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FLUID MODELS IN QUEUEING THEORY AND
WIENER-HOPF FACTORIZATION
OF MARKOV CHAINS'

By L. C. G. ROGERS

University of London

This paper applies the earlier work of Barlow, Rogers and Williams
on the Wiener-Hopf factorization of finite Markov chains to a number of
questions in the theory of fluid models of queues. Specifically, the invari-
ant distribution for an infinite-buffer model and for a finite-buffer model
are derived. The laws of other functionals of the fluid models can be easily
derived and compactly expressed in terms of the fundamental
Wiener—Hopf factorization.

1. Introduction. Fluid models of queues have been intensively studied
during the 1980’s, although the origins date back further (see [21, 14, 7, 6, 9,
1, 16, 17, 18, 5, 22 and 2)).

A simple example illustrates many of the features of this class of models.
Consider a large water tank of capacity a, in the bottom of which there are
some taps, each of which allows water to flow out at rate p. Above the tank
are some pipes, each of which can be open or closed and, when open, pours
water into the tank at rate . If Z, is the number of open taps at time ¢ and if
Y, is the number of open pipes, then the content ¢, of the tank obeys the
differential equation

1.1 %oy -z

(1.1) dr P4y,

at least while 0 < ¢, < a. The behaviour at ¢ = 0 or £ = a is what you expect;
when the tank is empty, the outflow ceases, when the tank is full, water flows
over the top. The most interesting question is of course “What can one say
about the equilibrium behaviour of this system?” In particular, what propor-
tion of time will water be running over the top of the tank? Exactly this
model is studied in [16] and similar ones in [5, 9 and 1].

There is a teletraffic interpretation in which “water running over the top of
the tank” is interpreted as “data messages being lost,” an undesirable situa-
tion in either language! See Mitra [16] for a description of the analogy. The
water tank is called a buffer in the teletraffic language.

In the late 1970’s and early 1980’s, David Williams and a number of
co-workers were studying the theory of Wiener—Hopf factorization of Markov
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FLUID MODELS IN QUEUEING THEORY 391

processes (see [3, 12, 13, 19 and 23]). The basic idea is to take a strong
Markov process X, with state space E, and some function v: E — R\ {0} and
form the additive functional

(1.2) 0 = fotv(Xs) ds.

In general, this additive functional may decrease as well as increase, so that
the time change

7= inf{u: ¢, > t}
will in general have jumps, and the time-changed process
Y =X(7),

which only takes values in the closure of {x: v(x) > 0}, will not be easy to
describe, although it is clear that it will still be Markovian.

The fluid model described at the beginning can be related to this very
simply, if we take as our Markov process (Y, Z,)—we assume that the
opening and closing of pipes and taps is controlled by a finite-state Markov
chain—and the function

v(y,z) = 0y — pz.
Now the buffer content process ¢ is not quite the same as the additive
functional ¢, due to the effects when the buffer is full or empty. However, it
turns out that understanding the process Y* allows one easily to express the
quantities of interest for £, in terms of the fundamental Wiener—Hopf factor-
ization of [3].

In Section 2 of this paper, we recall the Wiener—Hopf factorization of
Markov chains from [3]. We give a proof which differs considerably from that
of [3] and is more transparent.

In Section 3, we analyze the infinite-buffer invariant distribution, which is
simply expressed in terms of the fundamental quantities of the Wiener—Hopf
factorization. This has been obtained previously [2]. In Section 4, we similarly
analyze the finite-buffer invariant law; once again, this is simply expressed in
terms of the fundamental Wiener—Hopf factorization and appears here in
greater generality and simplicity than any of the special cases previously
analyzed. Indeed, the results are so strikingly simple that there has to be a
probabilistic story to explain why the solutions to the differential equations
reduce so far; Section 5 provides this explanation. Throughout the paper, we
shall assume that the function v: E — R defining the additive functional ¢
via (1.2) is nonvanishing; if it were allowed to vanish in places, the invariant
law for £ can still be computed as an extension of the nonvanishing case, and
for completeness we include this in Section 6.

More recently, “noisy” Wiener—-Hopf problems have been studied by
Williams and Kennedy (see [8]). Such models for teletraffic queues had
already appeared in [10] and we report on them in Section 7 of this paper. In
particular, in terms of the fundamental quantities of the noisy Wiener—Hopf
factorization, we once again provide simple expressions for the invariant laws
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of such a process. Again, the infinite-buffer solution has been obtained
previously in [2].

The usefulness of all this hinges on an ability to compute the Wiener—Hopf
factorization. Straightaway, it must be admitted that there is only a closed-
form analytical solution in trivial cases. However, there are various numeri-
cal approaches, some of which are reasonably efficient. If there are n + states
where v >0, n_ where v <0, it seems inevitable that the problem is
O(n.,n_(n.+ n_)), but the constants do vary. A forthcoming paper explores a
number of possible algorithms in more detail.

2. The basic Wiener-Hopf factorization. The theory presented here
is essentially that of [3], with the same notation. However, the emphasis
there was on the chain killed at a constant positive rate, which resulted in
certain technical simplifications; here, we shall concentrate on the original
chain.

So suppose that we are given an irreducible Markov chain (X,),., on a
finite state space E, with @-matrix @, and some function v: E — R \ {0}. We
set E,={i: v(i) > 0}, E_={i: v(i) < 0}, and we assume that both of these
are nonempty. The additive functional ¢ is defined via

¢ = fotv(Xs) ds,
and the time changes
7= influ: + ¢, > ¢}
lead to the time-changed processes
Y, 5= X(7*).

Notice that ¢ is a fluctuating additive functional, and the times when @
crosses a new maximum (which are the only times which 7* can see) are
always times when the underlying chain X isin E,. Thus Y* (respectively,
Y") is a Markov chain which lives in E, (respectively, E_). What are the
generators of Y *? The answer is contained in the following fundamental
result, but to state the result, we need some notation. Let V = diag(v(i)) be
the diagonal matrix whose entries are the values of v, and, for any set S, let
@(8S) be the set of irreducible S X S @-matrices (nonnegative off-diagonal
entries, nonpositive row sums). We shall say that G € @(S) is recurrent if its
row sums are all zero; otherwise we shall call G transient.

DEFINITION. A Wiener-Hopf factorization of V'@ is a quadruple
(Z.,Q,;Z_,Q_), where Z, is |E_| X |E, |, Z_is|E,|XI|E_|,Q,e@(E),),
such that

(I Z I Z\[(Q. o
SR P P |
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THEOREM 1 (Barlow, Rogers and Williams [3]).

(1) The quadruple (I1,,G_;T1_,G_) is always a Wiener—Hopf factoriza-
tion of V™1Q, where the following hold:

(22) I,(i,j) =P[X(7) =j,76<=lXy=i], i€E_,j€E,;
(2.3) G is the generator of Y _ ;

and I1_ and G_ are defined analogously by interchanging + and —.
(i) If the matrix @ € @(E) is transient, then the Wiener—Hopf factoriza-
tion is unique [ and is therefore given by (2.2) and (2.3)].

REMARKS.

(i) The original statement of Theorem 1 as it appeared in [3] concerned
the Wiener—Hopf factorization of V~1(Q — cI), where ¢ > 0 was introduced
to guarantee the uniqueness of the factorization by making @ — ¢/ transient.

(i) Observe that (2.1) is equivalent to the pair of statements

24)() va(Z |- (2. )en

Z Z
2.4)(ii V-t Tl =" .
(2.4)(i) o %)= (% ]e
(iii) The nonuniqueness of the Wiener-Hopf factorization for recurrent @
is apparent in the simplest example. Take

Q=(_Ba —aﬁ)’ v={5 %)

where 8 < a. The statement (2.4)(i) here becomes

-a alf1)_ (1
( -8B B)(Z) - (z)q’
which has the two solutions (z,q) = (1,0) and (z,q) = (8/a, B — a). Now
since B < a, the chain spends longer on average in E_ than E . Therefore
¢ » —o, and the process Y* dies out; thus the solution (2.2)—(2.3) which we
want will be the second. The reader may find it interesting to analyze this
example replacing @ by @ — &I, and letting £ | 0.

(iv) We shall investigate the possible nonuniqueness more carefully below;
it turns out that if there is more than one solution, there can only be two
solutions. See Theorem 1. )

(v) To simplify (and without any real loss of generality), we shall often
make the assumption that

(2.5) v: E - {-1,1},
so that
(I 0 >
V= (0 _I).
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This loses no generality because we could always time-change the original
chain by |v|, making a new @-matrix q;; = Ivil_lqij,, relative to which
assumption (2.5) is valid.

(vi) As a piece of notation, we shall write m for the unique invariant
distribution of the recurrent @-matrix Q:

(2.6) mQ=0, Ym, =1

We partition m into its part on E, and its parton E_, m = (m,,m_).

When m(E,) > m(E_), the additive functional ¢ drifts to +o and the
process Y~ is transient (dies out). We may frequently find it helpful to imgine
that a “dead” process has been sent to a graveyard state J, which has the
property that v, = 0 = f(9) for any function f (apart from I ;). Although it
may be helpful to imagine this, it is not helpful to incorporate this into the
notation, and we shall not attempt to do so.

It is worth remarking that in the balanced case, m(E,) = m(E_), both of
the processes Y * live forever; the analysis of the balanced case is often
anomalous and delicate.

ProoOF OF THEOREM 1. For the sake of completeness, we give a proof of
Theorem 1 which differs in significant respects from that of [3]. We shall
concentrate on part (2.4)(i) of the Wiener—Hopf factorization, part (2.4)(ii)
being wholly analogous. We shall also assume (2.5).

If we partition the @-matrix as

e- (8 3)
then (2.4)(1) can be rewritten as
(2.7)() A+BZ,-Q,,
(2.7)(ii) -C-DZ . =2.Q,.

We shall now show that when (Z,,Q,) = (IT,,G,) as in (2.2)-(2.3), then
(2.7) is valid; thereafter we shall prove the uniqueness statement.

Equality (2.7)(i) is essentially obvious; A governs the jumps of the underly-
ing chain X while it remains in E_, and B gives the jump rates from E
into E_. However, if the chain X jumps from i € E, to j € E_, the clock ¢
starts to decrease and, when it eventually regains its current level, X will be
in state & with probability IT,(j, k). Thus BII, is the matrix of jump rates
. for Y* corresponding to jumps which “passed via E_ invisibly.”

To understand (2.7)(ii), imagine the chain starts in some state i € E_ and
wait until the first time 7 that it enters E,. Then :

-

Pi(redt, X,=k) = (e'°C),, dt, keE,.
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Now, by decomposing the path at 7, it is obvious that II, and G, defined by
(2.2) and (2.3) must satisfy

(2.8) I, = [ ¢'PCe'+ dt.
0

From this,
DI, +1,G,= j:{DetDcetG++ ePCe'®+ G, ) dt

_ [etDCetG+]:)°
= -,

which is (2.7)(ii).
Now we turn to the uniqueness assertion of the theorem. If (Z,,Q.)

satisfy
ol )£ Jo

then any eigenvector f of @, with eigenvalue A gives an eigenvector

(29) F ( ; )f

of V'1Q with the same eigenvalue. Under the assumption that @ is tran-
sient, it is easy to show that V'@ cannot have an eigenvalue on the
imaginary axis ([3] has an elementary proof), so it must be that Re(A) < 0.
Now the statement V™'Qf = Af implies that

(2.10) f(X,)exp(—Ag,) is a martingale,

which is bounded on [0, 7] since Re(A) < 0. Thus if { is the lifetime of the
chain X, we have by the optional sampling theorem that

f(i) = B[ F(X(75)): s < ¢]

(2.11) (n,fr),, ifiek_,

G, ifick,.
If we now assume that there is a basis {f}: j=1,...,n=|E,|} for RE+
consisting of eigenvectors of @, we deduce that, for each j = 1,..., n and for
eachi € E_,

fi(8) = (2.£;), = (T.£y),,
and hence Z ,=1I,.

The assumption of the existence of a basis of eigenvectors is not necessary,
because there is always a basis of Jordan vectors [vectors such that, for some
k and A, (Q,— AI*g = 0] and [3] shows how this can be used similarly to
conclude that Z_ = II,. The fundamental idea is that if

g=(v'Q-a""g, j=1,...k,
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then, forany m =1,..., k&,

f‘: ()"’

Jj=1 (m ) !
bounded on [0, 7], for any ¢ > 0 [for this, it is essential that Re(A) < 0]. We
refer the reader to [3] for further discussion. O

——exp(—A¢,) g,;(X,) is a martingale

REMARKS. Provided m(E,) # m(E_), one of the processes Y * dies out
and one of the matrices IT, is strictly substochastic, so that

S = LI is invertibl
=\m, 1 is invertible,
and the Wiener—Hopf factorization (2.1) is actually the statement that V-1Q
is similar to

G 0
U= ( * _G ) =S8-1v-1Q8.

Thus the eigenstructure of V1@ is that of the block-diagonal matrix U, and
diagonalising V~'@ would tell us what G, and G_ were; for example, if
m(E ) > m(E_), then the eigenvalues of G_ are in the open left half-plane, -
so an eigenvalue A of V~!@Q with positive real part is (the negative of) an
eigenvalue of G_, and the remainder are eigenvalues of G,.

However, the balanced case m(E,) = m(E_) is more delicate. To begin
with, S is not now invertible. Both of G, and G_ have a zero eigenvalue, so
that U has a kernel of dimension 2, whereas V~1@ has a kernel of dimension
only 1. In this case, G, and G_ have exactly one eigenvalue, 0, on the
imaginary axis, and the remainder in the open left half-plane; V™1Q has a
Jordan block

(2.12) (g é)

in its Jordan decomposition. One way to see this latter is that if there was not
such a Jordan block, we could represent V~'@Q in Jordan form:
-1 _ (0 O0)p-1
vg-1( O,
where J is an (|E| — 1) X (|E| — 1) Jordan matrix. Thus the first column of T'
would have to be in the kernel of V'@, therefore a multiple of 1, the vector
of 1’s; the first row of 7! would have to be a multiple of the vector mV 1.
However, the inner product of the first column of T' with the first row of T~ 1
is, of course, 1; but in the balanced case, mV~'1 = 0. This contradiction
establishes the claim.
Let us now record a trivial corollary of Theorem 1, which we label as a
theorem because of its fundamental importance in any attempt to compute
the Wiener—Hopf factorization.
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THEOREM 2. Assuming the convention (2.5), the matrix I1, solves
(2.13) DZ +ZA + C + ZBZ = 0.
If Q is transient, there is a unique substochastic solution Z to this equation.

Proof. If Z solves (2.13) and Z is substochastic, then (Z,Q,) solves
(2.4)(i), where @ ,= A + BZ€ @(E_). O

We conclude this section with the promised characterisation of all possible
solutions in the case where @ is not transient.

THEOREM 3. Suppose that @ € @(E) is recurrent and that, for some
Q.€@(E.) and |[E_| X |E,| matrix Z

I I
V_]' =
Q(Z+) (Z+)Q+'
() If @, is transient, then @, =G, and Z =11,.

(i) If Q, is recurrent and G, is recurrent, then @ ,= G, and Z,=11,.
(iii) If Q. is recurrent and G, is transient, then

(2.14) Q.= G, — (G, Ny,
where u is the left eigenvector of G, whose eigenvalue has largest real part,
and p is normalised by the condition pul = 1.

The proof is deferred to the Appendix.

3. The invariant law for an infinite buffer. Let us now see how we
may apply the theory of the previous section to obtain the invariant law of an
infinite-buffer fluid model. We now think of the fluctuating additive func-
tional ¢ as the difference between inflow and outflow, except that no fluid
flows out when the buffer is empty. Therefore the buffer content at time ¢ is

ftE(Pt— Pt 5 P = inf¢s~
- - s<t

In order to get an interesting limit distribution, we make the assumption
(2.5) and also assume

(3.1) m(E_) >m(E,), sothat ¢, > —as.
One easy consequence of this is that
(3.2) m,=m_II,

as we see easily from the Wiener—Hopf factorization (2.1) when we left-multi-
ply by (m,, —m_) and use the invertibility of G,. We are now going to
introduce the reversed-time quantities

A

(3.3) $=M1Q™™M, V=-V, E=E., E=E,
together with the time-reversed process X, = X _, and its additive functional

& = fota()fs) ds = o(—t).
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Here, M = diag(m,). The process Y * and Q-matrices G + are defined from X
and ¢ in the same way that Y * and G, are defined from X and ¢.

THEOREM 4. Forx >0 andj € E,
m (exp(xG_)1), jeE,=E_,
(34)  lmP(X,=j, & >x) = ’(A ( )A)’ T
too mj(II_ exp(xG_)l)J., JEE_=E,.

PROOF. Assume that the process (X,), . is in equilibrium, and ¢, = 0.
From Figure 1 it is easy to see that, for x > 0 and j € E,

{(Xo=J, & >x} = {X’O =j, infd;u < —x},
u>0
so that
th_)n;P(Xt =J ft > x) = P(XO =J, ‘50 > x)
= P(X, = j)P(inf g, < —al%, )
u=0
= ij(Y' lives for at least xIX’0 =j).
However, the generator of Y- is é_, and so
mj(exp(xé_)l)j, ifjeE,=E_,

P(X,=j, = N .
(Xo=J: &> ) mj(l'l_ exp(xG_)l)

J"

as required. O

Fic. 1.
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REMARKS. One could of course compute G + by any algorithm which
might be used to compute G ,. However, as a simple exercise in matrix
manipulation, London, McKean, Rogers and Williams [12] prove that

(3.5)(i) f,=1r%,

(3.5)(ii) G.= (K3'G:K3)",

where, for any matrix Z, Z* is defined by (Z*),; = m;z;,/m;, and
(3.6)(3) K,=(I-T_M,)7",

(3.6) (ii) K =(I-1,1.)"

(Notice that [12] took the reversal with the function v, rather than —v, as we
have here; this accounts for the apparent interchange of plus and minus.) The
conclusion is that if we have obtained Il , and G ., then it is a trivial matter
to deduce I, and G ,.

The laws of other functionals of interest for this queueing model can be
easily expressed in terms of the fundamental quantities of the Wiener—Hopf
factorization. For example, the equilibrium probability of finding the buffer
empty is given, from (3.4), by

P(£& =0, X, =) =m(1-(fl_1),)
(3.7 =m; — (m,IL);
=m_(I-1,1.); jek,=E_
using (8.5)(i) and (8.2), respectively. This simple formula has a simple inter-

pretation; m; is the long-run proportion of time spent in state j € E_, and

(m_II,II_); is the long-run proportion of time spent in state j when ¢ is at a
level visited earlier. We explain this more fully in Section 5. Summing (3.7)
over j reveals that

(3-8) P(¢=0)=m(E_) -m(E,),
which is probabilistically obvious; the process ¢ is decreasing at rate 1 when
¢ =0, and at rate 0 otherwise, so -

t
limt‘lfOI{Eﬁo) ds = lim — ¢~ g(t)

t—>

= lim — ¢! ¢(¢)

= - Zmivi
=m(E_) —m(E.).

We can obtain the limit distribution of the state of the chain X when a busy
périod starts; it is given simply by

{(m(E_) - m(E,)} 'm_(I-T,I_)(-D"'C),

since (—D~'C),; = P(X first enters E, at jlX,=i),fori € E_.
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The distribution of the duration of a busy period is also easy to find; if the
chain were in state j € E, when the busy period began, then we are simply
asking for the law of 7, which can in principle be found from the Wiener—Hopf
factorization of V~1(Q — cI), as was observed in [3]. Indeed, in this case,

n_(i,j) = E(e‘”5; X(1y) =jIX, = i),
so one finds (in principle) the Laplace transform of 7.

It is not the present purpose to exhaust all the possible calculations one
could do on this model; the aim is rather to show the fundamental importance
of the Wiener—Hopf factorization (I, G, ; II_, G_). Perhaps more interesting
is the computation of the invariant law for a finite buffer, to which we turn
next.

4. The invariant law for a finite buffer. Once again in this section we
make the assumption (2.5) that |[v| = 1, and now we suppose we have a buffer
of finite capacity a > 0. Once again, ¢ represents the difference between
inflow and outflow, but, again, ¢ has to be modified in the obvious way to
obtain the buffer content process £; we can express it as
d¢,

g = [I(O,a)( ft) + I(X,eE+,§,=0) + I{X,EE_,§,=a)]v(Xt)’
for example.

How do we characterize the invariant distribution of the process (X, &,)?
The simple time-reversal argument of the previous section does not now
work, so we need another method. An obvious approach is to solve the adjoint
equations (or Kolmogorov forward equations) for the invariant law. Observe
that the generator of (X, ¢,) is given by

g1r(J, &) = (QF + Vf")(J, €)
_ N/
= %qjkf(k’g) + U(J)d_g(.l,f),

(4.1)

(4.2)

at least on functions f for which f'(,0) =0, for j € E_, and f'(j,a) = 0, for
J € E . We shall seek an invariant distribution of the form

(4.3)(i) P(X =j, {€dx) = m(x) dx, 0<x<a,j<EE,

(4.3)(ii) P(X=j,é=0)=p_(J), jEE_,

(4'3)(iii) P(X=j’ §=a)=p+(j), jEE+,

, where 7 is a C! function on [0, a]. We construct such an invariant distribu-
tion by solving the adjoint equations and, finally, argue that there can be no
other invariant distribution and that this distribution is the limit as ¢ tends

to infinity of the law of (X, &,).
We arrive finally at the main result of this section.
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THEOREM 5. The process (X, ¢) has a unique equilibrium distribution,
which is of the form (4.3)i)-(iii). We have explicitly, in the case m(E_) #
m(E ),

(4.49)() p_.=m_(I—-1_,1I_)exp(aG_)K_(a)

(4.4)(ii) p.=m (I—-1ILII,)exp(aG,) K, (a)

where

(4.5) K. (a) = (I - T exp(aG+)II, exp(aG,)) ",

and in the balanced case m(E ) = m(E_) we have that, for some 0,
(4.6) p.=0v.(a),

where v _(a) is the unique probability on E , such that
v (a)K . (a) = 0.
In either case, the function  is given in terms of p . by
(4.7) w(x) =p_Qexp(xV 1Q)V = —p Qexp((x —a)V'Q)V"

[ Here we write p_ instead of the clumsier notation (0 p_).] In the balanced
case, 0 is determined by the normalization condition

(4.8) 1=6(1+ v_(a)exp(aQV~')1).
Finally, the distribution of (X,, £,) converges as t — © in variation norm to

the equilibrium distribution.

If an invariant distribution has the form (4.3) then, for all test functions in
the domain of &, thinking of p, and 7 as row vectors, we have (e.g., as in
[4], page 238) that

0= p_Qf(0) +p.Qf(a) + [ “w(x)Ff(x) d
=p_Qf(0) + p.Qf(a) + m(a)Vf(a) — w(0)Vf(0)
+[0“(w(x)Q — #(x)V)f(x) dx.

Since the function f is arbitrary, we find that
7'(x)V=m(x)Q,
p_Q=m(0)V,

p+Q = _ﬂ(a)V’

Wi’lich has a solution of the form (4.7):
m(x) =p_Qexp(xV1Q)V!

(4.9)
= —p,Qexp((x —a)V'Q)V!
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and it only remains to identify p,. From (4.9) we see that p, and p_ are
related by

(4.10) p_Q = —p,Qexp(—aV'Q);
if we now right-multiply both sides of this equation by (HI+ ), we obtain

p-a[i. | - —p-@ 1, Jese(-ac.),

using (2.1). However, once again using (2.1) and the fact that p, is concen-
trated on E , this reduces to

(4.11)(3) p_ I,G,=p,G,e %,
and similarly right-multiplying (4.6) by (HI“) yields
(4.11)(ii) p,.I_e“-G_=p_G_.

The analysis now splits into three cases.

CaSE 1 [m(E_) > m(E,)]. In this case, G, is invertible, so that (4.11)()
yields

p.=p T
substituting this into (4.11)(ii), we learn that
(4.12) p_(I-TM,e*%I_e*-)G_= 0.
If we write v_ for the invariant distribution of G_, (4.12) is reexpressed as
(4.13) p_av_K (a);
since (as is easily verified) in this case v_a m_(I — II II1_), we have that
(4.14)(3) p.=cm_(I-T_I_)K (a),
(4.14)(ii) p.=cm_(I-T,T_)K_(a)ll, e,

for some constant ¢ > 0. The constant c is fixed by the normalization condi-
tion that

faw(x)l dx +p,1+p_1=1,
0

and a few calculations yield the conclusion that ¢ = 1.

We may use the facts that K_(a)Il,e¢+=11,e%“K (a), m_(I — 1, II_)
is invariant for G_ and m,= m_II, to reexpress (4.14) in the symmetric
form .

p_=m_(I—-T1,1I_)exp(aG_)K_(a),
pi=m, (I -T1L_II, )exp(aG,)K,(a),
which is (4.4).
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Cask 2 [m(E.) > m(E_)]. An exactly analogous argument will yield (4.4)
as in Case 1.

Case 3 [m(E,) = m(E_)]. As one expects, the balanced case is the most
delicate.
First, if we define

t
L;: = .l(;I(gu=x) du’

for x = 0, a, then the content process ¢ is related to the additive functional ¢
by

& = ¢t+L?_L?'
Notice that

?L? —»p_1, as.,

?L‘} -p,1l, as,

as t — », and the fact that ¢! ¢, > 0 a.s. forces the conclusion

(4.15) p,1=p_1.

Returning to (4.11), we discover that

(4.16)(i) p.— p_Il_exp(aG.,) is invariant for G,
(4.16)(ii) p_—p. I_exp(aG_) is invariant for G_,

but (p,—p_II, exp(eG, )1 =p,1 —p_1=0 by (4.13), so the only possibil-
ity is
p.=p_ll, exp(aG,),
p_=p, Il _exp(aG_).
Thus p, is a multiple of the invariant law v, (a) of I1_exp(aG_)II, exp(aG,);
if we suppose p, = 0v,(a), then we determine 6 by the normalization condi-
tion
a
1=p,1+p_1+ f m(x)1dx
0

- @ ~1yy-1
—20+fp_Qexp(xV )W~ 1dx
0

=20+ 6v_(a){exp(a@V~') — IJ1

=0+ 0v_(a)exp(aQV 1)1,
which is (4.8).
Although this may not look very explicit, it is easily calculable in practice.
To complete the proof, we give a coupling argument (applicable equally to
the infinite-buffer case) which proves uniqueness of the invariant law and
convergence of the laws of (X,, £,) to it in variation norm. See [11] for more on
the coupling method.
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The uniqueness will follow immediately from the fact that, for any two
starting distributions pu and i on E X [0, a], we can build on one sample
space processes (X, ¢) and (X', ¢') with initial laws u and u/, respectively,
such that

P[for some T' < », (X,, &) = (X;, &) forallt > T] = 1.

How do we build these two processes? Start by letting X and X' evolve
independently, until the first time 7 such that X_ = X!, at which time stick
the particles together and make them follow a common trajectory thereafter.
Of course in general & # & so if we suppose £, > &/, we see that at all times
t > 7 the buffer content ¢ must be at least as large as ¢,. So we just wait
until ¢, falls to 0, at which time ¢, = ¢/ and from then on the two processes
(X, ¢) and (X', ¢') coincide forever. [

REMARKS. Assuming that m(E_) > m(E ), we can let a — « in the above
results, and we should obtain the infinite-buffer answer of Section 3. This
indeed happens, as the reader is invited to check using the reversal results
(3.5) and (3.6). One can rephrase the results of this section in terms of the
reversal, but to no advantage; in the finite-buffer situation, the reversal is a
process of the same nature as the forward process, whereas in the infinite-
buffer case, ¢ is transient to + o rather than —.

5. Sample-path explanation of the invariant law. We now give the
promised elementary explanation of (3.7) and (4.14)(i), assuming that
m(E_) > m(E,) and assuming (2.5). To begin with, let us suppose that the
underlying process is killed at an independent exponential time 7' of mean
&1, so that @ is replaced by @ — ¢I. The Wiener—Hopf factorization shall,
for this section only, depend implicitly on &, but we shall omit ¢ from the
notation and speak, for example, of II,, when we mean

I, (i,)) = E'[exp(—e15); X(75) =j].
No confusion should arise. First, we explain the infinite-buffer result (3.7). If

N(y,j)) =t <T: ¢, =y, X, = j}, then the total time spent before T' while
¢, < 0 and X, = j can be expressed in the two alternative forms

T 0 .
(5.1) foz(xﬁj, w<oydt = [ N(y,J) dy.
Now, forany i,j € E_, y <0,
E[N(5,0)] = (exp(~56_) T (1) )(0.)

r>=0

(5.2)
, = exp(—yG_)(I — ILIL)7'(i, ),

because once ¢ reaches level y (when X is in state k), the probability that it
will again be at level y in the future with X = [ is simply IT_ II_(%, ). Thus

B[° N(y.i) dy = (=6 (I = L) (i)
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and
T T ‘
E‘fo Iix,—j, o,<0p At ~ Elfo Iix,—j dt
~&'m; asel0.

We conclude therefore that, for i,j € E_,
e(=G_) (i j) = eB' [ Ly, _pexp(—er7) dt
0

5.3 L[ .,
( ) = 8E j; I(Xt=j» ‘Pt=ft)e tdt

~m_(I-TL1_);,

so that the limit of P(X, =j, ¢, = ¢,) must be m_(I — I, II_),, as stated in
(8.7). Of course, this argument does not prove existence of a limit, but does
identify that limit if it exists. The existence of the limit follows from the
coupling argument at the end of the previous section.

How do we now handle similarly the finite-buffer case? If the buffer has
capacity a as before, and if ¢ = ¢, + LY — L? is the buffer content at time ¢,
it is obvious that & < n, = ¢, — ¢,, the content of an infinite buffer at time ¢.
Thus at all times when ¢, = ¢,, the finite buffer is certainly empty, although
it may of course be empty at other times, too. The key observation is
contained in the following result.

PROPOSITION. Fix some u > 0, and define
S=inf{t > 7, : ¢, = —u +a}.
Then
o,=inf{t > 7,: ¢, = —u, § =0} =inf{t > S: ¢, = —u} = 0g,.

PrOOF. From the definition of 7, it follows that
L(q,) - L(7;) >0,

\ /\

-u+a

N\

<

FiG. 2.
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and therefore since &(7;) = €(o,) = 0 and ¢(7)) = ¢(0,) = —u, we must
certainly have

L*(g,) — L(7,) = L%(g,) — L°(7;) > 0;
so at some time in (7, g,), the buffer must be full. Let the last such time be
denoted by A. Since L* does not change in (A, ,), the drop of ¢ = ¢ — L in
this interval must be at least as great as the drop of &, which is a. Thus at
some time in (1, 0,), ¢ was at level —u + a,and so 7, < S < g,.

u?’>u

However, now we observe that the buffer is certainly full at time S (ust as
the buffer is empty at any time where ¢, = ¢,) and likewise must be empty at
o, =inflt > 8: ¢, = —u}. O -

So now if we define
Na(y’j) =|{t: o =Y, ft =0, Xt =j}|,
we have as in (5.2) that, for i, j € E_ and y < 0,
EN,(y,Jj) = (exp( —-yG_) Y (H+exp(aG+)H_exp(aG_))r)(i,j)

r>0
= (exp(—yG_)(I - T, exp(aG,)TI_exp(aG_)) " )(i, )

= (exp(—yG_)K_(a))(i,J)-
Thus

. T
*’E’fo L, <0, -0, x,-j 9¢
0 ..
(5.4) = ¢ (exp(—yG_)K_(a))(i,J) dy

= e(~G.) K _(a)(i,))

- m_(I-II.II_)K_(a);; 10,
by the argument in (5.3). However, the limit of (5.4) as £ | 0 is the limiting
probability that & = 0, X = j, yielding (4.14)(i), as promised.

6. Invariant law when V may vanish. In this section, we allow the
possibility that v takes the value 0; as before, we may without loss of
generality assume that v takes values in {—1,0,1} and define E; =
{i: v(i) = 0} and E, as before. Writing E.= E, U E_, we partition @ as

Q= Q.. Q.,\(E.
Qo Qoo |\ Eo)
If we time-change out the time spent in E,, we see a chain X which lives in
.E. and has generator ’

Q = Q.._ Q‘OQ(;OIQO .
We can carry out the Wiener—Hopf factorization of this chain exactly as

before and obtain the invariant law for the buffer of finite capacity @ in terms
of the density 7 and the two row vectors p, and p_. The defining properties
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are that
en@ O @M@ V)] d

+p_Qf(0) +5,Qf(a) forall fe(£);
(6.1) (i) 5. 1+p 1+ joafr(x)l dx = 1.

Here, as before
2(2) = {f: Ex[0,a] - RIf(j,") is C*
forall j, f/(i,0) =0=f(k,a)fori€cE_,k€E,}.
If we now define the E-vectors p., p_, m(x) by
pi=0.(1,-Q.0Q ),
m(x) = 7(x)(I, -Q.0Qu )

it is trivial to verify that, for all

fea2(g)={f:E x[0,a] - RIf(j,")is C*

forall j, f/(i,0) =0=f(k,a)fori€cE_,k€E,},

0= foaﬂ(x){Qf(x) + Vf'(x)} + p_Qf(0) + p,Qf(a),

so that (7, p,, p_) is (a multiple of) the invariant law for the process
including the states of E,. We leave the reader the minor task of verifying
that if m is the invariant law of @, then we obtain the invariant law by
multiplying (7, p,, p_) by m(E.). Uniqueness of the invariant law follows
again as in Section 4.

7. Noisy Wiener-Hopf problems. As before, we take an irreducible
Markov chain X on a finite set E, a function v: E - R and now we assume
given an independent Brownian motion B, using which we form the (continu-
ous fluctuating) additive function ¢ defined by

¢, = ¢B, + /:v(Xs) ds.

Exactly as before, we define the time changes 7, = inf{u: + ¢, > t} and the
processes Y,*= X(7,%). The processes Y * are Markov chains, but straight-
away notice that Y * take values in the whole of E, in contrast to the earlier
construction. We shall write I', for the generators of Y *, which are charac-
terized by the following result.

THEOREM. The generator f‘+ (respectively, T'_) is the unique Z € @(E)
such that
(7.1)(1) 16222 -VZ+ Q=0
(respectively,
(7.1) (i) 1222+ VZ + Q = 0).
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REMARKS. This result is explicit in [2] and implicit in [8]. We give here a
short proof.

ProOF OoF THEOREM 6. Fix some positive a and some h: E — R, and define
(72) f(J,x) =E[n(Y}):i<olXy=j, 0o=x], JEE,x<a.
Then f(X,, ¢,) is a martingale until 7, ; so, by It6’s formula,
(7.3) 12" + Vf + QF = 0.
However, on the other hand,

f(-, x) = exp[(a — x)T ] A;
so substituting into (7.3) yields
(%82F3_— VI, +Q)f=0.
Since A is arbitrary, we conclude that I', solves (7.1)(i). As for uniqueness,
from any solution Z to (7.1)i) we could build f by
) f(:, x) = exp[(a — x) Z] h. )

Then f(X,, #,) would be a bounded martingale on [0, 7, ], whence f=f
defined by (7.2). O

The aim now is to present briefly the analogues of the invariant law results
of Sections 3 and 4. The methods are essentially the same, so we shall
comment little.

We shall consider the buffer with capacity @, 0 < a < %, so that the
generator of (X, £), where ¢ is still the content process, is

(7.4) gf = 38" + Vf' + Qf,
with boundary conditions
(7.5) f(j,x)=0 forjeE,x=0,a.

The adjoint equation determining the invariant law is now quite a lot
simpler, since there is no time spent in the empty or full states. We obtain

0= [m(x)%f(x)dx forall fea(),
and integrating this by parts gives us
(7.6)(i) el —7V+7Q=0 in(0,a)
(7.6)(ii) 3e’r'=aV at0,a.

If we recall the reversed process introduced in (3.3), then (7.6)i) can be
reexpressed as

1elm" + 7T’V + 7M~'Q™™ = 0.
' So if we define f = (wM )7, this is again

(7.1(i) 12"+ Vf +Qf =0

and the boundary condition transforms to

(7.7)(ii) 1e2f' = —Vf at0,a.
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Cast 1 (Infinite buffer). We now assume that m(E_) > m(E,), without
which there is no invariant law. Then I'_ is transient and I', is recurrent.
The general solution to (7.7)() is of the form

(7.8) f(x) = exp(—xf‘+)g + exp(xf‘_)h;

to give a solution which is integrable, we set g = 0 and now pick 4 so that
the boundary condition is satisfied and the normalization condition holds. It
is easy to calculate that

f(x) = —exp(af"_)T_1
and, in particular, that

(7.9) m(x) = -M exp(xf‘_)f‘_l.
This can also be expressed as
(7.8) P(X=j,é>x) = mj(exp(xf‘_)l)j,

which is analogous to (8.4) and admits the same very simple proof.
This result is also in [2].

Cast 2 (Finite buffer). Let us again assume the buffer has capacity
a € (0, ), and first we take m(E_) > m(E ).
Looking for a solution of the form
N A A
(79)  f(x) = (m(x)M ') =exp((a —x)I',)g + exp(xI"_)A,
the boundary condition tells us
(7.10)(i) (%ezf‘+— V)exp(af‘+)g = (—;—ng‘_+ V)h,

(7.10)(ii) (—;—ng‘Jr— V)g = (%azf‘_+ V)exp(af‘_)h.

So if we write h =I'_u and g =T' . w + al, as we may, we conclude that
(7.11)(i) ’ - Qexp(af'+)w - aV1l=—Qu,

(7.11)(ii) —Qw —aV1= Qexp(af‘_)u.

Left-multiplying by the invariant measure m of  tells us that « = 0, and
Q(u - exp(af‘+)w) =0,
Q(w — exp(af‘_)u) =0.
This implies that, for some a and B, .
u— exp(af‘+)w =al, w — exp(af‘_)u = B1.

However, observe that we could add any multiple of 1 to w without changing
g, so we assume without loss of generality that g = 0, and thus

(7.12)(i) u= a(I - exp(af‘+)exp(af'_))_11,

(7.12)(ii) w= exp(af‘_)u,
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for some constant « fixed by the normalization requirement. It is not hard to
confirm that o = 1 for normalization, and hence

(w(x)M'l)T = {exp[(a - x)f‘+]f'+exp(af'_)
(7.13) +exp(xf‘_)f‘_

X(I - exp(af‘+) exp(af‘_))_ll.

Once again, the balanced case m(E,) = m(E_) requires a more delicate
treatment and ends with a less satisfying result. The general form (7.9) of the
solution and the boundary conditions (7.10) remain the same, but now the
generic form of 2 and g must be
g=f‘+w+a1, h=f‘_u+[31,

although we could add cl to g, and subtract cl1 from kA without altering
solution (7.9); so we lose no generality in assuming that g = 0, so that (7.11)
still holds. Since mV'1 = 0, we can no longer left-multiply by m and deduce
that a = 0, but we can represent

V1=Q:z,
for some z, and thus we obtain

Q(u - exp(af‘+)w - az) =0,
Q(exp(af‘_)u -—w — az) = 0.
This implies that, for some b and c,
(7.14)(3) u— exp(af'+)w — az =bl,

(7.14)(ii) exp(af‘_)u —w-—az=cl,
a pair of equations with a certain amount of redundancy; any multiple of 1
could be added to u, w or z without affecting anything. So let us assume that
v,w =0 = v_u = mz, where v are the invariant laws of I',, and we write
u,w', 2’ for the vectors u,w, z with the bottom row omitted. Thus

u=dJ_u, w=dJ u, z =dJz2,
for certain matrices J and J, which are easy to specify explicitly. If we
write R for the (n — 1) X n matrix (I,_, 0), n = |E|, then (7.14)(@) and (ii)
become

u - Rexp(af‘+)J+w’ — az' =bl,

Rexp(af‘_)J_u' —w —az'=cl,
so that .
(I — Rexp(af‘+)exp(af‘_)J_)u’ = bl — cRexp(af‘+)J+1
’ + a(I - Rexp(af‘+)J)z.

Now the matrix I — Rexp(af‘+)exp(af"_)J _ is invertible, because if x were
annihilated by it, we would have

x = Rexp(af‘+) exp(af‘_)J_x = Rexp(naf‘+) exp(naf‘_)J_x,

(7.15)
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for every n. Letting n — « and using the fact that v_J_= 0 shows that
x = 0. Thus (7.15) actually does determine «’ (in terms of the parameters b, ¢
and a); similarly for w'. The parameters b and ¢ can now be determined (in
terms of a) from (7.14)(i) and (ii) and the conditions that v,w =v_u = 0.
Finally, @ can be fixed by the normalization condition on the solution.

APPENDIX

PrOOF oF THEOREM 3. First, we remark that the process ¢ contains an
embedded random walk, by looking at ¢ at successive return times to some
distinguished state i,; from this, it is not hard to see that

(A1) either P(supcp, = +00) =1 or P(p,» —) =1.
t

(1) If we return to the uniqueness argument of Theorem 1 and take an
eigenvector f of @, Q.f = Af, we may apply the optional sampling theorem
to the martingale f(X,)e *!. We shall find that, by stopping at n A 7,

7(i) = B[ F(X(r5)): mg < n]

+Ei[exp(—A¢n)f(Xn):nST(’;], icE_.

Now the last term tends to zero as n — «; indeed, the random variable
exp(—A¢,)f(X,) is bounded on the events {rn < 7{}, and, by (A.1), either 7§ is
finite a.s. or else ¢, > —x. In the first case, the events {n < 77} decrease to
the null event {r§ = + =}, in the second, the random variables exp(— A¢,) f(X,)
tend to zero. This uses, of course, the fact that Re(A) < 0, a consequence of
the transience of @,. The argument that Z = II, is now exactly as in
Theorem 1.

(i1) First, note that @, is irreducible because @ is. Also, it is easy to seee
that there can be no vector f such that

%Lf =0+ Q+f
(because this would imply that @_ f = c1 and, for some finite Markov chain ¢,
f(¢,) — ct is a martingale). Thus @, has 0 as a simple eigenvalue, and its
eigenspaces of eigenvalues with negative real part span the remaining n — 1
dimensions. So let us assume that

Q.f; = A\, Jj=1,...,n,

and {f},..., f,} forms a basis for R” (if this assumption fails, we can always
take a basis of Jordan vectors, as explained in Theorem 1; the proof is made a
little clearer by this simplifying assumption). Now, exactly as in (A.2), for
each j=1,...,n,
(A.3) f;G) = (I, f,)(i), i€E_,
since the assumption that G, is recurrent implies that 75 < « a.s.

(iii) The analysis of this final case proceeds as for case (ii) as far as (A.3),

which now can only be guaranteed to hold for j = 2,...,n.
What we know therefore is that

Z.fj=1If forj=2,...,n

(A2)
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and hence

Z2,Q,=11,Q,.
This implies that

Z, - Il,=wpu,

where u is the (everywhere positive) invariant distribution of @,, and w is
some as yet unknown vector. Thus

ol vl )
- (i Jorv el
= ZI+ )Q+

= H+ )Q+

Thus
_ I
viQ(9)u- (H+)(Q+—G+),
which says that

(A4)(i) Buwp=@Q,-G,,
(A.4)(ii) —Dwp =11,(Q,—-G,).

So right-multiplying (A.4)(@) by 1 tells us that Bwl = —G, 1, and so
(A‘5) QR,=G, -G 1.

Left-multiplying (A.5) by u shows that u is a left eigenvector of G, with
eigenvalue a = uG, 1. Because u is a probability distribution and is every-
where positive, we may define

é+(i’j) = /~’ij+(j’ i)/:“'i - aaij
and observe that G, is an irreducible recurrent @-matrix, all of whose

eigenvalues apart from O therefore have a strictly negative real part. Since
sp(G,) = sp(G,) — a, everything is now proved. O
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