 9x;
with
a(t, x) _j ] ((B(7, Zo) x + b(t, Z,))
@) X(B(7,Z)x + b(t,Z,))}drds

ol .p
+[0 Tfo E{(B(r,Z)x + b(¢,Z2,))
X(B(7,Zy)x + b(t, Zy))"} dr ds,
B(t, x) = Ax + a(t)

(4 ©1
+fo TI;TE{B(T,ZS)(B(T,ZO)x +b(t,2,))} dr ds,

where the asterisk (*) denotes transposition.
We want to represent the limiting diffusion (X,) as the solution of a

stochastic differential equation. In order to specify this equation, let us
observe that for every ¢ in R¢,

d d
cicja,,j(t, x)
i=1j=1
5 w1
(5) ~2f Tf E{[c*(B(7,Zo)x + b(¢, Z,))]

X [‘c (B(7,2,)x + b(t,Z,))]} dr ds,

which is nonnegative for every x and ¢ in R? Its quadratic part

2[ Tf {[¢*B(7,Zy) x][c*B(7,Z,)x]}drds
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can be decomposed in R¢ ® R? into T} _(c* @, x)? with at most d? matrices
(Q,)in #,,,: r < d?. A change of origin in x enables us to include first order
terms in x in such a way that

d d r
I Lo (tm = X (@@t a®)

is a nonnegative quadratic form in ¢, with g,(¢) being an R%-valued smooth
deterministic function of ¢. Decomposing this nonnegative quadratic form in ¢
into X312, ((c*q,(¢))? with p < d, we obtain

d d r r+p
(%) .gl glcicjai,j(t’ x) = k§1 (c*(Qkx + Qk(t)))z + k=Z+l(C*Qk(t))2

with r <d?, Q,,...,Q, €4#,,, and q,(t),...,q,,,(t) € R%, smooth in ¢.

REMARK. The matrices @,, £ = 1,..., r, are independent of b; in particu-
lar, for b = 0 we have g, = 0. This remark will be important in Section 3.

This decomposition (5') enables us to define
U(t’ x) = (le + QI(t): :er + qr(t):qr+1(t): :qr+p(t))

as a d X (r + p) matrix satisfying o (¢, x)o (¢, x)* = a(¢, x).

Now let (W® .- W *P) be (r + p) real-valued independent standard
Brownian motions defined on a stochastic basis (Q,, &,(Z,), . ¢, W). We have
thus obtained the following proposition.

PROPOSITION 1. The continuous solution (Xf)y.,., of (1) and (1c) con-

verges in distribution to the unique continuous solution (X,)o.,., of the
stochastic differential equation

dX, = i (QkXt + Qk(t)) th(k)

k=1
(6&) r+p _

+ Y qu(t)dW® + AX, dt + QX, dt + a(t) dt + q(¢) dt,

k=r+1
(6b) X, = x, € R¢,
with
® T
Q=f0,if0 E{B(r,Z,)B(7,Z,)} drds

and

w1

a(t) = j(') —fOTE{B(T, Z,)b(¢,Zy)} dr ds.

N
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Since (1) with boundary conditions (1a) will lead us to (6) with boundary
conditions which will force (X,) to be anticipative, in order to give a meaning

to the stochastic integrals, we rewrite (6a) in the Stratonovich form:
r+p

(62) dX,= Y (Q,X,)cdW® + ¥ q,(t) dW® + AX, dt + a(t)dt
k=1 k=1

with
A=A+Q-1Y @ and a(t) =a(t) +q(t).
k=1

To end this section, let us consider three examples with A =a=56=0,
d =2 and B(7, z) = B(z) €4, ,.

ExampLE 1. Let B(z) = F(z)B with F(z) real such that E{F(Z,)} =0
and B # 0. Then a(x) = (V2aBx)(Y2aBx)* with a = [JE{(F(Z,)F(Z,)}ds
(we assume a # 0 and a < +« and, consequently, 0 < a < +»), r =1 and
Q@ = aB?, which implies

dX, = V2a (BX,) dW®.
EXAMPLE 2. Assume B, (Z,), By {(Z,), B, ,(Z,) and B, ,(Z,) are indepen-

dent processes. Then a(x) is diagonal with «; (x) = 2Y%_,«; , %}, where
a; , = [oE(B; ,(Z))B; ,(Z)}ds (0 < a; , < +). In this case, r = 4 and

10 0 1
dXt=\/2a1,1(0 O)X,oth(l)+1/2a1,2(0 O)XtodW,@)
0 0 0 0
+‘/2a2’1(1 O)XtodW,@’)+‘/2a2,2(0 I)Xtoth“’.

ExamPLE 3. Let B, ((2) = B, ,(2) = 0. A simple computation shows that

(O my

X, =,

0
)Xtodm(l)_'_ (n m2

, 0 )Xt o dW®

+{(C(“)' 2) ~ Yo+ a”)I}Xt dt

with
® )
m} + mj = 2/() E(B, 4,(Zy)B, s(Z,)} ds,
n} +nj = 2/;) E{B; (Z,)B;,(Z,)} ds,

o = j;wE{Bz,l(Zo)B1,2(Zs)} ds,

a” j(; E{BI,Z(ZO)BZ,I(ZS)} ds,

mqin, + myny, = a' + a”.

We notice that, in general, o’ # o”.
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3. The boundary value problem. Our goal is to obtain a result similar
to Proposition 1 when (1c) is replaced by (la) and when the stochastic
integrals in (6a’) are generalized Stratonovich integrals (with anticipative
integrands) studied in [7], Section 3.

We run into two problems:

1. Does problem (1) with (1a) have a solution?
2. How do we establish the convergence result for that solution?

Because the equation is linear, we shall use variation of constants to answer
the first question and to characterize the solution (X;). This characterization
will then help us to proceed with the second question.

Let (¢7) be the fundamental (d X d) matrix-valued solution of the linear
equation with initial value

d¢t€— 1B ! Z*’)+A ‘ YA €
(7) dt \e (a’ t (s’ f) ¢
¢g=IdXd’ OStSI.

We define ¢°(t,s) = ¢2(¢p2)! for s,t €[0,1] and

1
(8) Vf=fta(s,Zj) ds + —ftb(s,Z:) ds.
0

0 &

By the variation of constants formula we get
©) X7 = ¢°(6,0)X5 + ['¢°(1,5) AVe
and the boundary condition (1a) becomes
(10) (Fo+ Fy9*(1,0)) X5 =~ Fy ['¢*(1,5) dV?.

If M*=F,+ F,$°(1,0) is invertible, then X; is well-defined and X/,
given by (9), is the unique solution to our problem [(1) + (1a)].

Let D, be the subset of Q such that M is invertible: D {w € Q |det(M*)
# 0. Identifying .#,, ; with R?*?, {¢ €4, |det(F, + F;¢) + 0} is an open
subset of R¢*¢ and, therefore, D, is $<measurable. On D,, X¢ = (M*)™'(f —
F,[l¢°Q, s) dV?) and (XF, 0 < ¢ < 1) is given by (9).

In the sequel, the following assumption will be made:

(10') there exists &, > 0 such that for every ¢ & (0, &), P(D,) = 1.

This will be the case in our application. After our convergence result, we shall
indicate what to do if this i§ not the case.

Using the techniques recalled in Section 2, it is possible to prove the
convergence in distribution of (¢7, V,?) defined by (7) and (8); this is again a
classical diffusion approximation. Unfortunately, this is not enough to handle
the convergence of the integral [($°(Z, s) dV? = ¢f[{(¢7)~ dV involved for
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¢t = 1 in (10) defining X¢. The difficulty is due to the fact that the mapping
(¢,V) = [¢ dV is not continuous on the set of pairs of continuous processes,
for which V is a semimartingale.

In order to handle this integral, we shall study the convergence of the pair
(¢7,Y7), where (¢7) is defined by (7) and (Y;?) is the solution of (1) with zero
initial condition. Using (9) we have Y = [{¢°(¢, s) AV

Under our hypothesis (10'), the solution (X;) of [(1) + (1a)] can be written
as

(11) X7 = ¢f(Fo + F16°(1,0)) ' (f — F.Y?) + Y7,

which converges in distribution as a continuous functional of (¢, Y )., <1,
as the following result demonstrates.

PROPOSITION 2. The pair (¢7,Y/7),, o converges in distribution, as & \ 0,
to the Markov diffusion (¢,,Y,), o on £y, 4 X R? with infinitesimal generator
given by

=1
L($,Y) = /0 —f/OTE{[(B(T,zO)y +b(t,20)) - Vy + (B(7,Zo)¢) - V,]
X[(B(7,2,)y + b(t,Z,)) " Vy
+(B(7,2,)¢)-V,]}drds
+(A_y + c_l(t)) -Vy + (A—<p) - Vo

(12)

and initial values (¢y,Y,) = (154, Oga).

PROOF. The process (¢7, Y7, Z¢), o is a Markov process in /£, 4, X R? X
R™ with initial value (I, 4, Orq, Z,) and infinitesimal generator given by

L,(¢°,Y%,2°) = %L(Z) + (A(%,z)y + a(t,z)) - Vy
t
4(5)¢) v
(5[4 sce0) -5
ea(L e )o-ve)

We then apply the general result of Papanicolaou, Stroock and Varadhan
(Theorem 2.8 in [9]). O

(13)
+

REMARK. The process (¢, x, + Y,) is the limiting solution of [(1) + (1c)]
obtained in Proposition 1.
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In order to pass to the limit as & \y 0 in (11), we need the invertibility of
F, + F,¢,. For that we shall characterize the first component (¢,) of the pair
(¢,, Z,) in Proposition 2 as the solution of a stochastic differential equation,
and impose conditions on the coefficients of this equation. The infinitesimal
generator of (¢,) is given by

(14) L(¢) = jom%jOTE{(B(T,zo)go.v¢)(3(7,zs)¢-v¢)}d7ds+X¢-v¢.

Using the remark following (5), one can identify (¢,) as the ungiue solution
of the linear stochastic differential equation

= L (@¢) dWP + (A + @), dt,
k=1

b0 = Iixa>

where @, ..., @, and @ have been defined in (5') and Proposition 1. Equation
(15) is the matrix version of (6a) in the case b =0. We recall that
(Q,, £,(£,),W) is a stochastic basis for Brownian motion.

We shall assume that F,, + F; ¢, is W-a.s. invertible:

(15") W{det(F, + F,¢,) # 0} = 1.
Following Ocone and Pardoux [7], this hypothesis can be verified for the
coefficients of (15). In the Aypoelliptic case (i.e., when the ideal generated by

Q;,...,Q, in the Lie algebra of matrices generated by A=A+Q-
1y _ (@)% Qy,...,Q, has rank d?) we have

rank(F,:F,) =d < W{det(F, + F,¢,) + 0} = 1.

In the general case, the condition rank(F,:F;) = d does not imply (15'),
and the verification of (15') amounts to computing a finite number of determi-
nants which are expressible in terms of A, Q,,...,Q,, F, and F, (see
Theorem 4.8 in [7]).

(15)

PROPOSITION 3. Assuming (10') and hypothesis (15'), the unique continu-
ous solution (on D,) of [(1) + (1a)] (Xf; 0 <t < 1), converges in distribution,
as &\ 0, to the continuous process (X, = ¢(Fy + Fi¢;) " "(f — F,Y)) + Y,;
0<t< 1), where (¢,,Y,) is the diffusion defined by (12).

PrROOF. The only difficulty comes from the fact that (Xf) and (X,) are only
defined almost surely on their respective bases. It is enough to prove the
convergence along sequences (&,),., such that 0 < g, < g, for every n > 1
and lim, &, = 0; we have P(N,, D, ) = 1. Using Skorohod’s representation
theorem (Theorem 1.8 in [3]), we can find a probability space (0}, %, P) where
(qbf",Yt ,$,,Y,; 0 <t <1, n=>1) are defined in such a way that Law(( /7,
Y )o<i<1) = Law((dpf", Yr)g ., o1) for every n >1, Law((¢t,Y)Ostsl)
Law((¢;, Y,)o<:<1)s det(F0 + F ) # 0, det(F, + F,$) # 0 and
($f ,Y?1), ., ., converges, as nT + =, P-as. to ($,,Y,)y<,<, for the sup
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norm over [0, 1]. Defining P-as. (Xz )0 <¢<1lresp. (X))o, .,] as a continuous
functional of (/r, Y,), <t<1 [resp. (X,, Y)0<t<1] through (11), we see that
()g "o<s<1 converges P-as., as n1 + 0, to (X)g<,<1 (X)g<,<1 [resp.
(X,)g <+ <1] having the same law as (X )ogSl [resp. (X, )05,51] We con-
clude that (X;/"), ., ., converges in distribution, as n 1 + ®,to (X,)g.,<;. O

REMARK. If we only assume hypothesis (15'), we still have that
lim, o, P(D,) = 1. The set {¢ €4, 4/det(F, + F;¢,) # 0}, identified as a
subset of [RdXd, is open and the convergence in distribution of ¢; to ¢,
implies

limioan(det(F0 + Fi¢5) # 0) > W(det(F, + Fi¢;) #0) =1
EN

by (15'). Using again Skorohod’s representation theorem, (X7, <t<1, defined
through (11) on D, = {det(F, + F,$:») + 0}, and 0 otherwise, converges in

the sup norm over [O 1] in probability to (X,), <¢<1- This gives a meaning to
the statement that (X/),.,.;, defined on D,, converges in distribution to

(Xo<i<1-

We now give our main result:

THEOREM 1. Assume that (10') and (15') hold. Then (Xf)y.,.q, the
unique continuous solution of [(1) + (1a)] defined on D,, converges in distri-
bution as & \ 0 to the unique continuous solution of

(16) ° - Y (QuX,) e dW® + rzqu(t) AW + AX, dt + a(2) dt,
k=1

where

@D Q- Qrs q1r- -5 Grips A and @ have been defined in (5) and (6a').
(ii) The stochastic integrals are generalized Stratonovich integrals (see

[7D.

(iii) Convergence in distribution is as given in Proposition 3.

ProoF. Using Theorem 4.2 of [7] and property (15'), (16) has a unique
continuous solution. On the other hand, it follows from Proposition 3 that
(X))o <:<1 converges in distribution as £\ 0 to (X,)y_,., given by X, =
¢(Fo + F1é) (f—FY) + Y,
 Therefore, the only thing that remains to be proved is that (X,),.,., is a

solution to (16). Indeed (16) is satisfied. We have

b=+ % [(Qu)odW® + [Ag, ds
k=170 0
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In order to compute ¢,X,, we use Proposition 3.3 of [7] and enter X, in the
Stratonovich integrals, which are then defined as generalized Stratonovich
integrals [ X, is not (Z,)-adapted]. Therefore, we obtain

$:Xo=Xo+ L [(QubXo)odW® + [, X, ds.
k=170 0

We then have
Xt = d’th +Y,

=X, + X ft(Qk¢on)°dWs(k)+ ftA‘f’on ds
k=170 Y
U e
+ ¥ [(QY)dW® + T [q(s) dW®
k=170 k=170
¢ - t
+ | AY,ds + | a(s) ds
fo L ds j;)a(s)

=X, + ¥ [(QuX,)dW® + ['AX, ds
k=170 Y

r+p

+ ¥ ['au(s) aW® + [a(s) ds,
k=170 0

which is the integral form of (16).
The boundary condition (1a) is also satisfied:

FoXy+ F X, = Fo(¢o(Fo + Fiy) '(f - FiYy) + Yo)
+F1(¢1(Fo +Fi¢) (- FiYy) + Yl)
= Fy(F, + Fy¢y) ' (f — F1Yy)

+ Fyby(Fy + Fi)) " '(f - F1Y,) + FiY,
=f. o

Before giving our example, which was our original motivation, we make
some comments:

1. Proposition 3 gives a “classical” characterization of the limit (X,), in the
sense that (X,) is obtained via classical diffusion approximation results on
(¢f,Y7). Theorem 1 gives a “nonclassical” characterization of (X,) and is
interesting in the sense that it enables us to apply the results of [7] to
study the properties of (X,) such as the existence of probability densities
or Markov properties.

2. We have presented here a model of an equation “driven” by a Markov
process. Obviously, the results of this paper can be extended to much more
general situations by using diffusion approximation results, such as in [4],
[3] or [5], provided we have enough mixing in our model.
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3. Recent results on nonlinear situations with boundary conditions [2], [6], or
[10] give some hope to treat nonlinearity in (1).

4. Application to waves in random media. We come back to a prob-
lem studied in [8] (and references therein). We look at this problem from the
point of view of the result obtained in Section 3.

Let us describe the simplest form of the problem.

For a fixed L > 0, we consider the one-dimensional acoustic wave equation
in the interval 0 < x < L:

du 4 ap 0
17 )+ 5 =0
(17) . 1 dp du

K(x) at i %,

with boundary conditions to be specified later. Here u = u(x, t) is the veloc-
ity, p = p(x,t) is the pressure, p(x) is the density of K(x) is the bulk
modulus.

Let (Z,), . o be a Markov process like the one considered in this paper. We
assume that p(x) = 1 + n(Z?) for some smooth function n taking its values
in [—c,c] with 0 <c <1 [we need p(x) to be positive]; we assume the
centering condition E{n(Z,)} = 0 and recall that Z = Z, /62 for0<e<x 1.
For simplicity, we take K(x) to be constant equal to 1. This is a homogeneous
model in the sense that p(x) is stationary.

Without fluctuation (n = 0), (17) can be rewritten with A = u + p and
B =u —p in a very simple form: A satisfies JA/dx = —JA/Jt and will
then be called the right going wave; similarly, B satisfies dB/dx = dB/dt
and will called the left going wave.

We rewrite (17) for the right going wave A = u + p and the left going
wave B =u — p:

N 9 (A -1 0)9(Aay, 1 . (-1 -1}9(A
a7) E(B) - ( 0 1)5(3) * 5"(Z”)( 1 I)E(B)'

Our boundary conditions will correspond to a pulse entering the interval
(at x = 0) at time ¢ = 0 with nothing entering the interval at its end x = L.

We assume p(x) = K(x) = 1 for x & [0, L] and continuity for the solution at
x = 0 and x = L. The boundary conditions are

17) A(0,t) = 8o(¢t) and B(L,t) = 0,‘ ve.

Considering g as a stochastic process indexed by x for 0 < x < L, the

, problem (17') with (17”) is an infinite-dimensional problem due to the vari-
able ¢ (of course x will play the role of a time for the solution seen as a
process in x).

In a more realistic way, we should have a pulse of the form f(¢) for some
C” function f with compact support in R, . This means that with (17") we are
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studying the Green’s function for our problem (17'). Taking the Fourier
transform in time at the rescaled frequency w /e, we define

A (x,w) = feiw‘/sA(x,t) dt and B°= fe"“’t/EB(x,t) dt.

In order to center the equation, we change the phase by setting
A*(x,w) = A°(x,w)e**/* and B°(x,w) =B*(x,w)e ®*/*

and, therefore, (17') with (17”) can be rewritten in the following form, when w
is considered as a parameter:

d [ A iw . 1 e-2iwz/s\ [ Ae
(18) dx(és) 2317(Z”)(_e2iwx/a 4 )(és), 0<x<L
with
(18) A®(0,w) =1 and B?*(L,w) =0.

Of course, our problem is still infinite dimensional since we have (18) for
all frequencies w. Nevertheless, the study of this problem for a finite number
of frequencies gives information on the global solution, as explained in [8]. We
shall study (18) and (18') for one fixed frequency w # 0 (monochromatic
wave) and we shall comment at the end on the multifrequency analysis.

In [8], Papanicolaou studied the reflected coefficient B*( y) for (18) with
0 <y <x < L and the two-point boundary value condition As(y,w) =1 and

B(L,w) = 0. At y = 0, this is B*(0,w) = B%(0,w) for our problem [this
quantity is denoted R*(w) or R{(w) to indicate the dependence upon L].

Here we keep the interval [0, L] fixed and study the unique solution
(A®(x,w), B°(x,w)) ., of the problem [(18) + (18)]. Replacing x by ¢
and [0, L] by [0, 1], this problem is like [(1) + (1b)] studied in this paper,
except that the solution is complex (C2-valued).

Using Theorem 1 (Section 3), we shall prove that (A°, B?) converges in
distribution, as £\ 0, and identify the limit as the unique solution of
problem (16).

We shall then show that for every x in (0, L), the limit has a probability
density with respect to Lebesgue measure. Finally, we shall show that the
limit has the Markov field property. For that, we rely strongly on results from
Ocone and Pardoux [7] for R%valued processes. Without any doubt, these
results can be extended to C%valued processes, but to stay in a reasonable
length we shall work with X* = (Re(A*), Im(A®), (Re(B*), Im(B*)) in R* (at
the expense of having to work in four dlmensmns instead of two: see the

remark following Theorem 2).
For (X£)y. ; <1, [(18) + (18] can be rewritten as

ax:z 1 /x
dx_a( )

(19)

and
(19) FoX5=fo, FLX[=T1L,
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where
0 -1 sin2wt —cos2wT
_w 1 0 cos2wr  sin2wrt
B(r,2) = 31| gnowr cos2wr 0 1 ’
0 —cos2wt sin2wrT -1 0
(20) o (1 0 0 0 fo= (1)
0 0O 1 0 0) 0 0)’
, [0 0 1 O _10
FL - (0 0 0 1)’ fL (O)’

Since [(17') + (17")] is well posed, condition (10') holds.
One can easily compute the limiting infinitesimal generator given by (4)
and obtain:

2x2 + x% + x2 —2x,%, —8x5%4 tX3%; 3Xy%3 + X%y
21)  a(x) - w? . 2x% + 22 +x2  Bxyxy +x9x3  —3Bx;x5 + x5%,
4 . . 2x2 + x2 + x2 —2x32, ’

2x2 + x? + x2

where a(x) is symmetric, and
a= [ Eln(Zo)n(Z,)} ds.

We assume 0 < @ < +® (@ < + has been assumed in the diffusion-ap-
proximation result and o # 0 means the presence of randomness in our
problem) and
B(x) =o.
From now on x will be in the state space R* and ¢ will denote the variable
in [0, L].
One can check that o(x)o(x)* = a(x) for

o(x) = (Qx:Qyx:Q;x)

with
0 -1 0 0
Q=W‘/551 0 0 0
! V2 |0 0 o 1/
0 0 -1 0
0 01 0
22) 0, = xlo 0 01
2 2 |1 0 0o o)
01 0 0
0 0 0 -1
.-l 001 o0
8 2 01 0 ol
-1 0 0 0
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By Proposition 1, the solution of [(19) + (1¢)] has a limit in distribution, as
& N 0, which is the unique solution of the It6 equation

3
dX, = X)dw®» 0<t<L,
(23) ' kgl(Qk :) dW,

One can easily check that £} _ ;@2 = 0, which implies that Ito integrals can
be replaced by Stratonovich integrals. We then get the following theorem.

THEOREM 2. The unique solution (Xf), ., of [(19) + (19')] converges in
distribution, as & \ 0, to the unique solution of
3

(24) dX,= Y (@,X,)edW®, 0<t<L,
k=1

with

(24,) Fy X, =f07 FL X, =fL-

ProOF. One can check that F, + F,I,,, is invertible with F, = (01:{, )
X4

and F; = (0;3‘4 . By Theorem 4.8(i) in [7], [(23) + (24')] has a unique contin-
L

uous solution, the stochastic integrals being generalized Stratonovich inte-
grals. Theorem 2 is then a consequence of Theorem 1. O

REMARK. Reintroducing (‘;) in C? suchthat A = X' + iX?and B = X3 +
iX*4, we get

A, 3 A, \
(24") d = Y P odW®,  0<t<L,
Bt k=1 Bt
with
(24’”) AO = 1, BL = O,
where
p Wi o p_Weo 1y L, _waig
1T 2 lo —i) 2T T\ o) 3T T \-i o)

Problem [(24”) + (24")] is the expected equation with boundary condition if
we worked from the beginning in C? with problem [(18) + (18')] instead of R*
with problem [(19) + (19')].

In order to study the existence of a probability density, with respect to
Lebesgue measure on R*%, for the law of X,, 0 <t <L, we first discuss the
. problem

3 3
(25) dy, = Y (@Y,) dW® = 3 (@,Y)dW®
k=1 k=1
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with

(25) Y, =

SO O

[Because Y2_,@Z = 0 in (25') we can replace Stratonovich integrals by It6
integrals.]

It can be easily checked that the following three matrices R;, R, and R,
commute with @,, @, and Q;:

0 -1 0 0 0 0 1 0
_ |1 0 O 0 _10 0 0 -1
B=lo 00 -1 %=|1 o0 0 o
0 0 1 0 0 -1 O 0
0 0 0 1
_10 0 1 O
Bs=10 1 0 o
1 0 0 O
Therefore, (R,Y,) [resp. (R,Y,), (R,;Y,)] is the solution of (25) with initial

value

0 0 0
1 0 0
0 resp.| 1 |5 | o
0 0 1

This gives us a simple representation for the fundamental solution (¢,)
with initial value I, ,:

vy, -y* v v
thz Yt1 _Y't4 Yt3
Yt3 _}7t4 Ytl Ytz .
v,y -Y?2 Y

Since tr(Q,) = 0 for £ = 1,2,3, we have det(¢,) = det(p,) = 1 for every
t > 0. This implies

2 2 2 22
()" + (72) = (v2) - (7)) =
By continuity with respect to ¢ and the value at ¢ = 0, we get
(27) (Y + (Y2) =1+ (Y2)" + (Y*)" foreveryt = 0.
. One can observe that this is nothing but the conservation of energy in the
mterval [0,¢]: (V12 + (Y,2)? + (V)2 + (Y$)? is the energy going out (|4,
+[Byl*) and (Yol)2 + (Y02)2 + (Y3)2 + (Y,*)? is the energy entering [0, ?]

(|A,)* + |B,|?), where we have our initial value problem (25'): Y =1, Y2 =

(26) ¢, =
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Not surprisingly, this tells us that Y, does not have a density with respect
to Lebesgue measure on R*, since it belongs to the submanifold (y,)* + (y,)?
=1+ (y3)? + (y,)?, which has dimension 3.

Using the notation of [7], (¢,) belongs to G, the connected component
containing the identity of the matrix Lie group generated by £, the Lie
algebra of matrices generated by @, @, and Q.

One can check that in our case

a —b c d
(28) G=1¢= ’c’ ° ‘ad ¢ | eixa(R); a> + 62 = 1+ + a2,
d ¢ -b a

REMARK. On C, G is simply

SU(L,1) = {¢> - (‘; f_) € 40,5(C); 1A — |BP = 1}.

By Proposition 4.6 of [7], for every ¢ > 0, the law of ¢, admits a C* density
with respect to v, the induced (from R***) volume measure on G.

Coming back to our problem [(24) + (24')] and its unique continuous
solution (X,, 0 < ¢ < L), we have the following result.

THEOREM 3. For every t in (0, L), the law of X, has a density with respect
to Lebesgue measure on R*.

ProoF. We use Proposition 5.12 in [7]; with similar notations, the exis-
tence of a density is equivalent to the existence of a point (u,v) in R* X R*
such that:

D u;=1,u,=0, v3=0,0,=0 (that is, Fyu + Fyv = f).
(ii) There exists T in G such that v = Tu and F,, + F,T is invertible.
(iii) Span{F,Q,u; k = 1,2,3} + Span{F;Q,v; k = 1,2,3} =

REMARK. It can be checked that [@,, @,] (resp. [Q,, @;], [Q;,Q;) is
proportional to @, (resp. @,, @,). That is why, in (111) we only need @, with
k =1,2,38. For (u, v) satisfying (i), we have
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and, with ¢ = w\/z/2 # 0,

_u4 0 O
FoQou =cC Us ) FLsz =cC 0 and FLQ3U =cC 0
0 v A Uy

0 02 _vl

Choosing u, = 0 and v, = 0, it is easily seen that v = Tu has a solution T
in G provided that 0 < u3 < 1. We then have v? =1 — u2 and if T is as in
(26),

Because F, + F,T is invertible for every T in G, the three conditions are
satisfied. O

5. The Markov field property. We shall first observe that under our
two-point boundary value problem, there is a one-to-one correspondence
between (X, X;) and ¢,, the fundamental solution of (25), at ¢ = L. Also we
recall that (¢,) is related to (Y;) through (26).

We have ¢, X, = X, which can be solved either in (X¢, X, X}, X?) or in
(YA, Y2, Y2, Y. Using also (Y)? + (Y2)? = 1 + (Y2)? + (Y)?, which is (27)
at ¢t = L, we can get

X, Y.
x| 1 Y2

(29) X2 (v + (v2)| YRV - YAV
x¢ —YAY2 - YAV

where (YL1)2 + (YLZ)2 > 1.
From this we get
(30) (X" + (X2)" + (X3)" + (X8)" =1,
which is again the conservation of energy in [0, L] under (24'). It follows that

(X3)? + (X})? = |By|? < 1 since, if not, X} = X? = 0 and then X, = 0, which
implies X, = 0 and contradicts (24'):

T( XO)YL =X
where
1 o x Xt
' o 1 Xx¢ -Xx3
(31) T(X,) = 0 ®| isinvertible

X Xt 1 0
Xt -x3 o 1
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since its determinant is equal to (1 — (X$)? — (X$)?)? and (X@)? + (X3)? < 1
by the previous argument.
The relation (30) shows that the process (X,), ., . is not Markovian [ X,
and X; are not conditionally independent given X, for ¢ in (0, L)].
Nevertheless we have the following theorem.

THEOREM 4. (X,), ., .1 satisfies the Markov field property: forany 0 < s <
t <L, the o-algebras 0(X,; s<v<t), o(X,;0<u<s)Vo(X,;t<w<
L) are conditionally independent, given (X, X,).

PROOF. The situation is similar to Example 6.2 in Section 6 of [7], except
that it is four-dimensional instead of two-dimensional.

Nevertheless, the proof given in [7] can be generalized to our situation
because of the following remark: (81) can easily be generalized into

(31) T(X,)Y,=X, forevery0 <t <L,

with T(X,) invertible and commuting with G defined in (28). This last point
can easily be checked from the definitions of T(X,) in (31) and G in (28). It
implies that T'(X,) commutes with any ¢(¢, s) = ¢,(¢,)"".

It follows that for every 0 <r <s <t <1L,

(32) o(X,uée(r,t)=0(Y,;ué(r,t))

[which is also equal to o (¢,; u & (r, 1)) by (26)].
We want to prove that for any ¢ in Cy(R*),

(33) E{o(X,)|X,; u # (r,0)} = E{e(X,)IX,, X},
We shall first prove that for any ¥, bounded and Borel, on R4*4,
(34) {¥(#(s,r))lY,,Y,}is o(X,, X,)-measurable up to sets of measure 0.
From the independence of Y, and (&(s, r), (¢, r)) we get
E(¥($(s,r)IY,, V) = E{(E{¥(¢(s,r))lo(¢, 1)}V, Yy}

Hence it suffices to prove that E{ p(¢(¢, r)IY,,Y,} is o(X,, X,)-measurable
up to sets of measure 0 for any bounded Borel p on R**%. The conditional
expectation E{ p(¢(t, r))|$(t, r)x} is a measurable function of ¢(¢, r)x, which
can be written H(x, ¢(¢,r)x) for a measureable function H. For every
invertible @ in .#,, ,(G) commuting with G we have that

E{ p($(t,7))lad(t,r)x} = E{ p((2,7))I$(¢, 7))
= E{ p((t,7))ld(t,7)ax}.

Consequently, we may assume H(ax, ay) = H(x, y). Since Y, and ¢(¢,r)
are independent, one can choose H so that H(Y,,Y,) is a version of
E{ p(¢(¢, r)Y,,Y,}, which gives the desired result by choosing a = T'(X,).
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To end the proof of (33), one can write
Elo(X)|X,; u & (r,8)) = B{o(T(X,) d(s, )Y, V.3 1 & (r,0)} [by (32)]
= Elo(ad(s,N)Y) Y, u & (r,0)lac 1z
= E{¢(ad(s,r)Y)Y,, Y Ha-rcxy

by the Markov field property of (Y,),.,.; [(Y,) is Markovian]. This last
quantity is equal to

E{o(ad(s,r) )Y, Yi}la-1xp,y-v, = E{e( (s, 1) ap)|Y,, Y Hlam1xp), y-v,
=E{o(¢(s,r)x)Y,, Y, }.-x ,

which is o (X,, X,)-measurable up to sets of measure 0 by (34). This gives
(33) and, therefore, the desired Markov field property for (X,)_, ;. O

We end this paper with two remarks:
1. One quantity of interest in this problem is the reflected energy
Bol? = (X3)° + (X4)° = S(L)
to indicate the dependency upon the length L. From (29) we get

(Y2)" + (¥2) (Yz)" + (¥7)

If we denote by R, the (adapted) process (Y,!)? + (Y,2)?, we have S(L) = 1/R;.
Using standard stochastic calculus, one can easily show that if Z, = log R,
we have Z, = M, + (w%/2)t, where the martingale M, is given by

w/a
R,

A simple computation shows that (M ); = w?(1 — 1/R,), which implies that

B Mt)2 1 E((M) w? - 1 w?

— == = —|1-E{=}]| < —.

( t B} = = R, t2
Therefore, (1,/t)Z, converges in L? to w%/2 as t » + and we obtain

1 wi
(35) —L—log(l —S(L)) convergesin L* to — —5as L 7 +oo,

M, = ——((YIY2 + Y2Y) dW® + (Y2Y2 + Y[YA) dW®).

Since 1 — S(L) = (X})? + (X2)? = T(L) is the transmitted energy, we get
T(L) ~ exp(—(w?x/2)L) [as L » + in the sense of (85)]. This is much
weaker than the exponential decay obtained in the localization theory since a
limit in distribution, as & \ 0, has been taken first.
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2. Everything we have done here for one frequency w can be generalized
to (X*(w,),..., X*(w,)) for n frequencies (w,, w,,...,w,).

It is more interesting (see [8]) to study this problem for two close frequen-
cies such as w; =w + ¢h/2 and w, = w — ¢h/2. This analysis will be
carried out elsewhere.
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