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FINITE MOMENTS FOR INVENTORY PROCESSES

By KARL SiGMAN! aND Davip D. Yao?

Columbia University

We study a continuous time inventory process that is a reflection
mapping of a semimartingale netput process. Inventory processes of this
type include the workload process in queues, dam and storage processes
(with perhaps pure jump Lévy input), as well as processes arising in fluid
models. We establish sufficient conditions on the netput ensuring that
the steady-state inventory has finite moments of order £ > 1, and derive
explicit bounds for these moments. The sufficient conditions require that
the netput have a negative (local) drift and that the (conditional) (¢ + 1)th
moment of its increments be bounded.

1. Introduction. The purpose of the present paper is to establish suf-
ficient conditions that ensure finite moments of any desired order for the
steady-state distribution of inventory processes. Let Z(¢) denote the amount
of inventory at time ¢, satisfying the inventory equation

(1) Z(t) = X(¢) + L(2),

where {X(¢): t > 0}, X(0) = 0, is a given netput with negative drift [refer to
the condition given in (2) below] and L(t) is defined as
L(t) = sup X (s), with X (s) == —min{0, X(s)}.
O<s<t

The setup here, in particular the term “netput,” is borrowed from Harrison
([9], pages 18 and 19], where X is a Brownian motion. The mapping in (1),
which takes a path of X and maps it to a path of Z, is sometimes called the
reflection mapping and is of fundamental importance in a wide variety of
applications both deterministic and stochastic. See, for example, Borovkov
([3], Chapter 1, Section 6), Chung and Williams ([4], Section 8.2), El Karoui
and Chaleyat-Maurel [6], Glynn [8] and Prabhu [13], in addition to [9] cited
above. Recent applications to inventory processes also appeared in Bardhan
and Sigman [1, 2].

We study two cases: (a) the netput X has a bounded variation and (b) X
is a semimartingale (martingale plus a process with bounded variation).
Although (a) is a special case of (b), we choose to focus on (a) first so as to
bring out the basic ingredients of our approach, which then generalizes easily
to case (b) through incorporating certain martingale inequalities.
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766 K. SIGMAN AND D. D. YAO

In the case of bounded variation, X(¢) is of the form A(¢) — B(¢), where
A ={A@): ¢t > 0} and B = {B(¢): ¢t > 0} are two nonnegative and nondecreas-
ing processes representing the input and the potential output, respectively.
For example, in a standard single-server queueing model with Z(¢#) denoting
total workload, we have B(¢) = ¢t and A(¢) = L") S, , where {N(¢)} denotes
the counting process for arrivals and {S,} denotes customer service times. In
this case, L(t) is precisely the total idle time of the server during [0, ¢]. On
the other hand, in an inventory model the input A(¢) need not be generated
by a point process of arrivals; it can be a continuous flow process (e.g., have
continuously differentiable sample paths) or a pure jump process (such as a
pure jump Lévy process with infinite Lévy measure).

We derive sufficient conditions (not necessary in general) ensuring that the
steady-state inventory has finite £th moments, £ > 1, and obtain explicit
bounds for these moments. The sufficient conditions require that the netput
have a negative local drift and that the conditional (2 + 1)th moments of
its increments be bounded. In applications, finite moments are often useful
performance measures. For instance, to guarantee the quality of service
in communication systems, it is usually required that the expected delay
be bounded by a given constant. Our conditions for finite moments and the
computable bounds provide a practical means to support system design with-
out having to make unnecessary independence and distributional assump-
tions on the underlying processes. Other possible contexts for applying our
results include single-processor models such as fluid models (storage and dam
models) as well as single-server queueing models (workload and queue length).
On the other hand, we note that our stationary semimartingale framework,
while quite general, does not cover certain processes that have recently found
useful applications, for instance, fractional Brownian motion, which is not a
semimartingale.

Our results are motivated by the classical finite moment conditions of
Kiefer and Wolfowitz [11] for queues with renewal input and i.i.d. services, as
well as the more recent works of Wolff [14] and Daley and Rolski [5]. By
adopting the setup in (1), our results, even in the bounded variation case, are
considerably more general than those for queueing models. Our approach,
on the other hand, is largely influenced by the recent work of Meyn and
Down [12], which studied the first moment of delay in a generalized Jackson
network.

In Section 2 we present in detail the results for the case of bounded
variation, followed by several examples in Section 3. Section 4 extends the
results to the semimartingale case.

2. The case of bounded variation. All stochastic processes that follow
are assumed to have sample paths that are right continuous with left limits
(e.g., in the space 2[0, ) endowed with the Skorohod topology; see, e.g., [7]).
Let the netput X = {X(¢): ¢ > 0}, X(0) = 0, be a stochastic process on an
underlying probability space, (0, %, P), with stationary and ergodic incre-
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ments and negative drift:
(2) limX(¢)/t =E[X(1)] = —a<0 as,
t—> o

where a > 0 is a constant. (Note: the negative drift is a stability condition.)
The inventory process Z is then constructed via (1) with Z(0) = 0. This
ensures the existence of a unique proper steady-state distribution for Z, as
well as the ergodicity of Z; refer to [3] (Chapter 1, Section 6) and [1] for
details. Hence, in particular, for any nonnegative Borel measurable function
g: R,—» R, we have

.1 .
(3) lim - [2(2(s)) ds =E[g(2)] as,
where Z denotes a random variable having the steady-state distribution:
(4) P(Z <x) = imP(Z(t) <x).
t—> oo

Let %, = o{X(s): 0 < s < t} be our filtration. From (1), clearly Z(¢) € %, for
all ¢ Denote Eg[X | = E[ X|#]. Assume that the netput is of the form
X(¢) = A(t) — B(t), where A and B are both nonnegative and nondecreasing
processes, A(0) = 0, B(0) = 0, with jointly stationary ergodic increments. Let

A(t,h) =A(t+h) —A(t) and B(¢,h):=B(t+h)—B(t)
denote the increments, and similarly, X(¢, h) == X(¢ + h) — X(¢).
The key conditions for our main result (Theorem 1) are as follows:

Al. There exist constants & > 0 and / > 0 such that for all £ > 0 and
h >0,
EZ[X(t,h)] < —ah + 1.

A2 (k) (k > 1is an integer). There exist functions a,: R, ~ R, and b,:
R,—» NR,,such that forall ¢ > 0and 2 > 0, [ a,(s)ds < o,
Es[A*"'(t,h)] <a,(h) and Eg[B**'(¢,h)] < b,(h).
THEOREM 1. Suppose for a given k > 1, the netput X = A — B satisfies Al

and A2 (k). Then there exists a constant c, < ®, computable in terms of a,
and b, such that

. Lo s
(5) th_)rg sup;j;)E[Z (s)] ds <¢,
and
1 5
(6) lim —/tZk(s) ds =E[Z*] <¢;, as.,
t-o t /g

where Z follows the steady-state distribution of Z in (4).

Note that Al is a local drift condition, ensuring that the input does not
overpower the output in small periods of time, and A2(%) ensures that the
(2 + Dth conditional moment of the input and the output in small intervals
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is not too large. It is easily seen that under Al it is necessary that a > @&,
since

E[X(t,h)] = E[X(k)] = —ah

follows from the stationary increments and (2), while Al implies (via taking
expectation on both sides of the inequality)

E[X(¢,h)] < —ah + 1.

Hence, —ah < —ah + [ for all A, implying a > & > 0. [In other words, Al
implies the negative drift condition in (2).]

To prove Theorem 1, we need several lemmas. The first one, an elementary
result, is in the same spirit as (but simpler than) Lemma 2.3 of [12].

LEMMA 1. Let f, g and c be finite functions on R, , with f and g nonnega-
tive and Lebesgue measurable. If for some fixed h > 0,

f(s+h)<f(s) —g(s) +c(h) Vse R,
then

1 1 4
ong(s) ds < c(h) + 7/0 f(s)ds V&> 0.
ProoF. Integrating over the first inequality,

1 t 1 t
T g(s)ds <e(h) + 7 [[1f(s) = f(s + k)] ds,

immediately leads to the second one by observing that
¢ ¢ t+h t t
fo[f(s)—f(s+h)]ds—[j0—/h ]f(s)dss[fo—fh]f(s)ds
= fhf(s) ds. O
0

To present the next two lemmas, we need more notation. From (1), it
follows that Z satisfies the recursion

@) Z(t+h) =Z(t) + X(¢t,h) + L(t,h),
where L(t, h) := L(¢t + h) — L(t), and it is known ([4], page 149) that
(8) L(t,h) = sup [Z(¢) +X(t,u)] .

O<ux<h

In addition, define
D(t) =A(t) —Z(t) =B(t) —L(t) and D(t,h):=B(t,h) —L(¢t,h).

Intuitively, D = {D(¢): ¢t > 0} is the throughput process: D(t) is the amount
of input that has been processed during [0,¢] and D(¢, h) denotes the
amount of input that is processed during [¢, ¢ + &]. Finally, let

A(t, h) =A(t, h) — D(¢,h) = X(t, k) + L(t, h)
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and rewrite (7) as
(9) Z(t + k) = Z(¢) + A(¢, b).

It is useful to keep in mind the following facts: A(¢) and B(¢) are both non-
decreasing by definition, and so is L(¢). Hence, A(¢, k), B(¢, h) and L(¢, h)
are all nonnegative and nondecreasing in A.

LEMMA 2. For any nonnegative t and h:

() L(t, ) < B(t, k), and hence D(¢, k) > 0.
(i) Z(¢)L(¢, h) < B2(t, h).

Proor. (i) From (8), we have
L(t,h) = sup [—-min{0,Z(¢) + X(t,u)}]
O<u<h
sup [max{0, —Z(t) — A(¢t,u) + B(¢,u)}]
O<u<h

< sup [max{0,B(t,u)}] = B(¢,h),

O<ux<h

where the inequality follows from Z(¢) > 0 and A(¢,u) > 0, and the last
equality follows from the nondecreasing property of B(¢,u) in u.

(i) If Z(t) < B(t, h), the desired result follows immediately from (i). On
the other hand, Z(¢) > B(t, ) implies

L(t,h) = sup [max{0,—Z(t) — A(¢,u) + B(t,u)}] =0,
h

O<ux<

which also leads to the desired result. O

REMARK 1. A well-known property of the reflection mapping is that L(¢)
remains a constant when Z(¢) > 0 (see, e.g., [9], page 20). In other words,
Z(t) > 0 implies L(¢, £) = 0 for a sufficiently small £ > 0. This property is
now strengthened by the fact, brought up in the proof of Lemma 2(ii), that
Z(t) > B(t, h) = 0 implies L(¢, k) = 0 for any positive .

LEMMA 3. (i) Suppose Al and A2(1) hold. Then, for any t > 0 and h > 0,
Z(t)Eg [A(t, r)] < —(&h —1)Z(¢t) + by(h).
(ii) Suppose A2(j) holds for some j > 1. Then, for any t > 0 and h > 0,
Ex[la(s, )P Y] < a,(h) + by(h).
Proor. (i) Since Z(¢) € &, we have
Z(t)Egt[A(t,h)] = EZ[Z(t)(X(t,h) + L(t, h))]
< Z(t)Eg[X(¢,h)] + E; [ B2(¢, h)]
<Z(t)(—ah +1) + by(h),
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where the first inequality follows from Lemma 2(ii) and the second one makes
use of Al and A2(1).

(ii) Recall A(¢, h) = A(t,h) — D(¢t,h) and D(t,h):= B(t,h) — L(t,h) <
B(t, ). Since A(t,h) and D(¢,h) are nonnegative [for the latter, refer to
Lemma 2(1)], we have

|A(¢, k)| < max{A(t,h),D(t,h)} <max{A(¢t,h),B(¢t,h)}
and
|A(¢, )" < max{A7*1(¢, k), BT (¢, h)} < AT (¢, h) + BI1(¢,h).
Applying E; on both sides and making use of A2(j) yields the desired
result. O

We are now ready to prove Theorem 1.

ProOF OF THEOREM 1. First note that (6) follows directly from (5). Apply-
ing Fatou’s lemma, we have

P PR A
E[llmlnf;foZ (s) ds] < 11m1nf7fOE[Z (s)] ds

1
< limsquftE[Zk(s)] ds <¢,,
0

which implies that liminf(1/¢)[{ Z*(s) ds < , almost surely. However, by
the ergodicity of Z [via (8) with g(x) = x*], the limit itself exists and is a
constant. Hence,

, 1 1
E[Z*] = lim— [*Z*(s) ds = liminf—ftZk(s) ds<c, as.,
t’o t o

which is (6).

To prove (5), use induction on k. For £ = 1, we proceed in a way that is
similar to the proof of Theorem 2.1 of [12]. Squaring both sides of (9), taking
conditional expectation and making use of Lemma 3(ii), we have

Es[Z%(t + h)] < Z%(¢t) + 2Z(t)E;[A(t, h)] + a,(h) + by(h).
Applying Lemma 3(i) yields
Es[Z%(t + h)] < Z%(t) — 2(&h — 1)Z(t) + c(h),
where c(h) = a,(h) + 3b,(h). Taking expectation on both sides yields
E[Z%(¢ + h)] < E[Z%(¢)] - 2(ah — D)E[Z(¢t)] + c(h).
Pick any h > [/& (to ensure that &h — [ > 0). Applying Lemma 1, we have

1 . 1
7/02(&h ~ D)E[Z(s)] ds < c(h) + YAhE[ZZ(s)] ds

1
<c(h) + -t-fohal(s) ds,
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where the second inequality is due to Z(s) < A(s) and A2(1). Hence, taking
lim sup and letting

a,(h) + 3by(h)
‘1T To(ah - 1)
yields (5). [Note that [ a,(s) ds < « as assumed.]
Now suppose that (5) holds for all 1 <% <n — 1. Consider the case of
k = n. First observe that condition A2(n) implies A2(j), foralll <j<n — 1,
via Holder’s inequality, with the functions a; and b; specified as
(10) a;(h) = [a, (W], b(h) = [b,(W)]".

Hence, with the netput X satisfying A1 and A2(n), we know that (5) holds for
1 < k < n — 1 following the induction hypothesis. Taking the (n + 1)th power
on (9), we have

Zm Nt + ) = Z7 () + (n + 1)Z7()A(t, h)

(11) + Z (” + l)ZJ(t)A”“ (¢, h).

Applying Lemma 3(ii), we have

Ez["i‘.l(”jl)zwm"“ (e, h)}

L "z f1acm ]

IA

IA
"MH oml

( l)Zj(t)dn—j(h)7
where
d;(h) =a;(h) + b;(h).

Taking conditional expectation on both sides of (11), making use of the above
inequality and applying Lemma 3(i), we have

Es[Z" (¢t + k)] <Z"*'(t) + (n + 1) Z"(t)E4 [A(t, h)]
+ z (" F e, m

< Z”“(t) —(n+ 1)(&h — 1)Z"(t) + Q(Z(t), h),

where

n—-1
TEORIE A L

j=0

)Zf(t)dn J(h) + (n+1)Z"1(8)by(h).
Taking expectations on the last inequality yields
E[Zz"*Y(t + h)] <E[Z2"*Y(¢)] - (n + 1)(&h — )E[Z"(¢)]
+ E[Q(Z(¢t), h)].
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Pick any 2 > [/ as before. Applying Lemma 1, we have

1 .
7/ (n + 1)(&h — 1)E[Z"(s)] ds
(12) °

1 . 1
<, [ELQ(Z(s), m)] ds + —t—thE[Z”“(s)] ds.
Now,
1 ol n+1 1o .
S ['Ele(z(), m)] ds - Eo( § ) )¢ [El20)] as

1 .
+(n + 1)b1(h)—t—f0E[Z”‘1(s)] ds.

Taking lim sup and making use of the induction hypothesis, we have
. 1 "ln+1
lim sup—f E[Q(Z(s),h)]ds < ), - eid,_j(R)
tow t/o j=0 J
+(n + 1)c,_1by(h).
Hence, taking lim sup on both sides of (12) and letting

b} (” ! l)cjdn_j(h) + cn_lbl(h)]

13 = (&b —1)7"
(13) ¢, =(ah —1) Av1

leads to the desired inequality in (5) for £ = n. [Again, note that the second
integral on the right side of (12) is dominated by /¢ a,(s) ds, which is finite as
assumed.]

This completes the induction and hence the proof. O

From the induction step of the above proof, we can strengthen the conclu-
sion of Theorem 1 as follows:

COROLLARY 1. Under the conditions of Theorem 1, for each j=1,...,k,
there exists a ¢; < ©, such that

. oo
(14) }LH;SHPYIOE[Z (s)] ds < c;
and
1 . . 5.
(15) lim —fZJ(s) ds =E[Z] <¢; a.s.
t—oo t /g

REMARK 2. Suppose B(t, h) > H(t, k) for all nonnegative ¢ and h, where
H is a nonnegative and nondecreasing process. Then, if A and H (rather
than B) satisfy the conditions of Theorem 1, then the conclusions there still
hold. This follows since Z(¢) < Y(¢) for all ¢ where Y is the inventory process
corresponding to the netput A — H. This illustrates the fact that the moment
condition on B is certainly not a necessary one.
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REMARK 3. Our assumption that Z(0) = 0 is not needed; all the results
hold for Z(0) > 0 arbitrary as long as E[Z**1(0)] < ». We must, however,
include Z(0) in the filtration 7, = o{X(v): 0 < u < t} and verify that Al and
A2(k) still hold. The most convenient setup is to allow an arbitrary X(0) > 0
and define Z using (1) exactly as before. Then Z(0) = X(0). A special case is
when Z(0) is independent of X and E[Z**1(0)] < .

REMARK 4. If the increments of X are stationary but not ergodic, then
Theorem 1 still holds, except that (6) must be changed to E[Z*] < c,. Letting
7 denote the invariant o-field for the increments of X, we have

1 . A
th_,I?o 7 OZk(s) ds =E,[Z*] <= as.
However, E AZA k] is a random variable, which in general is not bounded by
c;. Furthermore, our framework only requires that X be asymptotically
stationary, which means that for X, = (X(s + ¢) — X(s): ¢t > 0} denoting the
shifted increments (by time s), the distributions P(X, € -) on the Borel sets
of 2[0,*) must converge in total variation in mean, as s — «, to a probabil-
ity measure (see [1] for details). This includes a wide variety of netput such
as those with increments having some kind of positive recurrent regenerative
structure. Finally, observe that to obtain (5), even an asymptotically station-
ary X is not required; only Al and A2(%k) are needed.

We close this section by illustrating the use of (13) for computing the
bounds {c,}. Suppose A1l and A2(n) hold. Then, a,(k), b,(h), & and [ are
known. For j = 1,...,n — 1, set a;(h) and b,(h) following (10). Since the first
moment is perhaps the most important among all moments, pick A so as to
minimize c;:

a;(h) + 3by(h)

et T T e(an - 1)
By definition, ¢, :== 1. For £ = 2,..., n, use the recursion
k-1
n - E+1
c, = (ah —1) ! P Yy ( j )cj[ak_j(h) + bk,j(h)] +c,_16,(R)|.
j=0

Evidently the strength of the above bounds lies in their generality. In
problem specific applications where distributional information is available
about the netput process, one certainly expects that tighter bounds can be
constructed using ad hoc approaches.

3. Examples.
ExaMPLE 1. Workload in a standard single-server queue. In this case

B(¢) = t, that is, the server processes work (if available) at a constant, unit
rate. Let {(¢,,S,): n > 1} be a stationary ergodic marked point process of
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customer arrival times ¢, and service times S,. Let N(¢) denote the counting
process for arrivals. Then
N(t)

A(t)y= X S;
n=1

denotes the amount of work arriving in (0, £]. The workload process, Z(t),
follows (1): Z(t) = A(t) — ¢t + L(¢). Note that B(¢) = ¢ satisfies A.2(k) for any
k > 1, so if we want to apply Theorem 1 for the 2th moment of the workload,
we need constants & > 0 and [/ > 0 such that for all ¢, > 0,
Eyl[A(t,h) —h]l < —-ah+1,
together with the existence of a function a,: R,.— R, such that for all
h >0,
Es[A*"1(¢, k)] < a,(h).

As a special case, if service times are ii.d. and independent of the arrival
times {¢,}, then the above conditions will hold if

E[SF!] <o
and if there exist constants y > 0 and [ > 0 such that

Es[N(t,h)] <vyh +1

with

y1>E(S,).
When % = 1, these are exactly the conditions required in Theorem 2.1 of [12].

EXAMPLE 2. Single-server queue with varying service rate. As in Example
1, Z denotes the workload process in a system with A(¢) = L)) S;. However,
here the server serves at rate r(¢) at time ¢, where jointly with A, {r(z):
t > 0} is a stationary ergodic process and A has stationary ergodic incre-
ments. Here, B(t) = [{ r(s)ds and B(t,h) = [!*" r(s)ds. If for all ¢ > 0, r(¢)
is bounded almost surely, m < r(¢t) < M for some constants 0 <m < M < o,

then
Es.[B(t,h)] > mh and E,[B*(t,h)] < (Mh)".
If additionally, A satisfies A2(%) and also
Es[A(t,h)] < ph with p—m <0,
then both Al and A2(%) are satisfied.

EXAMPLE 3. Pure jump Lévy input. Here B(t) = t and A(¢) is a pure jump
Lévy process with infinite Lévy measure (the number of jumps in any finite
interval is infinite; see [13], Section 3.2). Lévy processes have independent as
well as stationary increments. In particular, consider the case when A(¢) ~
I'(A, yt). Then

vt
et - (2
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from which we obtain E[ A(t)] = y¢/A and E[ A%(¢)] = yt(yt + 1)/A% In this
case, E[X(¢,h)] = yh/A — h and hence a > 0 iff A > y. By independent
increments, we also have A2(1) satisfied with a,(¢) = E[ A%2(¢)] = yt(yt +
1)/A* and b,(¢) = ¢*. Also by independent increments, Al is satisfied with
& = a, and thus we see that whenever A > v, Theorem 1 applies and E[ Z] < oo,
The finiteness of higher moments is similarly argued. (This example is meant
for illustrative purposes only. Even the more general case, with the netput X
being an arbitrary Lévy process with negative drift, is classic and in fact
already well understood; see, e.g., [13] and [1], Section 4.)

Finally, we remark that based on an obvious discrete-time analogy of
Theorem 1, we can also reproduce some of the known finite-moment results
for customer delays in queues, for example, those in [11] and [14].

4. The semimartingale case. Here we assume that the netput process

X is a semimartingale. Specifically, X can be expressed as
X(t) = M(t) + A(¢) — B(2),

where {M(¢)} is a martingale with respect to the filtration {#}, and { A(¢)} and
{B(#)} are two nondecreasing processes as before. Assume all processes have
stationary increments and paths in 2[0, ). It is known that this model
covers a wide range of processes.

Let M(¢, h) == M(¢t + h) — M(¢). Other notations are the same as before.
Suppose Al is still in force, while A2 is strengthened as follows:

A2'(k) (k = 1 is an integer). In addition to A2(k), there also exists a
function m,: R,— R, such that for all £ >0 and 2 > 0, [ m,(s)ds < »
and

Es[10(e, m) Y] < my(h).

(The above condition is easily verified for Brownian motion and is easy to
check for more general Lévy processes.)

We want to show that Theorem 1 still holds. Recall that the two results in
Lemma 3 are key to the proof of Theorem 1. Both rely crucially on Lemma 2.
So here we start with modifying Lemma 2.

LEMMA 4. For a semimartingale netput process X and any nonnegative
t and h, we have (i) L(t, h) < supy_,. M, u)| + B(¢, h) and (i)
Z(t)L(¢, h) < [supg., . | M(t, w)| + B(¢, B

Proor. Similar to the proof of Lemma 2, we have
L(t,h) = sup [max{0, —Z(t) — M(¢,u) — A(t,u) + B(¢,u)}]
O<u<h
< sup [-M(t,u) + B(t,u)]

O<uc<h

IA

sup |M(t,u)|+ B(¢,h).

O<u<h
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In addition, it is also easy to see that
Z(t) > sup |M(t,u)|+ B(t,h)

O<uc<h

implies Z(t) > —M(t,u) + B(¢, u) for any u < h, and hence L(¢,h) = 0. O

To generalize Lemma 3 based on Lemma 4, we need the following
adaptation of Doob’s L, inequality:

LEMMA 5. Let {Y(u), u > 0} be a nonnegative submartingale with respect
to a filtration {#,}. Then, for p > 1 and h > 0,

< (pﬁ l)pEyo[YP(h)] a.s.

Egs,| sup Y?(u)

O<u<h

Note that replacing E;. by E in the above inequality recovers the original
Doob L, inequality (see e.g., [10], page 14). On the other hand, for any
A 6.70, since {(Y(x)1(A)} is still a nonnegative submartingale, applying
Doob’s L, inequality, we have

P\ ivs
") i)

(noticing that [1(A)]? = 1(A)), hence, the desired a.s. inequality in Lemma 5.

E| sup Y?(u)1(A) s(p

O<u<h

LEMMA 6. (i) Suppose Al and A2'(1) hold. Then, for any t >0 and
h >0,

Z(t)E, [A(¢, h)] < —[ &k — 1]Z(2) + [2mi72(h) + BY2(R)]’.
(i) Suppose A2'(j) holds for some j > 1. Then, for any t > 0 and h > 0,
Es[1a(e, )P < [(2 + 1//)ml/ 9O (h) + al/ G+ D(h)]

Jj+1

+[my (R + bl/U“)(h)]’“

Proor. Let Y(h) := M(¢,h) for any given ¢ > 0. Then, clearly {Y(4)} is a
martingale with respect to the filtration {#} with & =5, ,. Hence, {{Y(h)]}
is a nonnegative submartingale. For any j > 1, making use of Lemma 5 and
A2'(j), we have

Es,| sup |M(t,u)|j+1]=E53[ sup IY(u)Ij“]

O<ush O<us<h
< (1+ 1) Eg[IY(R) 7MY
= (1+ 1) e[| M2, )1
< (L+1/))"  my(h).

(16)
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Therefore, to prove (i), modify the proof of Lemma 3(i), taking into account

Lemma 4(i). In particular, we have, making use of Minkowski’s inequality
and (16),

E,[Z(¢)L(¢,h)] <E [ sup |M(¢,u)| +B(t,h)|

O<ucx<h

2
s(Egz[ sup |M(t,u)|2] +E;{2[Bz(t,h)])
O<u<h
< [2mY2(R) + b2 (R)]".
To prove (ii), from
A(t,h) = X(t,h) + L(t,h) = M(t, k) + A(t, k) — B(¢, k) + L(¢, k),

we have, taking into account Lemma 4(1),

|A(t, B)| < max{|M(t,h)| + sup |M(t,u)|+A(¢R),

O<u<h
B(t,h) +|M(t,h)|>.

Hence,

; 1
|A(t,h)|’+1smax{ |M(t,h)| + sup |M(t,u)|+A(t,h) ’

O<ux<h

b

[B(t,h) +|M(t,h)|]j+1}

i+ 1
< [IM(t,h)|+ sup |M(t,u)| +A(t, h)|’

O<uc<h
+[B(¢, k) +|M(t,h)]"".

Again, applying Minkowski’s inequality and (16) leads to the desired
result. O

REMARK 5. In the above proof it is also possible to have

|A(t,h)| <|M(¢t,h)|+ sup |M(¢,u)|+A(t,h) + B(t,h),

O<ucx<h

which leads to

y[lA(t h)|1+1] < [(2 + l/J)ml/(J”)(h) +a1/(J+1)(h) + bl/(]+1)(h)].]+1

This bound is not necessarily tighter than the one in Lemma 6(ii). Also, it
fails to specialize to the bound in Lemma 3(ii) if we set m(h) =0
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With the above lemma, the proof of Theorem 1 is easily adapted. There are
only two modifications:

1. Rename dj(h) as the bound for EZ[IA(t, A)I’*1] in Lemma 6(ii).
2. Since

Z(s) = A(0,s) <|M(0,s)|+ sup |M(0,u)|+ A(0,s),

O<uc<s

bound the last integral on the right side of (12) by
fh[(2 + 1/n)mY/ @D (s) + a/+D(s)|"" ' ds,
0
which is finite, following A2'(n).

THEOREM 2. When the netput process X is a semimartingale, Theorem 1
and Corollary 1 still hold, with A2(k) strengthened to A2'(k).
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