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SUPEREXTREMAL PROCESSES, MAX-STABILITY AND
DYNAMIC CONTINUOUS CHOICE

By SIDNEY I. RESNICK! AND RISHIN Roy?2

Cornell University and University of Toronto

A general framework in an ordinal utility setting for the analysis of
dynamic choice from a continuum of alternatives E is proposed. The
model is based on the theory of random utility maximization in continuous
time. We work with superextremal processes Y = {Y,, t € (0,)}, where
Y, = {Y(7), 7 € E}is a random element of the space of upper semicontinu-
ous functions on a compact metric space E. Here Y,(r) represents the
utility at time ¢ for alternative 7 € E. The choice process M = {M,,
¢t € (0,)}, is studied, where M, is the set of utility maximizing alterna-
tives at time ¢, that is, M, is the set of 7 € E at which the sample paths of
Y, on E achieve their maximum. Independence properties of Y and M are
developed, and general conditions for M to have the Markov property are
described. An example of such conditions is that Y have max-stable
marginals.

1. Introduction. This paper presents a general class of probabilistic
models for the analysis of the dynamic choice behavior of individuals from
sets of alternatives which may be arbitrarily large. The choice behavior of
individuals at any time E is postulated to conform to the theory of random
utility maximization [cf. McFadden (1981)]. The set of alternatives E is a
compact metric space. The preferences of an individual for alternatives in E,
at any given time ¢, are captured by a real-valued random function Y, = {Y,(7),
7 € E} called the random utility function. In keeping with utility maximiza-
tion, individuals select alternatives in E which achieve the maximum value
of Y,. The randomness is assumed because the analyst does not actually
observe all of the factors determining choice.

Choice models from sets with finitely many alternatives have employed
max-stability for quite some time [cf. McFadden (1981)] and it is natural to
investigate the prospects of continuous choice modeling under the auspices of
max-stability in infinite dimensions. The origins of the continuous choice
problem stem from the need to analyze data when the sets of alternatives are
arbitrarily large [see Cosslett (1988), Dagsvik (1988) and Resnick and Roy
(1991a)]. In transportation research, Ben-Akiva and Watanada (1981) and
Ben-Akiva, Litinas and Tsunokawa (1984) developed the continuous Logit

Recelved June 1992; revised January 1993.
Partlally supported by NSF Grants MCS 88-01034 and MCS 91-00027 at Cornell University.
Partlally supported by the Canadian Center of Marketing Information Technologies and a
Connaught grant at the University of Toronto, and NSERC Canada.
AMS 1991 subject classifications. 60G70, 60G55.
Key words and phrases. Choice theory, superextremal processes, extreme value theory,
Poisson process, max-stability.

791

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to %éf
The Annals of Applied Probability . STOR IS

WWWw.jstor.org



792 S. I. RESNICK AND R. ROY

model for approximating choices over large regional areas. Subsequently,
McFadden (1989) considered continuous choice models for problems with
large choice sets in the context of location choice modeling. Rust (1991)
surveyed discrete choice modeling and discussed applications of max-stability
to the problem of making a single choice from an infinite set. Pakes (1991)
provided a survey of models where the set of alternatives is either discrete or
continuous. Both Pakes and Rust discussed dynamic models in their respec-
tive papers, but their emphasis was primarily on static models.

There are several streams of research in the economics literature on
continuous choice modeling. These models have usually addressed slightly
different classes of problems than the ones which are the focus of this paper.
For instance, there has been extensive research on dynamic asset pricing
models where the choice space represents investments and is continuous
[Pakes (1991), Duffie (1988, 1992)]. These models usually have dynamic
programming foundations, and are often based on “Euler” equation tech-
niques [cf. Lucas (1978)]. Martingales are modern tools for the analysis of
consumption-investment decisions [Duffie (1992)]. These models are based on
the von-Neumann-Morgenstern theory of decision-making [see Kreps (1988)],
where the individuals make decisions on the basis of maximizing expected
utility, and the utility functions are cardinal, that is, invariant to affine
transformations. In the setup of our paper, the utility functions are invariant
to monotone transformations, that is, ordinal. The randomness in these
ordinal utility functions is introduced to account for the fact that one cannot
observe all of the factors determining an individual’s preferences. Individual
decisions are determined by maximizing their random utilities at a choice
occasion.

One approach to generating random utility models in economics from an
underlying utility maximization problem is where one derives indirect utility
functions to which random error terms are added [Haneman (1984)]. Another
approach in mathematical psychology is where random utility models are
derived from axioms on the choice probabilities for alternatives and distribu-
tions of the random errors are deduced from the axioms [Luce (1959);
McFadden (1973)]. Cohen (1980) developed extensions of this approach to the
case of continuous choice, and Dagsvik (1990) generalized this approach to
derive a max-stable process model. Finally, the “social surplus function”
approach of McFadden (1981) also gave rise to random utility models, and
this setup was utilized in describing max-stable process models in Resnick
and Roy (1991a).

Max-stable process models for the analysis of the static continuous choice
problem were proposed by Cosslett (1988) and Dagsvik (1990). Cosslett
defined the utility functions as max-moving averages [cf. Balkema and de
Haan (1988)] with continuous sample paths on a closed interval of the real
line, which represented the choice set. Dagsvik (1990) specified conditions on
the choice probabilities which led to max-stable random utility processes.
Resnick and Roy (1991a) rigorously discussed static continuous choice model-
ing on compact metric choice sets and gave general characterization theorems
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which provided guidelines for the construction of continuous choice models
within the framework of max-stability. A major factor in favor of employing
max-stable processes for modeling the continuous choice problem is that the
resulting formulae for the choice probabilities are in closed form, making
them amenable to future econometric analysis.

One way to extend static continuous choice models to a dynamic frame-
work is to embed the static model (such as the max-stable process model
mentioned previously) within a dynamic programming formulation [Rust
(1988); Resnick and Roy (1991a), Section 6], but the key drawback of this
approach is that tractability considerations usually force the simplifying
assumption that utilities for alternatives at different points in time are
independent [see Rust (1991) and Pakes (1991) for more on this, though in a
discrete choice setup]. Therefore, we propose another approach. One interpre-
tation of our framework is as a model of dynamic choice under conditions of
perfect foresight available to the individual making the choices. There is no
uncertainty from the individual’s frame of reference. The uncertainty in the
model arises from the underlying premise that the analyst does not observe
all the relevant factors (or processes) which go into the making of an
individual’s decision [cf. Rust (1991)] and, thus, in economics language, we
have a model in reduced form.

We present a model for time-varying choice from a continuous set that
generalizes the finite-dimensional analysis of Dagsvik (1988) and Resnick
and Roy (1990), which is based on multivariate extremal processes. We
replace the multivariate extremal process by an infinite-dimensional counter-
part called the superextremal process [Resnick and Roy (1991b)] Y = {Y,,
¢t > 0}, which models the dynamic evolution of utilities. For any ¢ > 0, Y, is a
random element of the space of nonnegative upper semicontinuous functions
on E, where E represents the choice set. The quantity Y,(7) represents the
random utility for alternatives 7 € E at time t. We define the arg max or
choice process M = {M,, ¢ > 0} [Resnick and Roy (1991b)]:

M, = {TE E:Y(r)=V Yt(s)},
sekE

M has state-space F(E), the space of closed subsets of E. In this paper, we
have kept the choice set E time-invariant and nonrandom, which allows for a
relatively clear exposition of the main ideas behind the model. Extensions
with a random process describing the evolution of the choice set, which
delivers similar properties as the model in this paper, are possible but
require rather stringent conditions on the process describing the temporal
evolution of the choice set. Time-varying nonrandom choice sets could be
handled fairly easily as in Resnick and Roy (1990).

The distribution of a superextremal process Y is characterized by its
sup-Lévy measure u (see Section 2). When this measure admits a particular
decomposition [see (23) and (24)], then M is Markov. In particular, we shall
show that if for each ¢ > 0, Y, is a max-stable process, then M is Markov. In
the latter case, the choice and transition probabilities of M are available in
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closed form and are natural generalizations of their finite-dimensional coun-
terparts [see Resnick and Roy (1990)].

In Section 4, we describe de Haan’s spectral function construction of
max-stable processes and show that this approach is equivalent to our
construction in function space in Sections 2 and 3. The spectral function
approach lends itself somewhat naturally to specific parametric forms and an
example is provided with a continuous Logit model being deduced from
dynamic utility maximization. The Appendix describes the appropriate
topologies and deals with some measurability issues.

2. The superextremal process and max-stability. Suppose (Q,.«, P)
is a complete space and E is a compact metric space with countable dense
subset Dy and metric d. Let #{E) be the closed subsets of E; because E is
compact, this is the same as #(E), the compact subsets of E. Let #(E)
denote the Borel o-algebra on E. Let US(E) be the space of upper semicon-
tinuous (USC) functions from E — (0, ] and with the sup-vague topology [cf.
Vervaat (1988) and Appendix A.2). Let #(US(E)) denote the usual Borel
o-algebra on (US(E), that is, the o-algebra generated by open sets. Let
US,(E) = US(E) — {0}, that is, US(E) punctured by removal of the function
identically zero on E. If (Q, &, P) is a complete probability space, we say that
the map ¢: O —» US(E) is a random usc function if it is a random element of
(US(E),#(US(E))). This means ¢ Y(#(US(E))) c«. Henceforth, for any
measurable B C E and f € US(E) we use the notation

FY(B) = V f(r).
T7€EB

We begin with the definition of a superextremal process given in Resnick

and Roy (1991b). Let "

N = Z Ettpom)
k>1

be a Poisson random measure (PRM) on (0, ) X US,(E) with mean measure
w such that u is Radon (finite on compact sets) on (0,) X US,(E). We
assume for all ¢ > 0,

() w((0.t] x {f€ US(E): f*(K) ==)) =0 VK ex(E),
(2) w((0,t] X USy(E)) = o,

(3) m({t} x ) =0.
Also, for notational convenience we will often write w((0,¢] X -) as u,(*).
The PRM N is time-homogeneous if there exists a Radon measure » on
US,(E), such that for A € Z(US,(E)),
u((0,£] X A) = tv(A)
and v satisfies the analogues of (1) and (2).
The superextremal process Y = {Y,, t > 0} is defined by

(4) Y, = V M

ty<t
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[ef. Resnick and Roy (1991b)]. Often u is called the sup-Lévy or exponent
measure of Y. Also define
Yst = V M-
s<t,<t

The random variable Y, represents individual’s random utility for alterna-
tives in E at time ¢, and the process Y describes the evolution of the
individual’s utility. The superextremal process Y = {Y,, ¢ > 0} is Markov,
stochastically continuous, has a version in D((0, ), US(E)) and Y is #((0, »))
X 7 /B(US(E)) measurable. Furthermore, Y has a version (also called Y)
such that for each fixed ¢ > 0, Y, is a random element of US(E) and is
B(E) X //%((0,°)) measurable. For any B € Z(E), Y,'(B) is a random
variable. The process Y is Markov with state space US (E), and its transition
probabilities are determined by (0 <s <t¢, h € US\(E), K, € Z(E), x; > 0,
i=1,...,m):

P[Y,Y(K) <x;,i=1,...,m|Y, = h]
0, hY(K,) > x,; forsome i € {1,...,m},
exp(-u((s,t] X {f: fY(K,)) <x;,i= 1,...,m}c)), otherwise.

Also note for B € #(E), the process Y V(B) ={Y,"(B), ¢t > 0} is a classical
univariate extremal process. See Resnick and Roy, (1991b) for details.

In this paper, we show that somewhat richer properties are inherited by
the superextremal processes Y, whose sup-Levy measures admit a particular
decomposition [defined in (23) and (24)]. Max-stable processes are an impor-
tant example of processes that belong to this class and are introduced next.
Henceforth we assume that we have a fixed version of Y which is a random
element of D((0,x), US(E)).

2.1. Max-stability. We say that the superextremal process Y has max-
stable components if for every ¢ > 0 and any > 0 and A € Z(US(E)),

(5) O, (0A) = w,(A)
[cf. de Haan (1984) and Gine, Hahn and Vatan (1990)]. Note that
{fe US,(E): fY(K) > Gx} = {Ofe US,(E): fY(K) > x}
= 0{f€ USy(E): fV(K) > x}
and from this it is easy to see that for each fixed ¢, {Y,(r), r€ E} is a
max-stable process [de Haan (1984)]. Also, u, is the analogue to McFadden’s
(1981) “social surplus function” [c¢f. Resnick and Roy (1991a)].

By (1), the sup-Levy measure u places no mass on (0,%) X {f € US(E):
fV(E) = «} and hence for any ¢,

P[Y, € US(E) \ US,(E)] =0,
where US,(E) c US(E) are bounded functions in US(E). On US,(E) we
define f V(E) = ||f|l. From now on we use US,(E) to denote US,(E) — {0}.
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Define the unit ball in US(E) as

(6) Xys = (f€ US(E): Ifl =f"(E) =1},
which is compact in the sup-vague topology. Construct a measure o on
2((0,)) X B(Ryg) as follows: For A € #(Ry¢) and ¢ > 0,

f

(1) o((0,t] XA) = o,(A) = ,u,t({fe USo(E): oy €A, Il > 1})

Also define for 0 < s < ¢,

0u() = ust({g: lgll > 1, Wgﬂ e })

Define a generalized polar coordinate transformation
R: (C,») X USy(E) — (0,%) X (0,%) X Ryg
by

- i
(8) R(t,f) = (t,IIfII, ||f||)‘

From the definition of max-stability, for » > 0,
wl({f € US(E):IIfIl > r, If17'f € A))
ru,({r1f € USo(E): Il > r, lIfI7*f < A})
= ru,({r i € USo(E): e fll > 1, IIr 2 fI7 r=1f € A})
= r'u({g € US,(E): ligl > 1, gl g € A})
=r7o,(A).
Then we have

9) we R™Y(dt,dr,dg) = r 2dro(dt,dg)

and for fixed ¢ > 0, the finite-dimensional distributions of Y, are specified as
follows. For {K;} , e A(E) and x; > 0,i =1,...,n,

- logP[ N {7 (k) < xi}]

i=1

- —w({fe US(E): fV(K)) <x,,i=1,...,n})

=[ r~2dro,(dg)
{

(r,g)e(0,°)XRyg: rg V(K)<x;,i=1,...,n}
/;‘GRUS('/;I’Z r<A ?.l(xi/gV(Ki))}
\"/ g (K;)

gE“Us(i=1 x;

(10)

dr)a«dg)

)o't(dg).
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If Y is time-homogeneous, that is, u, = tv, then o, =to, where o is a
measure on F(Ryg), constructed analogously to (7).

The US(E)-valued process Y is Markov [Resnick and Roy (1991b)], and
when for each ¢ > 0, Y, is max-stable, its transition probabilities take on the
tractable form determined by (0 <s <t, h € US,(E), K, e A(E), x, >0,
i=1,...,m):

P[ F] {¥."(K,) <x}Y, = h]

0, if hV(K;) > x; for some i € {1,..., m},
= g ( z)

d )

exp( fxw(v . )ast(g)

i=1

otherwise.

If Y is time-homogeneous, then the transition probabilities simplify fur-
ther. Since o, = to, we have for 0 <s <t¢, h € US|(E), K, e A(E), x;, >0
i=1,...,m, that

p[ A (%9 (K) <)Y, - h]
i=1
0, ifhY(K;) > «x,; forsomei e {1,...,m},
exp(—(t-s)/; (Vg ( l))do‘(g) )

i=1

otherwise.

Now that we have collected the basic properties of the random utility
process Y and defined max-stable superextremal utilities, we proceed toward
developing the properties of the corresponding choice process M.

3. The choice process. In this section, we have a fixed version of the
superextremal utility process Y = {Y,, ¢ > 0} defined in (4), which is a ran-
dom element of D((0, ), US(E)), representing the evolution of the alterna-
tives in E. Recall ¥ = #(E) is the class of closed subsets of E, and since E is
compact, AE) =F(E). The class F(E) is given the vague topology (cf.
Appendix A.3) and #(F(E)) denotes the Borel o-algebra generated by the
open subsets of F(E). A random element of (#(E), #(F(E))) is a random
(closed) set [cf. Castaing and Valadier (1977) and Vervaat (1988)].

The arg max functional A, on US(E) is defined as

A (f) ={r€E: f(1) =fY(E)} = {r€ E: f(r) > f"(E))
= fY(E), .

Since f < US(E), A, (f) is closed [Resnick and Roy (1991a)]. Furthermore
the argmax functional A,: US(E) —» #(E) is upper continuous and
B(US(E))/#B(FE)) measurable [cf. Resnick and Roy (1991b) and Appendix
A3].

(11)
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For a superextremal utility process Y ={Y,, ¢t > 0}, the choice process
M = {M,, ¢t > 0} is defined by

(12) M, =A,(Y,).

Therefore, M, represents the collection of utility maximizing alternatives at
time ¢. Some noteworthy properties of M [Resnick and Roy (1991b)] are that
for each ¢t > 0, M, is a random element of F(E), M is a.s. right upper
continuous in F(E) and M is &((0, »)) X .« /B(F(E)) measurable.

For most applications, it is standard (and convenient) to assume that
utility Y,(-) is maximized by a single alternative in the choice set of each
t > 0. This is not true, in general, and we specify conditions in the following
text which ensure this [Resnick and Roy (1991b)].

Define US(E)qyg to be the functions in USy(E) which achieve their
maxima at a unique point in E, that is,

US(E)gng = UE{fe US,(E): fY(E) =f(r) >f(7),V7' € E — {7}}

= U (FeUSy(E): A (f) = {1}} eB(US(E)).
T7€E
Then from Resnick and Roy (1991b), we know that (i) for any fixed ¢ > 0, the
set
SINGy,,(E) = {w: M,( ) is singleton} € &
and

SINGyz) = N {@: M,(w) is singleton} €.,
t>0

and (ii) if P[SINGy(E)] =1, then M is a.s. right continuous in $(E), and
stochastically continuous. Furthermore, if the exponent measure u of the
superextremal process Y = {Y,, ¢t > O} satisfies

(13) w((0,¢] X {f € US(E): f¥(E) € -))
is atomless for every ¢ > 0, then:
1. P[SINGy,,] = 1 if and only if

P«((O’°°) X [US(E)SING]C) =0,

2. For any t > 0, M, is P-as. singleton, that is, P[SING;(¢)] = 1 if and
only if

M((O,t] X [US(E)SING]C) = 0.
Finally, when the sup-Lévy measure satisfies the atomless condition in

(13), then the joint evolution of the process {(M,Y Y(E))} = {(M,,Y,"(E)),
t > 0} is Markov.

3.1. The Markov property of the choice process. Now we study the dy-
namic properties of the choice process M = {M,, ¢t > 0}.
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We define some auxiliary processes [cf. Resnick and Roy (1991a)] needed
for the calculation to follow. First, define the following sets: For any K € #(E),
K ={fe USE): A,(f)cK}, K)={fe US(E): A, (f)NK =} and
K& =[K®) U K(9Je, all of which are measurable (Appendix A.1). Also
define K(2) = K©*) U K and K(=) = K9 U K&,

Next, for any K € #(E), define three auxiliary Poisson processes

NK(>) = Zs(tjrnj)l(njEK(>))’
J

NK(<) = Zs(tjrnj)l(njEK(<))’
J

N = L&, npline ks
J

which are mutually independent as a consequence of the complete random-
ness of N. Then, for all K € #(E) and any ¢ > 0, define the random variables

(14) Xt(K(>)) = V nkv(E)l[nkEK(>)])
tp<t

(15) X(K“<) =V M (E)1y, c xeops
<t

(16) Xt(K(=)) = V nkv(E)]'[‘r;kEK(:)]‘
tp<t

Again, the complete randomness of the PRM N implies that X,(K()),
X, (K<) and X,(K*)) are independent random variables. It is also conve-
nient to define the random variables

X,(K®)) = X,(K®) vX,(KT),

X, (K®)) = X,(K'*) v X,(K).
We assume throughout the rest of the paper that the sup-Levy measure u of
the process Y satisfies the atomless condition defined in (13). It is easy to see
that (13) is satisfied by max-stable superextremal processes.

We begin by reproducing a lemma from Resnick and Roy [(1990), Lemma
3.2], which is needed in some of the proofs to follow.

LemMMA 3.1. Suppose X, and X, are nonnegative independent random
variables with distributions F; and F,, respectively. For 0 <¢ < 1,

Plx>X, VX, X, 2X,] =P[X, > X,]P[X, VX, <x]
if and only if
F,=F'a-o,
where ¢ = P[ X, > X, ].

Recall Y is a superextremal process and M is the corresponding choice
process defined in (12). We write [g V(E) > x] for {g € US(E): g V(E) > x}.
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THEOREM 3.1. For any t > 0, Y,Y(E) and M, are independent iff for any
KeAE), x>0,
17 w(K> n[g¥(E) >x]) = P[M, c K] u([g"(E) > z])
or, equivalently,
(18) p (K> n[gV(E) >x]) =P[M,nK + D] ([g Y (E) > x]).

ProOF. Suppose Y,Y(E) = X,(K‘®)) v X,(K(<’) and M, are independent.
Since

[M,nK+ 2] = [X,(K®) = X,(K'9)],
we have
P[x>Y,"(E), M,nK+ Q| =P[x>Y,"(E)|P[M,nK + 2]
or, equivalently,
P[x > X,(K™) VX,(K), X,(K®) = X,(K )]
= P[x > X,(K®)) VXt(K(<))]P[Xt(K(Z)) ZX,(K“))],
By Lemma 3.1 we get
~logP[X(K®) <x] P[M,nK-0]
“logP[X, (K<) <x] P[M,nK+Q0]

Since
~logP[ X, (K<) <x| = p(K 2 n [g"(E) > «x])
- n([gV(BE) >x]) — w(K= n[gV(E) >x]),
the result follows. The converse can be verified directly. O
When Y, is max-stable, then pu, satisfies (17) and (18), and since the

resulting formulae for the choice probability are of interest in their own right,
we collect them in the following corollary.

CorOLLARY 3.1. If Y is a superextremal process with max-stable compo-
nents, then for each t > 0, Y,V(E) and M, are independent;
(i) the containment functional is
o,(K©) N Ryg)

o (Rys)

(19) P[M,cK] =
and is called the choice probability;
(ii) the hitting functional is
o, (K n Rys)
a(Rys)

(20) P[M,nK + J] =
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Additionally, if Y is time-homogeneous, then recall o,(-) = to (), where o
is a measure on B(Ryg). In this case,
(iii) the choice probability is
o (K®) N Rys)

21 M = . —C.
( ) P[ t QK] O'(RUS) TK;
(iv) the hitting functional is
o(K3)Nn R
(22) P[M,nK+ ¢] = ( vs) = m,

o(Rys)
where both do not depend on t.
ProoF. The formulae for the choice probability and hitting functional

follow from the definitions in (5) and (6) and some direct calculations. We
compute the containment functional (i) for illustrative purposes:

P[M,cK] = P[Xt(K(>)) >Xt(K(5))]
- f(o,w)exp(—x—lgt(K(S) N Ryg))d[exp(—2~lo,(K>) N Xys))]

o, (Rys)

The independence property follows since u, satisfies (17) and (18). We
check that u, satisfies (17). For x > 0,

m(K 0 [g¥(E) >x]) =2 (K> n [gY(E) > 1])
=x"'o,( K N Ryg)
o, (K™ Nnryg)
= o-t(xUS) x a-t(xUS)
=P[Mth]ut([gV(E)>x]). O

The next result develops a critical independence property that is used in
showing that the choice process M is Markov.

COROLLARY 3.2. Suppose the measure p, satisfies the following equivalent
conditions: For any 0 <s <t, x > 0, K € #(E),

(23) k(BN [FY(E) > x]) = cxor(s, tlug([ £V (E) > x])
or, equivalently,
(24) (K@ 0 [FY(E) > x]) = cxer(s, t ([ £V (E) > 2]),

where cg:(s,t] and cg-)(s, t] are constants independent of x. Then for any
fixed t > 0,Y,Y(E) is independent of {M,, u < t}.
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When Y is a superextremal process with max-stable components, the sup-
Levy measure satisfies (23) and (24), since

o, (K®)
ps (K 0 [fY(E) > x]) = = ("t(x;)xUS) ra([FY(E) > x])

= cgo(s, t]lJ«st([fv(E) > x])

and

(K= 0 [fY(E) > x])

([ £V (E) > x])
= cxer (8, t g ([ £V (BE) > x]).

Proor. We prove the result by induction, as in Resnick and Roy (1990).

For proving independence it is enough to show for x > 0, 0 <t; < -+ <t¢,,
Ki Ey(E), i = 1,...,n,

P[Y,"(E) <x,M, NK,#@,i=1,...,n]
=P|Y,"(E) <z|P[M, K, #Q,i=1,...,n].

From Theorem 3.1, we know that Y,'(E) is independent of M,. For
notational convenience, set Y, (E) = Z, for any ¢ > 0.
For 0 <t; < -+ <t,, assume as the induction hypothesis

Z, | isindependent of {M,l, ceey Mt"_l}.
Suppose K; € A(E), i = 1,...,n,and y > 0. Then
P[Ztn <y,M, NK,+J,i= 1,...,n]
=EP[Z, <y, M, NK, +,
i=1,..,nl(Z,,M,),1=1,..,n 1]
=Eln; o, 0k 0
XP[Z, <y, M, NK,*2|(Z,,M,),l=1,...,n - 1]

and, since {(Z,, M,), t > 0} are jointly Markov (see the remarks at the end of
Section 3), the preceding expression becomes

(25) = Elnppu, 0k, wonP|Z:, <y, M, NK, # dZ, Mt"_l]
(26) =El a0k, v0n8 (2, My, ),
where

g(Z, .M, )=P[Z, <y,M, NK,+Q2|Z, |, M, ]
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Now integrate using the joint distribution of Z,  and (M,,..., M, ) and
(26) becomes

(27)
(Fy,.. Fy ) FOK %@, 1=1,...,n—1)
g(x,F,_)P[Z, €dx|P[M, €dF,i=1,...,n-1],
<y

where the last expression is deduced by invoking the induction hypothesis.
Now write

A = P[y 2 Ztn—lrtn > Ztn—l’ Mtn n Kn #: letn—l = x’ Mtn-
B=Ply>2, >Z, ..M, 0K, +QZ,  =x M,
so that (27) becomes

1 =Fn—1]’
1 =Fn—1]

[ (A+B)P[Z,  edx|P[M, €dF,,i=1,...,n—1].

X<y

The term involving A in (28) we have

'[;(F1y---’Fn—1)i FinK,+3,1=1,...,n-1}
(29)

n—

..[S Plx<Z, , <y, M, . NK,+¢|P[Z,  €dx]
x<y
xP[M, €dF,,i=1,...,n - 1],

where M, ., ={r€E: Y, ,(1)=Y," ,(E)} is independent of
(Z, ,M, ). Now apply Theorem 3.1 to see that M, , and Z, , are
independent. Hence (29) becomes

e dx]

..[x< Plx<Z, , <y|P[M, , NK,+Q2|P[Z,
X P[M, €dF,i=1,...,n— 1]
= P[Ztn—l < Ztn—lrtn Sy]P[Mtn—l’tn N K” * Q]

XP[M, nK,#3,i=1,...,n - 1].
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Applying Lemma 3.1, this becomes
= P[Ztn S y]P[Ztn—l < Ztn—lrtn]P[Mtn—l’tn n Kn ;(: Q]

(30)

n—-1
xP| N {M, K, + T}|.
i=1

Now consider the term containing B in (28). This is the case where
Y,” .(E) <Y,’ (E), and in our current notation thisis Z, , <Z, .Since
p(f > x1) = x7u,({f > 1)) is continuous in x, we have M, =M, . Then
from (28) we have for the B term:

. Pz, ., <xM 0K, +2Z,  =x,M, =F,]
x<

f l[Fn—ann*Q]P[Ztn—l»tn = x]P[Ztn—l € dx]
x<y

X P[Mti e€dF,,i=1,...,n — 1].
Another application of Lemma 3.1 yields

P[Ztn S"y]P[Ztn--l 2 Ztn—lrtn]
(31) n-1
XP| N (M, nK,#2}, M, NnK,+J|
i=1
Thus from (30) and (31),
P[Z, <y,M, NK;+ ¢,i= 1,...,n]
= P[Ztn S y]P[Ztn—l < Ztn—l’tn]P[Mtn—l’tn n Kn # @]
n—-1
xP| N {M, nK, + D)}
i=1

+ P[Ztn S:y]P[Ztn-—l 2 Ztn—lytn]

xXP

n-—1
N {M, N K, + 2}, M, NK,+J
i=1

=¥(¥)d(Ky, -5 Ky),s

which implies the desired independence. O
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In the following theorem, the Markov property for the choice process M is
established and the formulae for the transition probabilities are given.

TuHEOREM 3.2. (i) If (23) or (and) (24) hold, then the choice process
M = {M,, t > 0} is Markov with state space F(E). For 0 < s < t, K, F € #(E),
KnF=@,

P[M, CKIM, = F] = P[X,(K®) > X,(K=)]

(32) xP[Y,’(E) > Y, (E)].

(i) If Y is a superextremal process with max-stable components, then (23)
and (24) hold, so M is Markov. For 0 <s <t, K, F € #(E), the transition
probabilities are determined (a) in terms of the choice probability by
a,(X)
o, (X)

o,(R)

+1 S,
[KNF+Q] O't(R) ’

P[M,cKIM,=F] =P[M,cK] - ——P[M, cK]

(33)

(b) in terms of the hitting functional are determined by
P[M,NnK+# QJIM,=F] =P[M, N K + O]
(34) o,(X) (%)
PIM.nK+J] +1
a't(K) [ [KnN F#@] (R)

Gii) If Y is time-homogeneous, superextremal process with max-stable
components, then M is Markov and for 0 < s < t, F, K € 9(E), the transition
probabilities are (a) in terms of the containment functional:

s
(35) P[M,cKIM, = F] —(1— )frrK+1[KﬂF¢®]t
(b) in terms of the hitting function:
s
(36) P[M,nK+ JIM, = F] —(1— )qu +1”‘”F*@1t

In the time-homogeneous case, the deterministically time-changed (t — e')
choice process M, = {M,:, t > 0} is a F(E)-valued, time-homogenous Markov
process whose stationary transition probabilities are (a') in terms of the
containment functional:

(37)  P[M.CKIM,. =F] =(1-e 9 af + Lignpime
(b") in terms of the hitting functional:
(38) P[MyNK+QIM, =F] =(1-e )l + Lgnp,me

and {M,.,t > 0} is a stationary process.
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PrOOF. For0<t¢, < - <t,and K, e AE),i=1,...,n,
P[M, cK,IM, =K;,i=1,...,n—1]
=P[M, cK,.Y,” ,(E)>Y,) (E)M, =K, i=1,..,n- 1]
+P[M, . CK,Y' (E)<YY(E)M,=K;,i=1,..,n-1]
=P[M, ,CK,Y W ,(E)> Y, (E)M, =K, i=1,...,n—1]
+ g, nk, ,»0P[ M,  CK,,
Y, o (E)<Y, (E)WM, =K;,i=1,...,n—1]

and by Corollary 3.2, (M, _ .Y, .Y, )isindependentof(M,,..., M, )
so the preceding equation is

=P[M,,, CcK, Y, (E)>Y, (E)]

+ l[K,,nK,L_lae@]P[Yt,,v_l,t,,(E) = Ytnv_l(E)]-

This proves the Markov property. The rest of the formulae for the transition
probabilities are obtained by straightforward calculation. The stationarity of
M for time-homogeneous Y with max-stable marginals is readily checked. O

REMARK 3.1. A direct calculation shows that if 0 < s < ¢,
1 1 o,(Rys)
Y,Y(E)' Y,"(E) )  oy(Rys)
[cf. Resnick and Roy (1990) for the calculation in finite dimensions]. There-

fore, the transition probabilities may be rewritten by replacing
(0,(Ryg))/(0,(Ryg)) by the correlation. For instance, (33) becomes

Corr (

1 1
P[M,cKIM,=F] = (l—Corr(Yv(E), YV(E)))W,‘{’

1 1
+ llKnFae@] COI‘I‘( YSV(E) ’ YtV(E) )

The following independence property is the infinite-dimensional counter-
part of Proposition 4.1 of Resnick and Roy (1990). The proof uses techniques
from there and Corollary 3.2 of the present paper, and is omitted.

ProposITiON 3.1.  If Y is a time-homogeneous, superextremal process and
the sup-Levy measure u satisfies (23) or (24), then M, is independent of
{Y,Y(E), u <t}, forany t > 0.

One can construct a counterexample, as in Resnick and Roy [(1990),
Section 4], to show that time homogeneity is necessary for the result in
Proposition 3.1.
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4. The spectral representation of max-stable superextremal pro-
cesses. In this section we discuss another method for constructing max-sta-
ble superextremal processes using spectral functions [cf. de Haan (1984)]. For
US(E)-valued superextremal processes with max-stable components, this
method is equivalent to the approach to the subject in Section 3, which
utilized the canonical representation of sup-infinitely divisible processes on
US,(E) of Norberg (1986). The methods in this section are important because
when modelling choice, it is more convenient to pick a family of upper
semicontinuous functions than to select a measure on the function space
US,(E), which is required by the construction in Section 3 [see also Rust
(1991) for a related discussion]. On the other hand, in Section 3 we have
general characterization theorems, which apply to all US(E)-valued superex-
tremal processes, and are obviously in force when max-stability is present.

For what follows, A denotes Lebesgue measure.

THEOREM 4.1. Let Y be a superextremal process with max-stable compo-
nents with sup-Levy measure u and accompanying measure o on (0, %)) X
BRyg). Construct a PRM N = L, ¢, ,. r,, with points in (0,%)° and mean
measure A\3. There exists a measurable function f = (fy, f;): (0,0)% — (0, %) X
Ryg such that

o=2of1
The process Y = {Y,, t > 0} defined by
fo(ur,v;)

(39) Y= V T

filu,,v,)<t

is a superextremal process with max-stable components and Y =, Y.

Proor. See Theorem 3.2 of Resnick and Roy (1991b). We need to show
% E(Faun, vy (Falr, vi))/ To)
is PRM (w) or equivalently, because ||f,|l = 1, we need to show
%%fl(uk,uk), it faup, va))

is PRM with mean measure of [0,¢] X (ry,®) X A [where A € ZXygx)),
ro > 0] equal to ry'o,(A). This follows in a straightforward way from the
choice of f to satisfy o = A2-f~1. O

Theorem 4.1 suggests the following method of constructing a superex-
tremal process with max-stable components. Find two functions
f1: (0,0 - (0,) and f,: (0,2)? - Rys. Often, in fact, the range of f, will be
C(E), the space of continuous functions on E. Define o = A% of !, Construct a
PRM (o) and call it

Z g(tk, Ty, a),
k
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where ¢, € (0,»), r, € (0,%) and a, € R;g. Then

Z E(ty, rrap)
k

is also PRM. Call its mean measure u. Assuming (1), (2) and (3) are satisfied,
Y, =V ra,
ty<t

is the required superextremal process with max-stable components.

A time-homogeneous, superextremal process with max-stable components
readily can be generated by the following variant of the previous construc-
tion. Suppose

Z Sty upTy)
k
is homogenous PRM on (0,) X (0,1) X (0,) and let f: (0,1) — US(E) sat-
isfy for every K € #(E),
[ ()Y (K) du <
Then

) &ty T fuy))
is PRM and if
f(ug)
r, ’

Y, = V

ty<t

then {Y,, ¢t > 0} is a superextremal process with max-stable components.
Observe that for K; € A(E), x; > 0, j =1,..., J, we have for any ¢ fixed,

P él[Y,V(Kj)ij]]‘:P ﬁ{t!tiﬁ%ﬂs%}]

(f(uk)) (K) ]

=PVV

ty<t j=1 x;T

= exp(— dwdu)

{(u,w): VI (F@) V(KD /xw <1}

( o g S ()

0]1 Xj

ExXamMPLE 4.1 (The dynamic continuous Logit model). Let the dynamic
random utility process be defined as follows: The choice set is E = [0, 1]. For
r€ E, u € U =10,1], define the spectral functions

f(r,u) =V(r) — |t —ul.
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An interpretation of this functional form is that U corresponds to an individ-
ual’s “ideal” choices and the set E represents those which are offered to the
individual for selection. Then |7 — u| represents an individual’s disutility for
the alternative 7 when u is the ideal.

Now suppose that the functions f(r,u) are maximized at unique 7 € E;
such that = u, for each fixed u € U. This means that the functions V(7)
satisfy V(u) > V(7) — |7 — ul. Examples of such functions are those which
are Lipschitz of finite order. In particular, consider

(40) f(7,u) = exp(ar? — |7 — ul)

for a > 0.
Now the underlying dynamic random utility process is a superextremal
process with max-stable components, defined by

u
Y, =V A k),t>0 ,
tkSt k
where for E fixed,
f(7,uy)
() = V S
<t k

any 7€ E. Also suppose Y is time homogeneous, that is, Y has sup-Levy
measure dt X du X dw over £(0,») X B(U) X B(0,x). Then we know the
corresponding choice process M is Markov (cf. Theorem 3.2), the transition
probabilities [cf. (35)] are for 0 < s < ¢, K;, K, € #(E),

P[Mt QK2|MS = Kl] = (1 - S/t)P[Mt ng] + 1(K10K2¢®}S/t.

First recall that these spectral functions in (40) have unique maxima in 7 € E
for fixed u € U. Recall our characterizations in Section 3, where we note for
unique maxima in utilities (i.e., singleton M,) the sup-Levy measure must be
concentrated on US(E)qy¢ or, equivalently in the language of Section 4, the
spectral functions must have unique maxima [as described in Corollary 4.2 in
Resnick and Roy (1990)]. This implies K§”’ = K,. Now applying the formulae
(21) for the choice probability and Resnick and Roy [(1990), Theorem 4.1], the
choice probability is

Jg, [ (T, u) du Jg,e¥ du szea"2 du
fouf " (Touydu  fio e’ du [ e du’

P[M,cK,] =

Hence, the transition probability (35) simplifies to

2
s e du
P[M, CK,IM, = K] = (1 - o) K

t) /[‘ e’ du

0,1]

+ 1k, nk,+28/1
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APPENDIX

A.1. Measurability. Let E be a compact, metric space. The arg max
functional A, is B(US(E))/#B(F(E)) measurable. Hence, for any K € Z(E),
K®) ={fe US(E): A, (f) cK}e®US(E)), K<) ={fe US(E): A, (f)n
K = @) e #(US(E)), and K= =[K®) U K(9]° € #(US(E)).

A.2. The space of upper semicontinuous functions US(E). Let E
be a compact, metric space with countable dense subset D, and metric d;
B(E) denotes the Borel o-algebra on E; US(E) is the space of upper
semicontinuous functions from E — [0,«], endowed with the sup-vague
topology [cf. Vervaat (1988)]. The sup-vague topology has basis sets of the
form (f € US(E): V,.xf(E) <x}, {f € US(E): V,.f(E) > x}, where K €
Z(E), the compact subsets of E, and G € £(E), the open subsets of E. Then
#(US(E)) denotes the usual Borel o-algebra on US(E), that is, the o-algebra
generated by open sets; US(E) is compact, separable and metrizable [cf.
Dolecki, Salinetti and Wets (1983) and Norberg (1986)].

A.3. The space of closed sets #(E). Denote 5 = %(E) by the class of
closed subsets of E, which is given the Fell or hit-miss or vague topology by
declaring the following collection as subbasis sets of the topology: (i) {F €
FAE): FNK=0}; () (FeHAE): FNG+ )}, for KeHAE), G € Z(E).
Since E is compact, this topology coincides with the topology generated by
the Hausdorff metric on F(E) [cf. Vervaat (1988)]. #(E) is a compact, metric
space in the vague topology.

The upper topology [cf. Castaing and Valadier (1977) and Vervaat (1988)]
on #(E) is generated by taking the collection of sets in (i) as subbasis. Note
we always have F, -, E, so limits are not unique and the upper topology is
not Hausdorff.

Similarly, the lower topology on F(E) is generated by taking the collection
in (i) as subbasis. Therefore a function H is vaguely continuous iff H is
upper and lower continuous.
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