The Annals of Applied Probability
1994, Vol. 4, No. 2, 494-528

LAW OF LARGE NUMBERS FOR A HETEROGENEOUS
SYSTEM OF STOCHASTIC DIFFERENTIAL EQUATIONS
WITH STRONG LOCAL INTERACTION
AND ECONOMIC APPLICATIONS

By WiLLiAM FINNOFF
Siemens AG

A model for the activities of a finite number of agents in an economy
is presented as the solution to a system of stochastic differential equations
driven by general semimartingales and displaying an extended form of
strong local interaction. We demonstrate a law of large numbers for the
systems of processes as the number of agents goes to infinity under a
weak convergence hypothesis on the triangular array of starting values
and driving semimartingales which induces the systems of equations.
Further, it is shown that the limit can be uniquely characterized by the
distributions of the coordinate processes of the solution to an associated
infinite-dimensional stochastic differential equation. Finally, an explicit
example describing a currency market is discussed.

0. Introduction. In this paper we will investigate laws of large numbers
for systems of stochastic processes with interaction, where the processes
describe the activities of agents in an economy. Let N denote the natural
numbers, and let ¥ = Z" be the v-dimensional integer lattice, where v € N is
arbitrarily chosen but fixed. Further, for Ne N, let Cy =[-N,N]* n&%
denote the N-cube. Then the model we use to describe these activities for an
economy of |Cy| agents is given at the microeconomic level by a vector of
stochastic processes X{ = (X)), ¢, , where X¥ = (X7),_, is the solution
to the stochastic differential equation:

XY =0 forie\Cy,

N .
W) xvey - xy + [ g(s,6(X¥))ZN(ds) forieCy.
[0,8)

Here C? = C([0,), R?) denotes the space of continuous paths in R¢ with the
topology of local uniform convergence, 6, denotes the i-shift ( fies—
(fi+))jc s> on (C?” and g:[0,%) X (C?)” - R?*™ is a function such that, for
every (¢, f) € [0,) X (C?)”, g(¢, f) = g(t, f(- A t)) and such that g satisfies
a Lipschitz condition [see Condition (3.1), (CL)] guaranteeing the existence of
a unique solution to the equation. Finally, ZéVN is a vector of square inte-
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grable R™-valued continuous semimartingales and K@’N is a vector of R%val-
ued starting values. At the macroeconomic scale one can described the same
economy by functionals of the “empirical measure” ¢ = (1/|CyDE;c ¢, Exn
belonging to the vector Xé";v , where &, denotes the Dirac measure on the
point x. Here, the empirical measure provides a natural formalization of the
distribution of activity in the economy. In this paper we try to determine
under what circumstances the sequence of empirical measures (¢")y o Will
coverge to a deterministic limit measure w, and if this is the case, how this
limit can be characterized. The economic interpretation of this question is
whether for a large economy (i.e., for N — ) the dynamics of macroeconomic
variables are deterministic and can be derived in a rigorous fashion from
“realistic” microeconomic models.

There has been considerable discussion in recent years as to whether the
observable fluctuations of macroeconomic variables are due to stochastic,
unpredictable “shocks” or to complex deterministic dynamics [see Aoki (1980),
Feldman and Gilles (1985), Finnoff (1989, 1993), Grandmont and Malgrange
(1986), Green (1984, 1989), Jovanovic and Rosenthal (1988) and Judd (1985)].
Follmer (1974) and Jovanovic (1987) showed that in the case of interaction
that is strong and complex enough, randomness at the microeconomic level
can propagate to the macroeconomic variables of a large economy. This paper
is intended to provide insight into the circumstances under which the deter-
ministic hypothesis can be given a rigorous foundation in the case of interac-
tion over decentralized markets. Our hypotheses on g are such that only the
activities of “neighboring agents” will have a strong influence on the activi-
ties of a given agent and are a natural extension of the case where the
interaction radius is bounded (strong local interaction). Otherwise the hy-
potheses are general enough so that a wide variety of models of (possibly
adaptive) decision making can be taken into account [see, e.g., Blackwell and
Girshick (1979), McFadden (1981), Pudney (1989) or Roth (1989)].

A solution (X‘f:\’;v ) to () can be seen as the finite-dimensional approxima-
tion of an infinite system of equations. The infinite-dimensional version is
given by

() X,(¢) =K,.+j[0 )g(x,@i(Xy))Zi(ds) for i €.

where, for i €.%, K, and Z; are defined in an analogous fashion as before. If,
forevery N € N, K = (K),cc,, Z, = (Z), ¢, and the law (K, Z)); c 5}
is shift invariant and ergodic, one would expect by existing results [see
Deuschel (1988) and Holley and Stroock (1981)] that the solution to (=) would
be itself ergodic and, as such, that the corresponding sequence of empirical
, measures would converge to a-deterministic limit measure [see, e.g., Ellis
(1985)]. Unfortunately, the stochastic elements of microeconomic models
cannot generally be assumed to be identically distributed or to have any
specific correlation structure such as independence or strong mixing (see
Finnoff (1989, 1993), Follmer (1974)]. There is considerable evidence though
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to support the assumption that in the case of no observable interaction, the
sequence of empirical measures will converge at least in law to a determinis-
tic limit [see Finnoff (1989, 1993), Feldman and Gilles (1985), Green (1984)
and Judd (1985)].

This convergence is formalized in a concept we refer to as point conver-
gence. Let A = (YN )LNEGCNN be an “array” of random elements in some topologi-
cal space E, and let u be a Borel probability on E. Then we say that A is
point convergent with limit u iff the sequence of empirical measures
(& yen = (1/ICyDE; cc, &yr converges in law to the point u (ie., F{ol)
— &, in the sense of weak convergence of measures). This concept is closley
related to “level II” convergence from the theory of large deviations (see Ellis
(1985)] and is sometimes referred to as propagation of chaos for special types
of arrays [see Sznitman (1984a), Dawson (1983) and Example 2.11].

NeN

An essentially minimal requirement for the point convergence of (X~ )ie C
is the point convergence of the “array” of driving processes and starting
values. In another paper [see Finnoff (1993)] we investigated this question for
similar models displaying weak global interaction, and we were able to show
[under further weak regularity conditions, see Condition 3.1 (CP)(ii)] that the
array of solutions to comparable equation (N), N € N, is point convergent.
Thus, the property of point convergence can be seen as being in some ways
invariant to weak global interaction. In another formulation: One can add
certain types of weak global interaction to a point convergent array of
processes without losing this property. Based on this result it might be
supposed that this property is also preserved under strong local interaction.
Unfortunately, this turns out not to be the case (see Example 2.6). To insure
the point convergence of the array (X;V)L¢\ of solutions to (N), N € N, we
will require a stronger condition on the array of driving processes and
starting values than simple point convergence.

‘Let I = (&N )fve‘?c'l\'v be an array of random elements in a topological space
E. Further, assume that the individual components of a vector (&V )iec, In
the array interact in some way with the neighboring components. Then, one
might choose as sample variables the “clusters” of random variables in E1,
N =( Ndjccp L € I ={i €5: i + C, c Cy). Here, the new sample vari-
ables consist of the original variable together with all its direct neighbors on
the lattice. In the economic interpretation of the model, these “cluster vari-
ables” can be seen to represent the activities of an individual agent (the
original variable) and a “reference group” of further agents with whom direct
information exchanges may take place [see Féllmer (1974)]. If the array
formed in this fashion is point convergent, we say that I' is point convergent
for C;-clusters. Extending this concept to every H € CI = {H c.%: |H| < «},
we speak of I' being point convergent for H-clusters. Finally, if I' is point
" convergent by H-clusters for every H € Cl, we say that I' is point convergent
for clusters. This concept is closely related to the “level III” convergence from
the theory of large deviations [see Ellis (1985)].

We will show that if the array I' is point convergent for clusters, there
exists a shift-invariant measure u on E¥ so that the limit of the H-cluster
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array coincides with the H marginal of u. This measure u is referred to as
the cluster limit of T.

Assume that A is point convergent for clusters with cluster limit u =
A(K;, Z);c o} Further assume that the equation () is defined using as
starting values and driving processes the corresponding elements of
(K;,Z;);c & of this cluster limit. It will turn out that this condition on the
array A (together with the Lipschitz and regularity conditions mentioned
above) will be sufficient to insure that the array (X} )fve‘?CN is not only point
convergent, but also point convergent for clusters where the cluster limit
AX), o) is given by the solution to the equation («). Our method for
demonstrating point convergence of processes uses the following program: We
first define arrays of approximate solutions by time discretization. Then we
show that these arrays are point convergent and converge uniformly in N to
the array of genuine solutions. From this we can demonstrate the point
convergence of the array of genuine solutions and characterize the limit using
the limits of the approximating arrays. The criterion of point convergence for
clusters was found while trying to carry out the first step and, considering the
examples presented in Section 2, appears to be fairly minimal.

Although the models considered here are motivated by economic considera-
tions, they are general enough so that the results derived may be of interest
in other fields. One possible area of application is in the analysis and
simulation of “distributed parameter systems” used to model large-scale
engineering systems [see Polis (1983) and Tzafestas and Stavroulakis (1983)].
Further, our results may provide insight into the hydrodynamic limiting
properties of heterogeneous systems of interacting particles [see Spohn
(1980)]. Further, Theorem 3.3 may be of independent interest to those work-
ing with discrete time models or performing Monte Carlo simulations and
“approximation through simulation” using Monte Carlo methods for certain
types of nonlinear partial differential equations [see Babovsky (1994), Eng-
quist and Hou (1989), Griffiths and Mitchell (1988) or Seidman (1988)].

In Section 1 we present a number of technical preliminaries used in the
sequel. In Section 2 we investigate point convergence for clusters in detail
and introduce a useful criterion for the point convergence for clusters, called
point convergence for partitions. We show the relationship between point
convergence for clusters, for partitions and simple point convergence and
demonstrate the existence of the cluster limit. In Section 3 we carry out the
steps of the program given above to demonstrate the point convergence for
clusters of the array of solutions to the equations (N), N € N. Finally, to
illustrate the application of these results, in Section 4 we provide an example
describing a currency market.

0.1. Conventions. Here we list the notation and conventions with regard
to topological and probability spaces that we will be using in the sequel. In
the following E will always denote a Polish topological space and
(Q, %, (F);c(0,«), P) a fixed filtered probability space on which all random
elements are defined and to which all relevant concepts (stopping time,
semimartingale, etc.) refer.
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1. We denote by N the natural numbers, by R the real numbers, by Z the
integers and by Z, the positive integers.

2. Let t € [0,), let I be some finite set and let {x;: i € I} c E. Then we will
denote by |I| the cardinality of the set I and by x; the vector (x,); ;.

3. Let H and G be sets, H c G. (i) For the topological space E, £(E) denotes
the family of open sets and #(E) denotes the family of Borel-measurable
sets in E. (ii) M(E) denotes the space of Borel measures on E equipped
with the weak topology, and M;(E) denotes the subspace of Borel
probabilities.(iii) Denote by #(E) the set of continuous functions f: E —» R
and by .#(E) the set of Borel-measurable functions f: E — R. Further,
define %,(E) = {f € #(E): f bounded} and #,(E) = {f<c#(E). f
bounded}. (iv) E® denotes the product space equipped with the product
topology. Define pr§: E¢ — E", xg — x,, (the projection mapping). (v)
C([0,), E) denotes the space of continuous functions f: [0,®) - E, x —
f(x) equipped with topology of local uniform convergence. (vi) Finally, &
denotes the Dirac measure on the point x € E.

4. Let u be a signed measure of bounded variation on the Borel sets of E.
Then () if fe#(E) is such that the integral [;fdu exists, we write
{f, w) = [gfdu, and (i) || ully denotes the variation norm of u.

5. Let £: Q) —» E be a Borel-measurable mapping (random element) in E. The
Borel probability induced by such ¢ is denoted by Z{¢).

6. Let X be another topological space, let u € M(E) and let f: E — X be a
Borel measurable mapping. Then fu will denote the image measure of u
under the mapping f.

7. Letu €N, f, g € C*, A, u € M(C"). i) We denote by m, the metric on C*
defined by setting

m(1.0) = £ 5((supl 75) g0l 1)

2l
ieN
(i) Let %, denote the family of L € &,(C*) so that, for every x, y € C¥,
|L(x) — L(y)| < m,(x, y) and |L| < 1. Then 7, denotes the induced metric
on M(C") deﬁned by setting rm,(A, ) = supyc o |/Ldu — [LdA| (the
Kantorovitch-Rubenstein metric).

1. Preliminaries. We first give a precise description of the mathemati-
cal objects that we will be the subject of our investigations.

DEFINITION 1.1.

(1) Let I be a finite index set and Iet & be a random element in E.. We
then define the continuous mapping ¢i: Ef - M\(E), x; » (1/IIDX; 1&,
[see Schief (1986), page 5, resp., Tops¢e (1970), pages 68 and 48]. The random

, element in M,(E),

IIl Z ¢&; qp}é(fl),

iel

is called the empirical measure belonging to &;.
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(i) An indexing is a pair consisting of a subset NofN, IN\N| < », and a
family of finite subsets {FN: N € N} of some set H with the property that for
every N M € NN <M, FN c F™.

(iii) An array of random elements on E (or simply array) is a pair (I, A)
consisting of an indexing I = (N, {FY: NeN}) and a family of random
elements A = (&)Y €N [= (&N)N<=N], where £ is a random element in
EF", for every N € N. (The apparent double indexing with N in & allows
us on the one hand to go over to one of the coordinate variables £, i € F¥,
without danger of confusion and on the other hand recalls that generally
EN = eM for N + M)

Since the indexing I is given (at least implicitly) by the family A in the
definition of an array, we will not make explicit reference to it in the sequel.
Further, N will always denote some subset of N such that [N\ N| < «. We
will be concerning ourselves with the convergence of the sequence of empiri-
cal measures induced by an array of random elements. Let A = (&%) <N be
an array. In the sequel, for every N € N,

¢A IFNl Z ng

ieFN

denotes the empirical measure belonging to &2.

LEMMA 1.2.

(1) Let x € E, let #" be a subbase of neighborhoods of x, let E € # and let
(MN )Y <N be a sequence of Borel measures on E. Then (u¥ )N <N converges to
&, iff, forany I' €/,

pN() > 1 forN — .

(ii) Let A be an array in E and let u be a Borel probability on E. Then
(A, u) is point convergent iff for every G € £(E) and & > 0 [resp., f € ,(E)],

11m [FI’(goA (G) > u(G) —¢)=1

[resp., the net of random variables ({f, o )V <N converges in probability to
(fy mdl

(iii) Let u € N, let A be an array in C* and let u be a Borel probability on
C". Then (A, u) is point convergent iff, for every f € {g € %,(C"): there exists
a t €[0,) so that, for every x,y € X, xlj0,s) = ¥ljo,¢), then g(x) = g(y)}, the
net of random variables ({f, o ))N <N converges in probability to {f, u)
[resp., (M, (o, W)V =N converges in probability to zero].
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Proor. See Finnoff (1993), Lemmas (1.2) and (1.3). O

Using the transformation formula we have the following corollary as a
consequence.

COROLLARY 1.3. Let X be a further Polish space, let f: E > X be a
continuous mapping and let A be a point-convergent array in E with limit u.
Then (recalling notation 6 in subsection 0.1) the image array f(A) =
(AXPNYNSN is point convergent with limit fu.

The following concept will be used repeatedly in the sequel in situations
where one is only concerned with asymptotic properties of an array and it
proves more convenient to work with a slightly modified version of the
original array.

DEFINITION 1.4. Let (¢¥)¥<N and (¢¥)¥<N be sequences of discrete

random measures on E. Then (¢")" <™ and (93 )" <N are called asymptoti-
cally equivalent iff the sequence (loY — ¢ [[2)Y <N converges uniformly to

. . (e
zero. In this case we write ¢} = ¢l.

The value of this concept in our context is given by the following obvious
result.

LEmMa 1.5. Let (oM)V<N and (o¥)VN<N be nets of discrete random

()
measures on E so that ¢ = ¢Y. Further, let u be a Borel probability on E.
Then,

3{‘#’{\’}—’5”, as N — o, iff ,‘;?{<p§’}—>gw as N — o,

The final result of this section is a stochastic Gronwall lemma due to
Metivier and Pellaumail and is used to show the uniform convergence of the
approximating arrays to the array of genuine solutions to (N), N € N.

LEmMMA 1.6. Let S and R be stopping times, S <R and K, p,l € [0,x).
Further, let ¢ and A be adapted increasing continuous processes with
sup,, < olA(R(w)) — A(S(w))| <l < . Finally, assume that, for any stopping
time U, S <U<R,

E(¢(U)) <K + ptE(f[S L #(h) dA(R) |.

| Then E($(R)) < 2K X222 pl)/.
Proor. This lemma is a slightly modified version of Lemma (7.1) in
Metivier and Pellaumail (1980). O
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2. Point convergence for clusters. In this section we investigate point
convergence for clusters. Particular attention is paid to deriving an easily
verifiable criterion which insures that an array has this property. This is
important since it is rather difficult to verify directly. The situation is similar
to that encountered when trying to show that a stationary sequence of
random variables is ergodic. There, it is very difficult to demonstrate the
ergodic property directly and one usually is forced to show this using some
sufficient condition such as strong mixing. We recall the following conven-
tions given in the introduction: Let v € N be arbitrarily chosen but fixed, and
let = Z" denote the v-dimensional integer lattice. We will refer to the sets
Cl ={H c.%: |H| < ©} as clusters in .. For k€N, let C, =[—k,k]’N S
denote the k-cube. Finally, for j €.%, we will let 6°: E” > E7, (x,);c o —
(x;.,);c -~ denote the j-shift on E*. We will drop the indexing with E G.e.,
0, = OJE) whenever the reference is clear.

DEFINITION 2.1. For He Cl, N €N, define I} ={l € Cy: I + H c Cy}
and FYY = (G € CI: G = (H + 1), I € I}}. Finally, set N, = {N € N: F}Y # &}
and note that (Ny, (FY)y cn)) is an indexing. Now let A = (7 )Y <N be an
array in E. For H € Cl define Ay = (£3)5 Sy the H-cluster array of A.

(i) We then say that A is point convergent for H-clusters iff Ay is point
convergent.

(ii) A is said to be point convergent for clusters iff, for every H € Cl, A is
point convergent for H-clusters.

We recall the concept of “asymptotic equivalence” given in Definition 1.4.
We will use this concept repeatedly in the following to demonstrate the point
convergence of cluster arrays. This is accomplished by showing that these
arrays are often only “slightly modified versions” of known point-convergent
arrays. The type of modification is given in the following lemma. For two
sequences (a™)ycg and (B¥)ycg in N we write (@¥)ycg ~ BN)yeg if
aV/bN - 1 for N — .

LeEMMA 2.2. Let A = (£5)Y <N and A = (ndv)V €N be arrays in E, and let
(5N)y < be a sequence in N such that the following hold:

|(F¥\ DY) .\ |(DV\FY)|

(i) T 5 -0 asN—> x;
(ii) (bN)NeN ~ (|FN|)NeN;
(iii) ENv o pv = v py  forevery N € N.

' (=)
Defining for N € N, oY = (l/bN)ZiepNgmN, we have oY = ¢iV.
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Proor. This follows from the fact that

sup |of'(B) — FN Y. &n(B)
Be#(E) IFY o
- N _ |FN| IDN\FNI N ||FN\DN| o for N . o
- r N — oo,
= BN N IFY| 0!

In the following lemma we show that one does not really have to consider
all the elements of CI when checking to see whether a given array is point
convergent for clusters.

LeEmMmA 2.3. Let A= (ol )V <N be an array in E, and let (H,), oy be a
sequence of clusters that is coﬁnal in Cl (i.e., for every H € Cl, there exists an
n € N so that H c H,). Then A is point convergent for clusters iff, for every
n € N, A is point convergent for H, clusters. Further, if H € Cland n € N is
such that H c H,,, then denoting by py, the limit of the H,-cluster array and
recalling from subsectzon 0.1 the notation 3(v) and 6, the limit of the array

Ay is given by pr,H,"p,Hn

ProoF. For H € Cl, let n € N be such that H C H,,. Then it is straightfor-
ward to show that

(2.1) (FY 1) yer ~ (FiDyers
where N = Ny, N Ny. Define, for N € N,

—|FY| and D¥={BeF):B=j+H,jeI}}.
Since DY c F}y and |ID¥| = |Fy{ |, as a consequence of (2.1),

(2.2) FA\DY| IDYNFF | IFY) - IFY] |
‘ T2y by T2

-0 for N — o,

Finally, for N € N and B € DV, define n) = £J. Thus, using (2.2) and this
definition, it follows from Lemma 2.2 that

1
N
&
hu = |F|B§FN a |F BE,N
(2.3)

|F | Ie‘;N priin(ely = qDP!‘H"(AH )

If Ay is point convergent with limit uy , then by the continuity of pri»
and Corollary 1.3, A, is point convergent with limit erwH". The result is
then immediate. O
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DEFINITION 2.4. For every H € CI, let u, be a Borel probability on E".
Then (i) the family (uy)y <, is called a projective family of measures (on E)
iff, for every H,K € CI, H C K,

Plim = My

Let u be a Borel probability on E*, and let (uy)y < c; be a projective family of
measures. Then (i) u is called the projective limit of (uyy < c; iff, for every
H e Cl,

Phk = By

Using this definition and Lemma 2.3, we have the following lemma as an
immediate consequence.

LEMMA 2.5. Let A = (&N <N be an array in E that is point convergent
for clusters. For every H € Cl, denote by py the limit of Ay. Then the family
of measures (uy)y < c; IS a projective system.

We return for a moment to the problem that led us to the concept of point
convergence for clusters. Recall the array (X )V <N given in the introductory
remarks, where (X{' ) is a solution to (N), for N € N.

What we were looking for was a condition on the array (K, YV)/LT) of
starting values and driving processes under which a unique solutlon to (),
for every N € N, exists and is such that the array of these solutions would be
point convergent. We were particularly interested in the situation given when
the array of starting values and driving processes are neither identically
distributed nor fulfill any strong independence conditions.

To find some essentially minimal criteria we reduced the equations to the
discrete time case, restricted the interaction to that with the value of the
immediately neighboring processes in the previous time step, dropped the
semimartingales and discovered that even under very strong conditions on
the array of starting values that point convergence can be destroyed through
local interaction. That is the subject of the following.

EXAMPLE 2.6. Let the time scale be discrete Ge., £ =0,1,2,...) and let
v = 1. The only activity considered is whether the agents purchase a good at
© time ¢. Then we can define the activity space to be E = {0, 1} (for purchasing
or not) and assume that an agent i will purchase a good at time ¢ only if his
purchasing activities in the previous period did not coincide with that of the
neighboring agent with the following index (i + 1). Assume A = (K )V <N to
be an array of starting values for the activity at time ¢ = 0. This behavioral
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rule can be formalized using the function g: {0, 1}2 — {0, 1}, (x,, x,) = |x; —
x|, by setting for N e N, YN(¢) = 0if i €\ Cy and if i € Cy,

Ve KV, fort =0,
() = g((Y(t - 1),YA (¢t - 1))), fort>0.

We now define a specific array of starting values A = (K.,I:VN)N €N by setting
K} = x,, for every i € Cy, N € N, where the sequence (x,); . is defined as
follows: We start by constructing two sequences (x!),.,, A = 1,2, in E. For
i €47 ={4m: m € 7}, set

x(z i+1,i+2,i+3} — (0 0 1 1)

and
2 _
X, i+1,i+2,i+8) — (0,1,0,1).

Define inductively the family of sets A, = & and, for £ > 0, A, = {—4%, —4*
+1,...,4* = 1}\ A,_,. Then Z is equal to the disjoint union of the family
(A} < z,- Therefore, if we set

-, forie€ A, and & even,

1
l
2. 'otherwise,

the sequence (x,); . ; is well defined. Further,
o > 3(& + &) for N> .

Therefore, the array is point convergent (actually the convergence is in this
case much stronger). Further, the array is deterministic and, as such, the
variables of the array are all independent. Now consider the array I=
xd (1))NEN, and assume that I' is point convergent. Since f: {0,1} - R,
x — x is a bounded continuous function, by Lemma 1.2(iii), the Varlable
(f, ¢¥ ) must converge to some constant for N — «. We note then that

0, ifi €A, and both i and % are even,

Xy X;4q1) = .
8(x: %iv1) {1, otherwise.
Further, noting that |A,| = 2(4* — 4*~1) we have, for N = 4* and % even,

4k —4F"1 1+ 2(4Fh)
+ .
2(4%) + 1 2(4%) + 1

(f,off) <

Since the ﬁrst term in the last expression converges to £ and the last term
converges to 1, for & —> © we have lim,_, f, of’ < 2
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On the other hand, for N = 4* and % odd,

F. o) 2(4% — 4k 3 .
> — 5 — — 0,
fet)> —onst 71

Therefore lim, , £ f, qo%m”) > 2 in contradiction to the assumed convergence.

Setting H = {0, 1}, one sees in the previous example that the array ' =
(Y& (1))Y =M is (up to a slight modification) the image of the H-cluster array
of A under the mapping g. If T is to be point convergent and one does not
want to restrict the function g to a particular case, then one will probably
have to require A to be point convergent by H-clusters. Extending these
considerations for the following time steps, one comes to the conclusion that
even in this remarkably trivial situation, to insure the point convergence of
(Y& )V <N one must demand that A be point convergent for clusters.

To provide some description of the limit for an infinite or continuous time
scale, it will be necessary to collect the limits of the various cluster arrays in
a fashion that permits a unified description. In Lemma 2.5 we have seen that
the limits of the cluster arrays (uy)ycc, form a projective family of mea-
sures. We recall the classical result of topological measure theory stating that
to any projective family of measures (uy)ycc; on the Polish space E there
exists a uniquely defined projective limit measure. This will provide the
unified description that we need.

THEOREM AND DEFINITION 2.7. Let A = (¢ )V <N be an array in E that is
point convergent for clusters. Denote by (uy)ycc; the projective system of
measures given by Lemma 2.5. Then there exists a unique, shift-invariant
measure u on E7 that is the projective limit of the family (py)ycc; The
measure . is called the cluster limit of A. *

Proor. What remains to be shown is the shift invariance of w. It is
sufficient to demonstrate for any H € Cl, Ay € Z(E"), that, for the cylinder
set A=Ay X E"\" and j €%, 6, u(A) = u(A). Assume that H, A, A and j
are given as above. Set K=H UM —j) and Ay_; = {(x);cu-; € E":
(%;1);eu € Ay}. Then, by definition,

é'J'/-"*(A) = /—"(A(H-j) X Ey\(H_j)) = /'LIK(AIHl—j X EK\(H—J')).

Define the continuous mapping f: E* — E®~7, (x,),c = (x;,;);c @_j)- Then
consider the image array of Ay under the mapping f. Define DY = {B € F}":
J+ B € F}). Then (IDDycy, ~ (IFDy cn, (see the proof of Lemma 2.3).
We have by the definition of A and Lemma 2.2,
N @ 1
b0 T EN| L &y = IFN| L &t el
K' Berf K' BeDf
() 1 N
~ TR, S T oo
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Lemma 1.5 and Corollary 1.3 imply f/.LK = pr(",,ﬁ, — - Using the fact that
(mdn e c; 18 a projective family, we have

tac( Ay X BNUD) = py_jy(Aw-y) = Py Ap-)
= fuk(Am-p) = px(Au X E™\W)
= u(Ay X E\M) = p(A).
This completes the proof. O

The property of an array A in E that it be point convergent for clusters is
sufficient for our purposes. It can, though, be rather difficult to verify directly
for a given array. The following property, which is strictly stronger, is often
simpler to verify (see Examples 2.11 and 2.12). First we introduce some
further notation.

NoTATION.

(D For k£ € N denote by M, = C,,,; \{—(2k + 1),2k + 1}’ the 2k + 1)-
cube without corners. '
(ii) For j € and k, N € N, set

FY, = {(HeCl:H = (C, +1+Jj),l € (2k + 1), H c Cy},
and define N} = {N € \: FY, + &}

The sets Fk]\” ; are formed by first partitioning . into cubes congruent to C,
(with the original C, serving as center and reference for the partition) then
shifting by j and taking those that are contained in the cube C.

We note that, for N, k €N, j€ C, and H € CI, that F', c F';' and
F} c F{{**. Therefore (N*,(F} )y ) is an indexing.

DEFINITION 2.8. Let A = (¢X)N <N be an array in E, and let k € N.
Define, for every j € M,, A’J‘. = (&MY ;F'-N,g(,j the k, j partition array. We then
say the following: '

(1) A is point convergent for k-partitions iff, for every j € M,, A’;- is point
convergent.

(ii) A is point convergent for partitions iff, for every k € N, A is point
convergent for k-partitions.

This concept is perhaps a little difficult to digest at first glance, but the
, idea behind it is quite rudimentary since one derives the partition arrays
simply by repartitioning the vectors in the original arrays, but without the
overlaps one has in the cluster arrays.

The next theorem describes the relationship between point convergence for
partitions and for clusters.
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THEOREM 2.9. Let k € N, and let A = (a'.CN YV EN be an array in E that is
point convergent for k-partltzons For every j € M,,, denote by p,J the limit of
the k, j partition array. Then A is point convergent for C,-clusters, and the
limit /.Lk of the C,-cluster array is given by u* = (1/ IMLDE; e, p,}“.

ProoF. First we note that

N
&y
g, B
1 IM |
Y &
T M, 5 YT sery,

Define, for N € N, by = |F1 /1My |. Trivially, for every j, J €M, (FY Dy e
~ (IF¥ )y <, where N = N* 0 Nk Further, for every N & N, it follows from
the definitions that FC is equal to the disjoint union of the sets F}¥ Vir J € M.

Therefore, for every j € M, (IF Dy < ~ (by)y < - We then have, by Lemma
2.2,

which completes the proof using the hypothesis of the theorem. O

By Theorem 2.9 and the fact that (C,), c is cofinal in ., it then follows
that an array that is point convergent for partitions is point convergent for
clusters. To illustrate how useful the criterion of point convergence for
partitions is, we will show that several natural examples have this property.
For the first example we introduce the following concepts.

DEFINITION 2.10. Let A = (§éVN)N €N be an array in E, and let u be a
Borel probability on E. Then A is said to be symmetric if, for every N € N,
£ is symmetrically distributed (i.e., the law .Z{ ch} is invariant to permuta-
tions of the indexes i ,JECy, i+ ]) Further, A is said to be u-chaotic iff A
is symmetric and for every H € CI,

2} > @ pu for N - oo,
ieH
where ®,_,, u denotes the product measure of u on E H,

Symmetric arrays arise frequently when one considers systems with weak
global interaction, since the factor which provides the interaction is the
' (permutation-invariant) empiri¢al measure. In fact, most papers investigat-
ing point convergence for arrays of processes with weak global interaction
assume that the arrays of starting values and driving processes are symmet-
ric [see Sznitman (1984a, b, 1986), Graham (1988) and Nappo and Orlandi
(1988)]. One of the notable properties of symmetric arrays in a Polish space
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lies in the fact that such an array A is point convergent with limit u iff A is
p-chaotic [see Sznitman (1984a), page 580].

ExamPLE 2.11. Let A = (£ )V <N be a symmetric array in E that is point
convergent with limit wu. Then A is point convergent for partitions and, for
every k € N, j € C,, the limit of A% is given by ®,cc, M-

ProoF. For any k€N, je M,, the k,j partition array is, with A,
symmetric. We will show that A% is (®; ¢, w-chaotic. Define X = E®. Let
Fc FN, for some N € N} and fe %, (XT). Set £ = UpepB and f: E¥ 5 R,
(x; )leﬁ = f(x5)p e p) Then it follows that, for any N > N,

waf((xB)BeI«") dg{(‘lezv)BEFé‘,’j} = f ﬁf((xi)ieﬁ) d-cf{( fFL‘V)}

As A is p-chaotic, the last term above converges to [z¢ fd(®lE 1), for

N — ., Since
-[Eﬁ d(,eF ) f fd(BeF(tE‘Dk ))’

this completes the proof. O

The following example is typical for numerical applications (e.g., numerical
integration).

ExamMPLE 2.12. Let v =1 and let A denote the normalized Lebesgue
measure on E =[—1,1]. We define an array A = ()Y <" in E by setting,
fori = —N,..., N, N e N,

i
N_
TN+ 1
Define further, for every j € N, f; =id,_, ;, and

PRESES,  xo (f()e,

Then A is point convergent for partitions and, for every & € N, j € M,, the
limit u? of A* is given by f*A.

ProOF. This follows directly from the basic theory of the Riemann inte-
gral. O '

., We know by Theorem 2.9 that an array which is point convergent for

partitions is point convergent for clusters. By definition, an array that is
poitn convergent for clusters is point convergent. It is natural to ask whether
either of the reverse implications hold. The answer is, generally speaking, no.
That is the subject of the following example.
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EXAMPLE 2.13. Once again assume v = 1. First define two sequences,
(v,);ez and (?l)lez, in the space E = {0, 1}. For every i € 6Z, set (i + C,) =
(0,0,0) and ¥;,3.¢c,=(1,1,1). For i <0, set y; = 0 and, for i > 0, 'yl—l
We now deﬁne two arrays A = (& )NEN and A —(nN Y¥EN in E. For
N € 2N, set 17@ = ¥c, and, for N € ON + 1, n¢, = ¥c,-1y- Finally, for N €
N, let fc = Yc,- Then we have

() (=)
o = ol =3(& + &).
Thus A and A are both point convergent with limit 3(&, + &,). Consider the
1,0 partition array of A. It follows from the definition that

N @) N+1()

PRy = 2(g(0 0,00+ &a,1,1y) and ¢A (ga 0,00+ &0.1,1))-

Obviously A is not point convergent for 1-partitions. We will show that A and
A are point convergent for clusters. Fix k& € N, and set

0k=(0,...,0) and 1k=(1,...,1).

2k + 1 times 2k + 1 times
Further, for i = 1,...,6, define B; = (:)"i+03k)' One then has
()
ol =% Z &,
and
N @ 1 1
e, " ON T 1 Z_ &, + Zé’l - E(gOk + &), for N - oo,

Since £ € N was arbitrarily chosen, the proposition follows from Lemma 2.3.

Having seen that point convergence for partitions is generally strictly
stronger than point convergence for clusters, the only question that remains
is whether, for arbitrarily chosen H € CI, simple point convergence implies
point convergence for H-clusters. Define the array A* = (pN )V N by setting,
for N € 2N, pc 77@ and, for N € 2N + 1, pc = .f . It follows from the

preceding that A* is point convergent with limit l(go + gl). The sequence

- 2N+1
(g{%’*cl})NeN [resp., (f/{%cl »NEN]
has as limit
1
H(&o.0.0)+ &o,0,0 t &0,y T &1, T & 1,0 T €00,0))
1
[resp. g(g(o,o,O) + g(l,l,l))] ’

As such, A* is not point convergent for C, clusters.
It is perhaps worth noting that these examples also show the divergence of
the various point convergence concepts in the deterministic area.
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3. Point convergence for systems of interacting processes. In this
paragraph we will consider the point convergence for clusters of systems of
processes displaying extended strong local interaction. Recall the system of
equations defined in the introduction by setting, for every N € N,

XY =0 foriex\Cy,
XN(¢) =K + j:g(s, 0,(X2))Z)(ds) forie Cy.

As noted there, the solution to (V) can be seen as a finite-dimensional
approximation of an infinite system of equations. The infinite-dimensional
version is given by

() X,(t) =K, + j:g(s,e,-(Xy))Zi(ds) fori €.5.

We will view (=) as a single equation in a Hilbert space of square-summable
sequences 2= {(x,),c s € (R})”: T, oy2llx;lI* < »}, with norm

(%) ieslle=/ X ¥?lxll?
iy

where y = (y,);c o is a square-summable sequence of strictly positive real
numbers.

Assume that ¥ = (¥,), . » is another square-summable sequence of strictly
positive real numbers and let

- {(@)iere ®M7: T 371 < o)
ie¥
be the induced Hilbert space. We recall that an adapted, Z-valued process Z
is a semimartingale iff Z admits a control process A. A positive, increasing
adapted process A is called a control process for Z iff, for every further
separable Hilbert space 77, Op(Z, 7")-valued elementary predictable process
Y and stopping time 7, one has

2
YdZ ) < [E(A(’r—)f ||Y||(2)p(z,7) dA(s)|,
K4 [0,1')

[E( sup

t<r11710,8)

where Op(Z, 7°) denotes the space of bounded linear operators from .Z into
7" and || - llop(z, ) denotes the operator norm [see Metivier (1982), page 157].

ConDITIONS 3.1. In the sequel we will assume the following to be given:

(1) a continuous, positive, increasing, adapted R-valued process A, an
array (Z{ )V <N [resp., (K )V <N] of continuous R™-valued square-integra-
ble semlmartmgales (resp., of R%valued square-integrable F,-measurable
random variables) and a continuous .Z-valued square-integrable semimartin-
gale (Z)), . o [resp., an Z%valued F,-measurable random element (X)), . . ];
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(ii) a continuous function g: [0,%) X (C%)” — R?*™ and the induced fam-
ily of linear operators defined for every (¢, x.) € [0,) X (C?)” by setting
G(t, xy): (Cm).? - (Cd)y, (zi)ie.? g (g(t, Oi(xé?))zi)ie.?‘

The array A = (Z{ ) M and the functions g and G fulfill the following
conditions.

(CL) (Lipschitz and integration condition). There exist constants I, L > 0
so that the following hold:

(@) For every N € N, E(1/ICyDE;c ¢, IKNI?) < L
(ii) For every f,fe C([O ©), Z), s,t €[0,0), gt, ) =g, f-At). Fur-
ther, G(t, f), G(s, f) € Op(Z,2) and

~ ~ 2
let, ) = &(s, ) opwman < thuptll f(h At) = f(h A sz,
<sV

1G(2. 1) = (s, F)llopcsr. 20 < L sup | () = F(h A Y

(CP) (Point convergence condition).

() The array (KN, zZN )fVEECN is point convergent for clusters in R¢ x C™
with cluster limit .‘Z{(Kl, Z,);c y}
(i) For every i € Cy, N € N, A is a control process for Z}.

For the economic motivation of (CP)(i), consult Finnoff (1989). Condition
(CP)(ii) can be interpreted as saying that there exists a common bound to the
expected maximal growth of the processes (Z}¥ )fve%'?,' The most widely investi-
gated example of an infinite-dimensional semimartingale on a countable
space of summable sequences such as 2 is given by a system of .ii.d.
Brownian motions (B,), . - [see Holley and Stroock (1981) or Leha and Ritter
(1984)]. For further examples of functions g and G and systems of processes
(ZN )NV <NTresp., (Z,), c -] that satisfy Conditions 3.1, consult Metivier (1982),
Metivier and Pellaumail (1980), Shiga and Shimizu (1980) and the references
given above.

A (strong) solution to the equation () is defined as an adapted continuous
Z-valued process (X,),. s so that, for P ae. we< Q, (X;(0)),. satisfies
equation (). [Solutions to equations (V) are defined in an analogous fashion.]
The following known results are an immediate consequence of (CL).

LEMMA 3.2.

(i) For every N € N, there exlsts a unique solution (XY ') to (N).
(ii) There exists a unique solution (X;); 5 to ().

PROOF. See Metivier (1982), Theorem 34.7. O
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We now present the result which will permit us to demonstrate the point
convergence of arrays of approximate solutions. We note that none of the
martingale-theoretic, integrability or Lipschitz hypotheses given above are
required for this result.

THEOREM 3.3. Letn € N, let A = (KY, ZN)IN.N be an array in R4 x C™
that is point convergent for clusters with cluster limit =£’{((I€i, Z"i))iE o}
and let h: [0,%0) X (C9)® - R¥*™ be a continuous function with h(t, ) =
h(t, f(- A t)), for every (t,f)€[0,0) X (C4)C. For every N €N, define
(Y");es by setting YN =0, for i €\ Cy, and, for every i € Cy and
t €[0,),

- 1
KN, forte [O,;],

v = () n(m (20 - 2(2)).

n
E kE+1
fortE(—, , ke N.
n
Further, for every i €.% and t € [0,®), set
- 1
K, fortE[O,—],
n
Y, Y(k)+th )Zt Z(k)
() =1, n (n’ (€, +i) (1) i\l
E kE+1
fortE(—, , ke N,
n

Then A = (Yé\; YN EN is point convergent for clusters with cluster limit
AY); e 5}

Proor. Let & € Z,. For a process Y we define
5 k
Y=Y[-A—]|.
n
For any N € Nand i € Cy,

k . By k+1
e A AR h( ,Y(’c“,,m)(zzv((-v —) A

n

and, for every i €.%,

T k EN\(.(( k| E+1\ (&
Y, ="Y, +h| = Yo | = ||| Z:||"V = | A —Zi{ ||
n’ "\ n n n n
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For k € Z,, define

and

w=(((%.2)) )

Once Jwe have shown that A is a point convergent for clusters with cluster
limit % for every k € Z,, we are finished, since it is sufficient to consider A
restricted to bounded intervals of [0, ©) by Lemma 1.2(iii). We accomplish this
by induction over k. B

For every N € N and i € Cy (resp., i €.%), interpreting K,N (resp., K,) as
a (constant) process (and, as such, as a random element in C?), then for
k = 0 the proposition follows from the fact that (( N ZN ))LNG"E;N is point
convergent for clusters. Let k € N and assume that *A i 1s point convergent for
clusters with cluster limit “. Fix [ € N. Then define

r:(C4x Cm) T o (04 x ¢m)©
((xi’zi))iecl” i ((yi’ zi))iea:,,
with
k k E+1 k .
Yi=x; + h(_’ x(c,,+i))(zi((‘v ;) A " ) - zz(;)) for i € C,.
The mapplng r is continuous. Recall the definition of IC ={ies” C,+

i € FY }. We note that, for every i € g,

((kﬂy}N’Z}V))je(cm) - r(((kIGN’Z-}V))J‘G(CmH))

and, for every i €.%,

((%2)) eccpon = (5 2) i)

Further we have that

(lI‘CnHI)NeN (lFA{z+l|)NGN ~ (lFé\z,”l)NeN (l |)NeN‘

Therefore, it follows from Lemma 2.2 that

1
N
Pes 1AC |Févl ZNg((k+ IYzNy Z; ))JE(CI+E)
el

(°°) Z
N (((kYN Z )) €(C "+z))
'F‘Czl el e

@
|F - L &y 2yem = Pronc, )
Cien! BeFY

For B C.%, let py denote the projection
pp: (CTXC™)7 > (CY7,  ((%:52)))ies ™ %5
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The preceding, together with Corollary 1.3 and Lemma 1.5, implies that
ket 'A, is point convergent with limit

T—\(k \ _ [T\ k1
(rePe,.)() = (Pe)(** )
Since ! was arbitrarily chosen and the sequence (C,), .y is cofinal in .%%, by
Lemma 2.3, this completes the proof. O

DEFINITION 3.4 (The approximating arrays). For every n € N, define p™:
(€9 - (C?”, (x);co = (¥,);c &, where y, = x, for i € C, and y, = 0 oth-
erwise, and define g": [0,®) X (C4) - RI*™, (¢, (x,),cq) —
g(t", p™(x;);c 5)), with t* = max{k/n: k € Z, k/n < ¢t}. If, for every N € N
and i €%\ Cy, one sets X" =0, then one can define recursively as in
Theorem 3.3 for every N € N a solution ("Xé‘; ) to the following equation:

(n,N) "XN(t) =K} + [ )g”(s, 6,("XY))dzN(s), ieCy.
[o,¢

Analogously, one defines a solution (X/*), . 5 to the equation

(n,®)  XMt) =K+ [ g"(s,0,(X2))dZ(s), i€
[0,

[This uses on the one hand the fact that (Z,), ., [resp., (K,);. ] takes its
values in 2" (resp., £) and on the other that, for every (¢, x.) € [0,) X
C(0,),2), G(t, x;) € Op(Z,2).] We then have the following corollary.

COROLLARY 3.5. For every n € N, "X{ )Y <N is point convergent for clus-
ters with cluster limit (X", c o).

ProOF. For n € N, define ¢*: (C4)C - (C%)7, (x);cc, = (¥);cs> with
y;=x; for i€C, and y, =0 otherwise, and use A: [0,%) X (C%)°~,
(t,(xi)iecn) g g(t, c"((xi)ie.cn)). O

To show that the approximating arrays converge uniformly in N to the
array of genuine solutions, we need some technical results. These are closely
related to Lemmas (3.6)—(3.8) in Finnoff (1993). We carry out the proofs here

‘for the sake of completeness and because the modification for the current
situation is perhaps not completely straightforward.

DEFINITION 3.6. Let T, 6 € [0,»), # €.«.

(i) Set
15(#, T) = sup{lA(w,s) —A(w,t): w€Z,s,t €[0,T],Is — t| < 8}.
We now define a number of stopping times.

(i) T = inflt € [0,]: At) > n(Z,TH A T.
. (iii) For every n € Nand k € Z, set

s - £ - A2]» i)t a B2
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(iv) For every n € N and s € [0,»), set s” = max{k/n: k€ Z, ., k/n < s}.
Noting that n(T") = max{k € N: k/n < T}, we define the adapted process

n(T™)

v Z 1[ k/n, 7, T))

k_
and stopping time
g™ =inf{t € [0,): V"(¢) = 0}.

In the following, the indexes /# and T will be dropped whenever the
reference is clear.

LEMMA 3.7. For every T, & > 0, there exists a set %: € & with the follow-
ing:

@ PET) < e.
(i) np(ZT,T) < © and nl/n(ZfsT, T) - 0 forn — o,

PrOOF. The process Alp,r; is realized in the Polish space C([0,T],R).
Therefore, for every ¢ > 0 there exists a compact set K, € C([0,T], R) so that
A Alp, T]}m < e Set # = = (Alp, 7)) U(K,). By the Arzela-Ascoli theorem,
the set K, is uniformly bounded and equicontinuous. The result is then
immediate. O

In the following two lemmas we will assume that T, £ € [0, ) are arbitrar-
ily chosen, but fixed, and # = Z’ €« is the set given in Lemma 3.7. Further,
any of the symbols 7;, 77, T and so on which appear will be assumed to refer
to T and #Z.

LEMMA 3.8. There exists a constant W such that, for enery n, N € N,

1
El=— T [ sup|XF(hAs™) - XMW dA(s)| < W
ICNI ieCy [0,9™ h<s

PrOOF. Define G = SUP, cfo, 7) g(¢,0) and (recalling the definition of the
norm |-llg), set ¥,co.y? = <. Then, for any ¢€[0,) and xg€
C(0,%),2), with x5.¢, =0,

L swlo(z(mlps T T vfsuwpfaym]

ieCy k<t ieCy je(Cy-1)

(%) XX Y- z)supllxq(h)ll (g=i+Jj)

geCyiceCy

<dJ Y sup || x,(h) ||

geCy k<

I/\
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Step 1. Let U be some stopping time, U < T. Then, for every N € N,

( sup | XN (B — KNP
Iq:Nl ieCy h<U

(|c L AU) f NHEe D lopcer, Rd)dA(t)) [by (CP)(ii)]
N! ieCy
<2[E(ﬁ Z AU )f ”g(t’oi(Xé’Y)) _g(t»o)"i)p(ammd)dA(t))
N ieCy
+ ZE(@,EC A(U)f ||g(t,0) 6@, ey dA(t))

[, laxiolao)

< 2LnyE
T (lch EECN

+ 2GE(A(U)”) [by (CL)]

< 2JLnT[E(f sup |x¥(n)|’ dA(t))

0,U) |CN| geCy
+ 2GE(A(U)?) [by (*)].

Step 2. For any ¢ € [0,), define ¢™(¢) = (1/ICyDL, c ¢, sups < I XV (W,
Recalling (CLXi), we have, for any stopping time U < 7',

E(¢N(U)) < 21 + 2E sup | XN (h) — K¥ || )

ICN' ieCy h<U

< 4JL1,TE([[O o V() dA(t)) + 21 + 4Gn2.

Setting K = 21 + 4GnZ, p = 4JLny, it follows from Lemma 1.6 that there
exists a constant W; > 0, such that

(+%) E(¢V(T)) < Wy
Now, using the second and third inequalities in Step 1, it follows, for any

NeN,

|CN| ieCy AT )f ”g , O(XN))IIOD(R'" Rd)dA(t)

< 2JL7]TW1 + 2G7’T = W.
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Step 3. Let n € N be arbitrarily chosen but fixed. Then,

1
E sup | XN (h As™) — XN(h)| dA(s
(|@N| I [ Rl X s X3 ))
n(T™) k 2
<Efl=7 L L sup X,-N(h)—XiN(—) dA(s)
ICyl ieCy k=0 "[k/n,7) k/n<h<s n
(by the definition of 7™)
n(T™) A 2 B
Y X sup | X[(h) —XiN(—) (A(T,:) —A(—))
I([:N| i€eCy k=0 k/n<h<ty n n
n(T™) 2
< n sup g(t, 0,(XY))dzZN (¢
771/ N:Nl ;eZéN KZO k/n<s<t} f[k/n,s) ( ( ‘7)) ( )
(by the definition of 7;')
n(T™)
S"h/n[E |CN| EZC kzo (T’?)f t O(XN))HOP(R'" Rd)dA(t)
i
[by (CP)(ii)]
2
<kl g S A ||g<t,@(XNy»no,,W,Rd)dA<t>)
<mn,,W (bystep2). m|

LEMMA 3.9. For every n € N, define

B = supE| — L sup ["XN(2) —Xﬁ(t)llzlz) '
nen \ICnl &8, 10,1

Then we have B™ = 0 for n — o,

Proor. By the definition of the stopping time 9™, we have, for every
n € N, Lyyo, 1y < 1jo on) Therefore, for every n, N € N,

1
sup ["XY (k) — XM (h)[ 'L,

ICyl ieCy h<T
(* * *) 1
sup |"XN (k) - XF ().
|(I:Nl ieCy h<I™
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For every n € N, define o™ =%, . A\, vZ2. Now let U be any stopping time,
U <9™. Then, for every n, N € N,

[E( 1 sup "X (h) —va(h)llz)
ICyl

ieCy h<U

sup
IC'Nl ieCyh<U

[y 1,8 (5 0.0X8)) ~ 8(s, 6,(X¥)) d2}¥(s)

2)

n n 2
<2"TE(|«:N| X f fo, U)[llg"(s,ﬂi( x§)) —g"(s, 0.(X¥)) [opcrn, rey

(s 020) = 8 0 oy 0] 46|
[by (CP)(ii)]

1
sznTL[E(f[O o ol - z sup||o(”X§V(t)) —0,(x¥ @)% dA(s))

+47’T[E(|CNI Zf Ilg s", p™(6:;(X%")))

ieCy

-g(s", Oi(Xév))”%p(R"',R“) dA(s))

+477T[E(ICNI Z f ||g ol(Xév))

ieCy

_3(3, ei(Xév))“%p(R"‘,Rd) dA(S))
[by (CL) and the definition of g"]

1
<HE[[ = ¥ sup|"X¥(h) — XN(h)I” dA(s)
t0,0) [Cyl ieCy h<s

+H[E( ! Y sup|| ,+J(h)||2) dA(s))

2
Cxl g
Nliecy 101D je(e\C-i) h<s

+H[E(m Y fo o (supIIX,-N(h A s™) _XiN(h)||2) dA(s))

ieCy h<s

[by (CL) and ()]
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<HE[[ = sup|"XN (k) — XN (R)I? dA(s)
10, ICxl ;EC,, h<s
+ HneW,a" + HWn, ,,
[by the definition of 7", Lemma 3.8 and ( * * *)],
where H = 4n; LJ. Then define, for ¢ € [0, «),
1 n 2
w(t) = = sup ["XN(s) - X(s) |-
I(I:Nl ieCy s<t
Further, for n € N, set K(n) = Hy,W,a" + HWn, ,,,. Finally, define p = H

and ! = ny. Then, by Lemma 1.6,
[2pl]

E(4:'(7) <K(n) & (2p1)".

By Lemma 3.7, n,,, = 0 for n — . Therefore, K(n) —» 0 for n — . The
proposition then follows directly from (* * %). O

_ CoroLLARY 3.10. LetT € (0,%), £ > 0 and N € N. Then there exists a set
F =" e s0 that P(Q\#’) < ¢ and

Elsup ¥ | X*(R) — X,(R)|*1z| = 0 forn — o,
h<T icCy
ProoF. Taking a continuous control process A for (Z));c s, one defines
the set .# as in Lemma 3.7. The remainder of the proof follows immediately by
substituting "X~ and X" in the proof of Lemma 8.9. O

For our next result we recall the definition given in 7 of subsection 0.1 of
the metric m, (resp., induced metric 7,) on C* [resp., M(C*)] for u € N and
define, for any random variable £, the L, pseudonorm || £llo = E(|£] A D).

LEMMA 3.11. Define A = (XJ)VEN and, for every n €N, A* =
CXJIVEN. Let I € N and set u = d - |C|. Then the following hold:

(1) sup Hﬁ%u(%l, qoé‘él) IO -0 forn— o

NeNg,
(ii) mu(,?{( Xin)iecl}’g{(Xi)iecz}) -0 forn—o »,

Proor. (i) By the definition of the metric i, it follows that, for any
N, TeN, x;,,y,€ C* and i € Cy,

m( ' ye iza)~

|CN| iECN ©? |CN| iECN
ICul &2, 7
1 1
< e L sw|x(®) v+ 57
| NI ieCy t<T
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Let & be artibtarily chosen. Choose some T' € N large enough that 1/2” < ¢,
and let #7 € .o be the set given in Lemma 38.7. Noting that m, < 1, it follows
that

|

sup |7 (olf, ok

NeNg,
. N N
S NS££CZE(mu(¢A'é1’ QDA%I)I%T) + &
1
< sup E| — X sup|"X¥(h) — XN (h)|12] + 26
NeNg, |FCI| BGFNh<
1 1/2
n 2
< sup E|| o Y sup|"XY(h) — X (h)| 1er +2¢
NeNg, C, BEth<T
(by the Cauchy—Schwarz inequality)
1 1/2
n 2
< sup | v Y sup|'XY(h) - XY (n)| 1,,,3)) + 2¢
NeNg, C, BEpNh<T
(by Jensen’s inequality)
1/2
2
< sup IN > ¥r sup” Ni(h) - XN ()| 1%) +2¢
NGNC C, JeINzeC,h<
1/2
[ic)icyl 1 . )
< sup T E T Y sup|"X¥(h) — XN(R)| 1,z + 2¢.
NeNg, C, Nl jeCy h<T

Recalling that F{/ = Cy_; for every N € N, it follows that [Cyl/ IFY - 1,

for N — . As such,
[IC,IICyl
sup ||—=— =C<x
NeNg, |Fé‘f|

1/2
1
< C sup sup ["X¥ (k) — XY ()| "1, + 28.

NeNg, ICN' LECN h<T

Thus,

sup | 7, (@, ol ),
NeNg,

Using the monotonicity and continuity of the square root function and
Lemma 3.9, the first term above converges to zero for n — «. Since £ was
arbitrarily chosen, this completes the proof of (i).
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(ii) Using the fact that convergence in probability implies convergence in
distribution, this follows immediately from Corollary 3.10. O

Now we can complete the last step of our program.

THEOREM 3.12. The array A” = (XY )N €N s point convergent for clusters
with cluster limit (X)), c o).

Proor. We will show that A” is point convergent for C,; clusters, for every
Il € N.Let I € N and set, as in Lemma 3.9, v = d|C,|. Let &£ > 0 be arbitrarily
chosen. By Lemma 3.9 there exists an n, € N such that, for every n > n_,
sup ” Mu ¢AC!’ QDACI

NeNg, ' + ( {(Xjn)jec,}’y{(Xj)jecl}) <e.

Further, by Corollary 8.5, At, is point convergent with limit Z{(X"); ¢ }, for
every n € N. Using Lemma 1 2(iii), it follows that

|08, (X icc})|, > 0 for N> w.

Therefore,
ﬁzu(ﬂl’g , Z{(X)iec, })“

A LG R A CR R CIRY

i gogxd,z{(&”s)jec,})llo

<e +”n%u(goﬁsl,,?{()(j“)jecl})”o — & for N - .

A second application of Lemma 1.2(iii) delivers the promised point conver-
gence of A¢ . Used together with Lemma 2.3 this completes the proof. O

4. Model of a financial market. As motivation for the results pre-
sented above, we provide the following example describing a currency market.
In contrast to many financial markets, such as stock exchanges, in whch
trading takes place at a single location, currency trading is organized in a
decentralized fashion among a large group of traders who communicate and
perform their transactions either electronically or by telephone.

Typically each of the individual agents will only communicate and trade
with a small subgroup (reference group) of all potential trading partners, due
to the limits of his information processing ability and the organizational
aspects of the transaction process. A typical assumption on the speculative
behavior of traders is that they adapt their individual demand based on
.deviations between the current rates and estimated long-term equilibrium
rates [see Beja and Goldman (1980)]. The classical view is that this occurs
instantaneously based on unpredictable information “shocks” observed simul-
taneously by all traders.
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A more realistic view is that the updating of each agent’s estimate of
long-term equilibria is based to a large degree on weighted averages of the
expectations signaled by a reference group of traders and other individuals
that serve as information sources, for example, traders and analysts within
the same financial institution dealing in other assets, and that the updating
occurs at a rather slow rate to filter out the “noise” in the communication
channels.

This can be formalized in the following fashion: Let N € N. We describe
the activities of each agent i, i € Cy, in a currency market with |Cy| agents
by the stochastic process X;. For the moment we drop the indexing with N to
reduce notation. Here, X; = (P;, S;, R;, D;, PC;), where P, denotes a vector of
individual parameters such as risk aversion and weighting factors for the
signals received from other agents, S; the signals agent i sends to other
agents in his reference group, R; the filtered noisy signals received from
other agents, D, bid and offer rates for the currencies being traded and PC;
the agent’s portfolio of currencies. Further, we assume that the interaction
radius is bounded to the immediate neighbors on the lattice and (by our usual
convention) set X; = 0 for i & Cy.

We assume that the agents estimate the long-term equilibrium exchange
rates by filtering and then forming weighted averages of the noisy signals
received from other agents as to their expectations of the logarithmic equilib-
rium rates. Denote by REC,(¢) signals received by agent i € C, from other
agents as to their expectations. Let ¢ € N be the number of currencies being
traded. Then the signals received from agent i + j, j € C,, are R°*“valued
processes such that, for 2,/ € {1,...,c},

rechk (t) = shk ,(t) + noise = 3;+,,,(t) + dblk(2),

where bl * is a Brownian motion with variance o-J k. Here we have used a
notatlonal convention that we will follow throughout Subscripts give the
index of agents involved in trading or exchange of information, where the
first (i + j, above) denotes the source and the second the receiver. There is a
slight abuse of notation here, since the signals are actually indexed only by
the agent’s index (i + j) and the relevant coordinate within C; (G.e., i —j
rather than 7). This convention is useful for expository purposes though, and
is removed in the strictly formal analysis following equation (4.3) of this
section. Superscripts refer to the relevant currencies. Further, we denote with
uppercase letters (REC,, S;,...) the entire vector, while lowercase letters
(rec,+ . i»sik i,...) refer to the elements in the vector. Fmally, in the follow-
ing we denote by various lowercase Greek letters (a)f, A;,...) elements of
the vector of individual parameters.

Denoting with d*(¢) the direct (not logarithmic) estimate of the long-term

. equilibrium rate for every t € [0, %), then

dit(e) = e T aftr(l) a v

JjeCy
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Here, (a )J <c, is a vector of pos1t1ve Welghtmg factors for the signals from
the other agents and, for every i € Cy and j € C,,

l+] z(t) _/ z( itj,i S) - rH—] i S)) ds
¢
_f t+Jl ril;r’;’i(s))ds - j(;)‘i db},’ik s)
= fexp((s )N )s, irj(8)ds + ftexp((s —t)A;) db}:ik(t)
0

is the filtered estimate of the true signal found by exponentially smoothing
the noisy signal received by agent i from agent i + j, with smoothing
parameter A; > 0. Finally, using LP, to denote the family of monotonically
increasing bounded Lipschitz continuous functions R — R, the function exp(-)
A U € LP, transforms the estimates of the logarithmic rates into direct
rates, and U is a constant representing an upper bound that the agents place
on the estimates.

It is assumed that the rate at which a trader offers to exchange one
currency for another is based on the difference between the estimate of the
long-term equilibrium rate and the current rate offered. So that the rates are
directly comparable, it is assumed that for 2 < [ the rate is given in units of
currency k. As such, at time ¢, an agent will offer one unit of currency [ in
exchange for d!*(¢) units of currency %, while bidding d* ‘(¢) units of % for
one unit of /, and the difference d’*(¢) — d* !(t) (spread) will be positive for
agents that are not attempting financial suicide. The dynamics of this adapta-
tion are given by

ddb*
dt

= ¢(mP*(diA(e) — dbr(1))).

The function ¢ € LP, is such that ¢(0) = 0 and the individual weighting
factor n>* is greather than or equal to 0. Thus, the agent adapts his rate
toward the (currently estimated) long-term equilibrum rate at a speed which
is controlled by weighting factor n/** which describes the agent’s confidence
in his estimate. Furthermore, assuming that the starting value d**(0) is in
[0, U], then as a consequence of the fact that (by construction) d; gt k(t) e[0,U]
for every ¢ € [0, ), it follows that d“* cannot leave this interval either.

The portfolio dynamics of agent i are then described by the sum of the
exchanges between i and the traders in his reference group. Trading can take
place whenever the offer rate of an agent goes below the bid rate of one of his
potential trading partners. For I = 1,...,c, denote by pcl(¢) the amount of
‘currency ! in agent i’s portfolio at time ¢ € [0,~). Then these exchanges
occur in a continuous fashion between i and i +j,J € C,\ {0} and the speed
of the flow of currency ! from i to i +j, trhk, J(t) in exchange for currency k,



524 W. FINNOFF
k <1, is described by

drbl;
(4.1) LU o(w(vipel(®))u( B*(dbH(2) — dbi(D)))

dt
X (v pek, (8))u( = BEH(dlH(2) - dbi(D)))),

where ¢, u, 0 € LP, are such that ¢(x) = u(x) =0, for x < 0, and ¢ is an
approximation of the square root function on the interval [0, max , . g{1/(x) V
u(x)}], with 0(0) = 0. This can be interpreted as follows. The product

v (vipel(t))u( B (dEE(2) — dEL(t)))

gives agent i’s propensity to trade based on the amount of currency [
available and the size of the difference between his offer rate and his
counterpart’s bid rate, weighted with the individual parameters v/, a}** > 0
which captures the effects of the agent’s utility function and his attitude
towards risk, particularly that of reducing his portfolio position in currency [
to zero [see Machina (1987)]. It is then assumed that a consensus on the
trading rate is reached by building (an approximation of) the geometric mean
between the two agents’ propensities. The conditions on ¢, ¢ and u insure
that trading only occurs when both agents have strictly positive amounts of
the relevant currencies available (no short trading is permitted) and that the
difference between bid and offer rates has the appropriate sign.
The speed of the return flow tr}; L, is then given by

dirk!, 1 dtrbk .
. R (dhk + dkil iyit]
(4 2) dt (z(dz (t) dt+](t))) dt ’

where it is assumed that a consensus on the return rate is reached by
building the arithmetic mean of the bid and offer rates of the agents involved.
The changes in agent i’s portfolio position in currency [ over time are then
given by

dpej(t)
dt

(4.3) dtril-’l-,;,i _ dt"il,’ik+j(t) )

jecl\{o}(keu ..... N A4 dt

write X, = ('X,,2X,,°X,,'X,,°X,)) = (P, S,, R;, D,, PC;) and X/(0) =
(K i ’K K i ‘K.,°K ;). Assuming that the signal process S, is a square-inte-

l
grable semimartingale, we can write

IXi(t) =1Ki’ lzi,lg =0,

*X,(t) ="K, + [(dS(s), ’Z,=S,%-1
0
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Further, for j € C;\{O}and [,k =1,...,m

xht(0) ="kpE + [0l () —"xhh () ds

1gJ k( *)
+j: L dbhk(s), 3z ;k(t)f(’bjlzk(t))’
g()

where we note that A; is an element of the vector 'X,(¢). Finally,

12
(o) =+ [ ((abt) mt) el (o), R0 ds
S —————eee”

1
and,for I =1,...,c, part of "X;(¢)

° l(t) _5kl +f5 l( %,‘Ywa:l ,,3;+a:) 4Xi+Cl(t)’5Xi+Cl(t)) ds
part of 'X;, ¢ (%)

where * zhk (@) =° bk () =t and the functions ‘g and °g»* can be derived
using equations (4.1), (4 2) and (4.3).

Now we consider a sequence of such markets of ever increasing size.
Assume that, for every N € N, a vector of starting values and driving
semimartingales (K}, Z)));c ¢, of the type described above is given. Using
the function g deﬁned above "this induces for every N € N a vector of
processes (X} )iec, describing the activities of the agents in the market.
Assume that there exists a common bound I > 0 on all of the elements in the
array of starting values (K& )V <" and that the array (K, Z{)]LT) is
point convergent for clusters with cluster limit (K, 0 Z); e 5,} such that the
remaining provisions of Condition 3.1 (CP) are satisfied.

If we assume that summable sequences (y,); . o and (%,); c 5~ used to deﬁne
the spaces 2 and 2 are such that ¥ ¥ < v2, for every i €.%, and that y2/v2 J
is uniformly bounded, for every i €% and j € C,, then it is tedious but
straightforward to show that the function g satisfies the Lipschitz condition
[Condition 3.1 (CL)]. This is accomplished using the fact that the sum and
superposition of Lipschitz continuous functions is Lipschitz continuous, as is
the product of bounded Lipschitz continuous functions. Further, since not
only the starting values but also the bid and offer rates are uniformly
bounded, one may assume that these values are evaluated using x = x V
(—K A K), for some [K > 0, wherever these values appear in the equations
above.

Denoting by A = (X )V =N the array of processes describing the agents’
activities, we have by Theorem 3.12 that A is point convergent for clusters
with cluster limit u =2{(X));cs}, where (X,);c, is the solution to the
infinite-dimensional version of the equations given above, induced by the
function g and the cluster limit of the array of starting values and driving
semimartingales.
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There are a number of interesting facets to this result from an economic
point of view. First of all, the dynamics of aggregate (macroeconomic) vari-
ables such as average bid rates will be essentially deterministic if the market
is large enough. Second, these dynamics cannot be characterized by a model
utilizing a “typical agent” approach commonly used in the microeconomic
derivation of macroeconomic models [see e.g., Ramser (1988)]. Rather, one
must consider entire clusters of typical agents whose (average) activities are
described by the coordinate distributions of the cluster limit w.

Further, although the decisions of the agents are influenced by information
shocks from their reference group, the aggregate information process (given
by the cluster limit of the signals transmitted) is deterministic as well, but
can only be characterized by a complex distribution of information that will
be unavailable to an individual agent. The individual information shocks will
only have a small influence on the total market aggregates due to the
dampening effects of filtering and the negligible (in the limit) influence of
individual agents.

Another interesting point is that the structure of the model contains a
large number of nonlinearities caused by individual risk aversion and the
limits of the traders’ portfolios, which will not “aggregate out” as is often
assumed in the construction of linear econometric models commonly used in
the analysis and forecasting of economic time series [see Phillips (1988)].
Finally, all of the nonlinear functions used in g are bounded and monotoni-
cally increasing, producing a structure quite similar to that found in certain
types of artificial neural network models [specifically, higher-order Hopfield
networks; see Schiirmann (1989) and Giles, Griffin and Maxwell (1988)]. As
such, some of the formal analysis carried out for these network models with
regard to stability, number of attractors, chaotic behavior and so on may be
relevant for the model presented above.

In conclusion we note that a market of the type described above will not be
“efficient” in the sense commonly used in the theory of financial markets (i.e.,
that the logarithmic aggregate price process is a martingale), but will indeed
be very complicated. As such, an identification of the system dynamics based
on a time series of market aggregates may still be an intractable problem [see
McCurdy and Morgan (1988) or Meese and Rogoff (1983)].
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