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INSTABILITY OF FIFO QUEUEING NETWORKS WITH
QUICK SERVICE TIMES!

By MAURY BRAMSON

University of Wisconsin

A class of open first-in, first-out queueing networks is examined.
Customers arrive according to a rate-1 Poisson process and wait at queues
along their prescribed routes for exponential holding times, after which
they exit from the system. Such a network can be chosen so that the sum
of the mean service times at each queue is as small as desired. It is shown
here that these networks are nevertheless unstable. Each such network
will possess two customer types, which proceed along nearly parallel
routes. Queues are visited sequentially, with each consisting of one rela-
tively slow step and then several quick steps.

1. Introduction. There has been considerable interest recently within
queueing theory in the existence/nonexistence of equilibria for queueing
networks. It seems intuitively clear that equilibria will exist for systems
whose customers are served substantially more quickly than the rate at
which they enter. Despite recent attempts, general results in this direction
are lacking. We present here a class of examples which contradict this
intuition. Hopefully, they will shed some light on appropriate conditions for
the existence of equilibria for general systems of queues.

Consider the general class of open queueing networks with customer types
h =1,..., H, where customers enter the system according to independent
rate-v, Poisson processes, and v, is normalized so that Y v, = 1. Each
customer proceeds along a prescribed route, visiting a subset of the m
queues, m > 1, and then exiting from the system. Customers are served one
at a time at each queue, with the service times being independent and
exponentially distributed. The route may depend on the customer type, and
individual queues may be visited more than once. The rate a customer is
served at a given queue may depend on the position, or stage, along the route.
Denote by A,;; the rate for the jth visit to the ith queue by a customer of type
h. There is also the issue of a priority for the order of service among
customers at a given queue. A natural assumption is that the network is
first-in, first-out (FIFO), that is, customers at a given queue are served in the
order they arrive there, irrespective of the customer type or the number of
visits previously made.
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694 M. BRAMSON

A fundamental question is under what conditions on A, ; do equilibria
exist for the above FIFO queueing networks. If no equilibrium exists, the
network is unstable. For this, we introduce the notation u,;; = My J(h, 1)
= the number of times the ith queue is visited along the route of a customer
of type k, my; = L% uy;; and w; = TF_ vy py;.  Here, py;; is the mean
service time for a customer during a visit at a queue, and u; can be
interpreted as the total mean service time at i. One can check that if u; > 1
for some i, then the network is unstable.

A natural conjecture is that an equilibrium will exist under the condition

(1) u; <1 foralli.

It is well known that this is, in fact, true if u,,; does not depend on % and j,
and one can, in fact, explicitly write down the equilibrium distribution. [A
general theory based on reversibility, which includes FIFO networks, is
presented in [3].] However, (1) does not suffice in general, as shown by
Bramson [1]. Related work on deterministic systems is given by Seidman [6]
and Seidman and Yershov [7], and for priority queues by Lu and Kumar [4]
and Rybko and Stolyar [5]. A somewhat more detailed version of the preced-
ing summary is presented in [1].

The above work raises the question of the nature of the critical value of the
total mean service times ;, below which an equilibrium must exist, irrespec-
tive of the particular network under consideration. A basic feature of the
construction employed in [1] was that max; u; needed to be close to 1 to
produce an unstable system. Here, we exhibit a class of unstable FIFO
networks such that for any given u > 0, u; < u for all i is satisfied by an
appropriate member of the class.

The networks are assumed to possess m queues, labelled 1,..., m. Upon
entering the system, the two types of customers move along the prescribed
routes

1_)2_)...__)2_)3_) e 53> - o>mo - oOm

(2) 112> «++ 52535 - 583> - >5m—> - ->m—-1

at the end of which they exit from the system. Each portion { —» -+ — i of
the route consists of seven visits to the ith queue. We refer to customers
employing the upper route as upper customers, and the others as lower
customers. Note that the routes for both types of customers are similar, the
only difference being that lower customers visit the first queue an extra time
both at the beginning and at the end of the route. We denote the stage of a
customer by (4, i, j), with the first coordinate being the customer type, the
second coordinate the queue and the third coordinate the number of times the
queue has been visited up to then. Here 2 = u,l, i = 1,...,mand j = 1,...,7
fori=2,....m; j=1for h=uand i=1;and j=3for A=1and i = 1.
Each type of customer is assumed to enter the system at rate v, = 3.
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The mean service time for a customer is given by

cat(h,i, 1), forh=u,landi=2,...,m,

(3) cat(l,1,3),
dat(h,i,))), forh=u,l,i=2,...,mand j=2,...,7,
éat(u,1,1),(l,1,1) and ([, 1,2).

We will assume that
(4) 0<c<1/100, 0<8<c®, m=[2ctlog(c™ V)],

where [-] denotes the integer part. Each of the queues 2, ..., m therefore has
one comparatively slow, and six very quick stages for each type of customer.
The first queue has only the single quick stage for the upper customers, and
two quick stages and one slow stage for lower customers. The choice of
parameters is made for technical reasons. [Each portion i —» -+ — i of the
route in (2) can be reduced to four visits, but then the upper bound in (4) for ¢
would have to be much smaller for our estimates to work and the accompany-
ing mechanics more complicated; the bound ¢ < 1/100 is somewhat arbi-
trary. The coefficient 2 in the definition of m can be replaced by any value in
(1,4). In our case, (1 —c¢)™™ ~ ¢~ 2, which is used in Step 3 at the end of
Section 2. Note that if m < (c + 68)7', then ¥, u; < 1, in which case the
system in (2)—(3) must have an equilibrium.]

Under (4), u; < ¢ + 68 < 2c¢, so the total mean service time can be chosen
as small as desired at every i. Our main result is that the following theorem
nevertheless holds.

THEOREM 1. Any FIFO queueing network of the form (2), and satisfying
(3) and (4), is unstable, with the number of customers in the system approach-
ing infinity as t — o,

Theorem 1 has the following consequence. One can compare any FIFO
queueing network satisfying (2)—(4) with the network which is obtained from
it by replacing (3) with the simple assumption that the mean service time
My;; = c at every stage of the route. The lengths of the mean service times for
the new network are, of course, everywhere at least as great as for the
original network. As mentioned earlier, this new queueing network has an
equilibrium distribution which can be written down explicitly; see, for exam-
ple, page 61 of [3]. (One can check that the equilibrium probability of %
customers at any given queue is at most (1 — 7¢X7c)*, £ > 1, which means
that the network is in fact “very stable” for small c¢.) This observation shows
that decreasing mean service times within a queueing network may have the
effect of making it unstable.

Theorem 1 and the above comparison provide an explanation for the lack of
general criteria so far on queueing networks which ensure the existence of
equilibria. It is perhaps risky to propose criteria at this point, but the
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following formulations suggest themselves. We set u™*( uMa*) equal to the
minimum (maximum) over all w,;;, where i is fixed, and p;® = pP® /R,

QUESTION 1. For each given u® > 0, does there exist a u > 0, so that any
FIFO network satisfying uf > u® and u, < u for all i has an equilibrium?

QUESTION 2. For each given pu < 1, does there exist a u® < 1, so that any
FIFO network satisfying uf > u® and u, < u for all i has an equilibrium?

An affirmative answer to Question 1 would say that if the mean service times
at a given queue are not too different, then small enough values of u, suffice
for an equilibrium. An affirmative answer to Question 2 would say that the
system has an equilibrium for u; < 1 as long as u? are close enough to 1. The
networks with 1, not dependent on % and j satisfy u® = 1, and so make up
the limiting case in the latter setup. (By arguing as in [2], it is not difficult to
show that the behavior addressed in Question 2 holds for FIFO networks of
fixed length.) One can, of course, restrict these questions to networks with
only one type of customer. In this context, the situation is also unclear.
(Theorem 1 can presumably be replaced by a single customer type analog,
from which similar conclusions would follow.)

The remainder of the paper is structured as follows. In Section 2, we
present a summary of the induction argument upon which Theorem 1 is
based, and show how Theorem 1 itself follows. Two key estimates for the
main recursion argument are derived in Section 3. The recursion argument
itself is treated in Section 4. In Section 5, it is shown that under appropriate
initial conditions, the evolution is nearly periodic, with the network returning
to an amplified version of its original state. Repetition of this procedure
demonstrates the instability of the network.

2. Summary of the proof. We first introduce some notation. Let E,
denote the state at time ¢ of a queueing network satisfying (2)-(4), and let
&(h,i,j) denote the number of customers at (4,i, j) at time ¢. We employ
(i, j) for the union of (u, i, j) and (I, i, j). We set &,(i, j) = &(u, i, /) + £, i, ))
and §,(i) = L,;¢,(, j). [Here, £,1, j) = (1,1, j), for j = 2,3.] We denote by ¢,
the total number of customers in the system. By (i, j)* [resp., (i, j) "], we will
mean the set of stages in the system strictly beyond [resp., before] (i, j), and
by £(i, j)* [resp., £,(i, /)1, the number of customers in (i, j)* [resp., (i, /)71
[Here (i, /)" and (i,7) do not distinguish between the upper and lower
routes.] For instance,

2 i—1
§(i,1) = Y &L+ L&), i=2,...,m.
j=1 i'=2

The proof of Theorem 1 is based on the following induction step. Here and
later on, we set &,(u,1,1) =M, £((1,1,1) =M, and M = M, + M,.
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THEOREM 2. Assume that
(5) M <M, <3M, ¢£(1,1) <c*M, £(1,2) + £(2) <M.

Then for some &, > 0, large enough M and appropriate random T (depending
on M),

P[3¢,(1,1) < ép(u,1,1) < 3£,(1,1),
(6) Ep(1,1) = 1M, £,(1,1) " < LM, .
£r(1,2) + £7(2) < 3c¢*M| > 1 — exp(—&, M)

and

(7) P(&=23M,Vte[0,T]) 21— exp(—&,M).

We will later choose 7' to be about ¢ “2M. One has some leeway in the choice
of bounds for £,(1, D* and £4(1,2) + £,(2). If the latter is of the form c¢*M,
with « € [5,6), and the former ¢*M, with o’ € (1, @), then bounds similar to
(6) hold.

One can show that Theorem 1 follows from Theorem 2. Suppose that Z,
satisfies (5) for some large M. Since ¢ < 1/100, one has ¢ 'M > 25M.
Moreover, the stated bounds for £,(1, 1) relative to &,(1, 1)* and ¢,(1,2) + £,(2)
improve from (5) to (6). So, repeated application of Theorem 2 yields

(8) P(& < M forsomet>0) <2 ), exp[—(25)kalM],
E=0

which approaches 0 as M — oo, Since all states in the system are accessible
from one another, (8) implies that & — © as ¢t — « w.p.1 for any E,. Theorem
1 then follows.

We have up to now followed the format given in [1]. The queueing
networks considered there had one customer type, with prescribed route
1-2-52-> -+ -2 -1, the number of visits to the second queue being
large. The mean service times were given by ¢ at (1,2) and (2,1), and § at
other stages, where ¢ was close to 1 and § was very small. (The notation
corresponds to that introduced in Section 1.) Since our present system is by
nature more complicated, with a large number of queues, different reasoning
must be employed here to demonstrate Theorem 2. The basic building block
is, however, the same in both cases, with the concept of “cycles” being used to
regulate the movement of customers throughout the system.

Customers at any given queue at time ¢ may be ordered according to the
times at which they are next served, so one can talk about a “first” or “last”
customer in this sense. (Due to the multiple stages at each queue, customers
entering the network earlier on may be ordered behind more recent arrivals.
Upper and lower customers are ordered without distinction.) Let S, ; denote
the time at which the last of the original customers (customers at ¢ = 0) at
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the first queue is next served. Similarly, let S, ; denote the time when the
last of the customers at the first queue is served, with the ordering this time
being made at ¢ = S, ;. [By S, ;, all of the customers originally at (1,1) and
(1,2) have moved to at least the second queue.] Denote by S, 5,...,S; ; the
times at which the last customer at the second queue is served, with the
orderings being made at ¢ =S, ,...,S; . Let S;3,,S3 ;> S, 7, denote the
next time at which the second queue is empty. [On account of (1), S3 ; < =
w.p.1.] Proceeding inductively, one denotes by S; ,,S; 3,...,S; 7 the times at
which the last customer at the ith queue is served, with the orderings being
madeat ¢t =S, ,...,8; g, and by S, ; ; the next time at which the ith queue
is empty. In this manner, one defines random times up through S,, »,...,S,, ;
and S, ,, where S, , > S,, ; is the next time at which the mth queue is
empty. Last, let T (as in Theorem 2) denote the time when the last of the
customers at the first queue is served, the ordering being made at ¢ = S, ,.
Note that S, ,,...,T are all stopping times for E,. We can think of the
intervals (S; ;, S, el J = ., 6, as cycles, over which each customer start-
ing in the ith queue is served exactly once by this queue. Together with
(S; 7,S;+1,1], at the end of which the ith queue is empty, these intervals
regulate the movement of customers. In particular, as we will see, most of the
customers in the system at ¢ =S, i>2, are at (i,j). (The interval
(S; 7,S;11,1] will be too short for any but a few of the customers to move
beyond (i + 1,1) by ¢ = S, +1,1-) Also, at S; ;, most of the customers are at
(u,2,1) and (l 1,2), at S, ,, most are at (/,1,3) and at 7', most are at (1, 1).

The presence of large numbers of customers at (1, 1) at time T, as asserted
in (6), is induced by the large numbers of customers at the end of the lower
route, (1,1,3), at ¢t = S, 3, and by the time required to serve them. The
purpose of including upper customers in the network is to restrict the
movement of the lower customers. The regulated movement of customers over
the successive cycles just enumerated will allow, as we will show, only
comparatively few upper customers to advance more quickly than the main
body of customers. Because of the absence of a (u, 1, 2) stage, lower customers
entering the system at about the same time as upper customers will lag
behind the upper customers as both move through the system. No lower
customers are therefore able to advance quickly through the system. In
particular, none reaches the stage (I,1,3) “ahead of schedule.” Since the
movement of customers entering the system is delayed only by this final
stage, the presence of upper customers prevents a feedback effect which could
conceivably throw the evolution of the system out of control.

We utilize these observations to summarize the argument for Theorem 2.
The following five steps illustrate the main ideas, although the reader should
keep in mind they involve some oversimplifications. In particular, we are
ignoring the contributions of the exceptional events over which the individual
steps fail to hold. (They are exponentially small in M.)

1. S;; and S, ; are small relative to M. At t = S, ;, most customers in the
system are at (2, 1).
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2. As previously stated, most customers in the system move from (2,1) to
(8,1) over (8;;,85,]. The number of these customers increases from
about M to about (1 — ¢)"'M. Hence S, , is about ¢(1 — ¢) M.

3. Arguing by induction, one obtains that the number of customers moving
from (0 — 1,1) to (3, 1) over (S;_, ;, S, ;] is about (1 — ¢)*"'M, and S, ; —
8,11 is about ¢(1 — ¢)? ‘M. Summing over these times, one sees that
S, o8 about Yrtle(l — ) M ~ (1 — ¢)' ™M ~ ¢~ 2M. At this time, there
are about c 2M customers at (/,1,3); an equal number have already
exited from the upper route of the system. There are never enough
customers behind or ahead of the main body of customers to affect the
computations. (The actual ordering of the reasoning is somewhat different
in the proof.)

4. The additional time T S, » required for the customers to leave (/, 1, 3) is
about ¢ ™'M. About i¢~ M new customers arrive at (1, 1) during (S,,,T]
and are equally split between upper and lower types. They remain at (1, 1)
until the customers at (I, 1, 3) leave. There are few customers elsewhere in
the system. This shows (6) of Theorem 2.

5. Lower customers starting at (1, 1) do not leave the system before t = S,, -,
at which time there are about 3¢ 2M lower customers in the system.
Since S; , — S,, ; is comparatively small, few customers leave during
(S,,.7,81] The mechanism in Step 4 therefore guarantees that the
number of customers in the system will remain above 3¢ 'M until ¢ = 7.
In particular, the number of customers in the system never drops much
below ;M over [0, T']. This shows (7) of Theorem 2.

3. Some upper bounds for =Z,. We provide part of the machinery here
which we will need in order to establish the unstable behavior of B, outlined
in the previous section. The main results are Propositions 1 and 2, which give
upper bounds on the growth of the number of customers over the subsets
(i,1)7, i =2,...,m, of the network as ¢ increases. These bounds will be
employed in Section 4 to show that off of a set of exponentially small
probability, there are never enough customers behind the main body of
customers to affect the qualitative behavior of E,. We also analyze the
behavior of E, at ¢t = S, ;. The corresponding estimates are not difficult and
are based on upper bounds for S; ; and S, ;.

We will repeatedly be making use of elementary large deviation estimates
for times such as S, ;,; — S, ;, j = ,6,and S;,;; — S, ,, and for the
numbers of customers who have entered and left different stages of the route
over these times. These estimates all reduce to applying the strong Markov
property in conjunction with the following basic bounds: Let X;, X,,...be
ii.d. mean-1 exponential random variables, with Y, = X; + -- +X,. Then for
each a > 0, there exists an £ > 0, so that for all n > 1,

1
(9) P(;IYn—nI >a) < exp(—en).
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The bound (9) can be demonstrated in the usual way be applying Markov’s
inequality to the Laplace transform of Y,. Note that (9) immediately extends
to exponential distributions with other means by rescaling. We will be
applying (9) throughout the paper, with different choices of @ and &. Rather
than do precise bookkeeping with the different values of &, we will label them
as &, &y,..., without worrying about their exact relationship. Here and
elsewhere in the paper, our choices of ¢ and & will be regarded as fixed, and
we will not be concerned with their precise effect on such exponents. By
“typically,” we will mean off sets of exponentially small probability.

Proposition 1 gives us control over the growth of &,(2,1)” and Proposition
2 gives us control over ¢£,(i,1)7, i = 3,..., m. We employ the notation

E(N;o,7) ={§(i,1) <Nforallt € [o,7])

for i = 2,..., m, where o and 7 are random times. It will later be convenient
to use the normalization
1+c¢2\7?
( N;o,7].
1-c¢

Note that F,(N; o, 1) = Ey(N; o, 7). We abbreviate E,(N;0,7) by E,(N; )
and F;(N;0,7) by F;(N; 7). Here and elsewhere, (-)° means complement. An
important ingredient in Proposition 1 is ((¢), the total number of lower
customers visiting the stage (1, 3) by time ¢ — . The proposition states that if
neither £,(2,1)” nor {(7) is too large, then ¢,(2,1)~ will quickly become and
then remain small over a long interval of time.

(10) F(N;o,7) = E,

1

PROPOSITION 1. Assume that £((2,1)” < N,. For appropriate &, > 0,
P(E5(2¢N,; 38N, + 2¢N,,7); {(7) < Ny) < toexp( —eN,)

for large enough N,, t, > 0, any N, and any random time T with T < t,,.

Proor. The quantity £,(2,1)” is bounded above by
(11) U = &(u,1,1) + 2£,(1,1,1) + £(1,1,2).

Each time a customer enters the system, U, increases by 1 or 2, and each
time a customer in (2,1)” is served, U, decreases by exactly 1. We find it
convenient to analyze U, over a modified time scale. Partition [0, ) into the
two sets I, and I,, where ¢ € I, if either the customer being served at the
first queue is in (2, 1)~ or the queue is empty, and ¢ € I, if the customer is at
(1,1, 3). Write

e(t) = 1[0,¢] N I,
where | - | denotes Lebesgue measure, and set
(12) U = U,-1(4), s=>0,

with ¢~ '(s) chosen to be right continuous. That is, U, is the process obtained
by ignoring the time over which customers at ([, 1, 3) are served. The process
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U! decreases by 1 at rate § ' if U, > 0, increases by 1 and 2, each at rate 1,
and has jumps given by the number of upper customers plus twice the
number of lower customers entering the system over intervals in I,. Denote
by n(t) the weighted sum for customers entering the system over [0,¢] N I,
(with lower customers counting double).

The process U, can be compared with the process V,, V, > 0, which
decreases by 1 at rate 6! if V, > 0 and increases by 2 at rate 1. Assume that
Vo, =U,=U,. If U, and V, are coupled together so that increases and
decreases occur together, then one can check that

(13) U, <V, +n(e7'(s)).

(Note that the inequality is not only due to the difference in the size of the
increases, but also the possible decreases in U, when V, = 0.)

Since V, is a random walk on {0,1,2,...} with negative drift 2 — 6! and
V, < 2N,, the following bound follows by standard large deviation tech-
niques: For appropriate 5 > 0,

(14) P(V, > (c/8)/N, for some s € [38N, + §cN,, t,]) < toexp(—e5Np)

for large enough N,, and any N, and ¢,. (The factor c is not optimal and is
chosen for convenience later on.) One can, for instance, first compare V, with
the corresponding random walk on Z to show that the time p; at which V,

hits 0 is at most 38(N; + N,) < 838N, + 3cN, off of a set G of probability
exp(—&5N,). One can then employ the supermartingale
W, = exp{V,,,} — e’
off of G. (The term e®s’ is needed when V,,, , = 0.) Set
py = inf{s’: Viip 2 (c/8)N2} A tg.

s

By Chebyshev’s inequality, the left side of (14) is at most
exp( —cN2/8)E[exp{Vpl+p2}; G°] + P(G)
< exp(—cN,/8)E[W,, + e%p;; G°| + exp(—&5]Ny).
By the Optional Sampling Theorem, this is at most
exp(—cN,/8)E[W, + e?t,; G| + exp(—&5N,)
<1+ e2t0)exp( —cN,/8) + exp(—&5N,).

This implies (14), since #, > $cN, can be assumed.

On account of (9), the sum of the service times for the first N, customers at
(1,1,3) is at most 2cN, off of a set of exponentially small probability. Since
t — ¢(t) is increasing, it follows that for appropriate &, > 0 and any random
time T,

(15) P(t — @(t) > §cN, for some ¢ < 7; {(7) < N) < exp(—&,Ny).
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Another application of (9) implies that the numbers of upper and lower
customers entering the system over these N, service times are each at most
2¢N,, again off a set of exponentially small probability. On {{(7) < N,}, the
weighted sum of such customers (with lower customers counting double) is at
least n(r), and so by (13),

(16) P(U; > V, + gcN, for some s < ¢(7); {(7) < Np) < exp(—¢&5Ny),

for appropriate &5 > 0, and large N,.
Together, (14) and (16) show that

(17) P(U; > 2¢N, for some s € [88N; + $cN,, o(7) A to]; £(7) < Ny)

< toexp(—&N,),
for &5 > 0. Always, ¢(t) < t, and by (15), ¢(¢) > ¢t — 2cN, is typically the case
for t < 7. From (12) and (17), it follows that

P(U, > 2¢cN, for some t € [86N; + 2¢N,,7]; {(7) < N,) < tyexp(—&,Ny),
with appropriate ¢, > 0, for 7 < ¢,. This implies the proposition. O

Assuming that we can control the growth of £,(i — 1,1)” over ¢, we can
also control the growth of £,(i, 1)~. This is the content of Proposition 2.

PROPOSITION 2. Assume that £y(i — 1) = 0 for some i, i =3,...,m. For
appropriate £; > 0,
1.2

2

1+ 3¢
P(E,-_l(N;T) ﬁEf(( T )(N+x);7)) < toexp(—é&7x)

for any x, N, t, > 2, and any random time T with 7 < t,.

Setting x = 2¢2N in Proposition 2 and employing the notation in (10), we
obtain the following variant.

COROLLARY. Assume that ¢&(i — 1) = 0 for some i, i = 3,..., m. For ap-
propriate g4 > 0,
P(F,_y(N;7) N F{(N;1)) < toexp(—£sN)
for any N, t, > 2, and any random time v with 7 < t,.
Repeated application of the corollary, in conjunction with Proposition 1, will

show that &(i,1)” can only grow more or less like (1 —¢)"¢~? under
suitable initial conditions. We apply this in Lemma 3 of Section 4.

PrOOF OF PROPOSITION 2. We set
U =§0-1,2) +(1—c(1+c?))&0G-1,2)
(18) +(1—(c+8)(1+c?))&(G-1,3)
+ 4+ (1= (c+58)(1+c?))&((i—1,7) —N.
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(This U, should not be confused with the definition given in (11).) Each time a
customer enters the system, U, increases by 1. Service of a customer in the
(i — Dst queue decreases U, by at least §(1 + c¢?); service of customers in
other queues does not directly affect U,. For U, > 0, £,(i,1)”> N. Also, set

p =inf{t: £(i — 1,1)" > N}
and
U =U,,, if&(i—1,1) <N,
=0 otherwise.
We introduce the process
W, = exp(cU;) — 3t.
The point of the preceding terminology is that W, is a supermartingale. To

check this requires a little bookkeeping. If U/ < 0 and ¢ < p, then W, in-
creases at rate 1 by the amount

exp(c®(U; + 1)) — exp(c?U;) = exp(c2U; )(exp(c?) — 1) < c®(1 +¢?) < 3

(since c is small), which is dominated by the contribution from the term — %t.
If U >0 and ¢ < p, then the (i — 1)st queue is not empty. Recall that
customers at (i — 1,1) are served at rate ¢!, and those at (i — 1, ), j =
2,...,7, at rate § '. The process U, was chosen in (18) so that irrespective of
the stage of the customer being served in this queue, W, will decrease at rate
(weighted for the jump size) at least

(19) (1 + ¢?)(1 — c®)exp(c®U;) = c(1 + fc?)exp(c®U)).

The right side of (19) is an upper bound for the mean rate of increase of W,
due to customers entering the system. So, W, is a supermartingale. Note that
U; <0, and so E[W,] < 1.

We now set

p, =inf{¢: U/ > x} At,, ¢,=0.
For any random time 7, 7 < ¢,
P(U, 2 x forsome t < 7; E;_,(N;7)) <P(U, >x).

By Chebyshev’s inequality and the Optional Sampling Theorem, this is

< exp( —c2x)E[exp{czUp’x}] = exp(—c’x) E[W, + 3p,]

< exp(—c?x) E[W, + 3to| < (1 + 3¢0)exp(—c®x).
It follows that for ¢, > 2,
(20) P(U, > x forsome t < 7; E;_;(N;1)) < tgexp(—c?x).
On account of (18),

£(i,1) < (U, +N)/(1 = (c+58)(1+c?)),
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the denominator being the smallest of the coefficients of the terms &,(0 — 1, j),
Jj=2,...,7. Since c is small,

(1-(c+58)(1+¢?)) " < (1+3e)/(1-0c).
Plugging these bounds into (20) implies the proposition. O

In Sections 4 and 5, we will examine the evolution of &, over [0, T'] under
the assumption (5) on E,. The main steps are given by the induction
argument in Section 4. Here, we provide bounds at the time S, ; at which the
argument begins. We will find it convenient to use the following terminology.
Let B,(h, i, j) [resp., y,(h, i, j)] be the number of arrivals at (resp., departures
from) (A, i,j) over (0,¢], with 2 = u and A = I. Let B,(i, j) [resp., v,(i, /)] be
the sum of both types. Note that B,(1,1) is the number of customers entering
the network and v,(l,1,3) is the number of lower customers leaving the
network. We also let v,(1,3) denote the total number of customers (both
upper and lower) leaving the network.

LEMMA 1. Suppose that (5) holds. For appropriate &, > 0, and large
enough M,

(21) P(Sy > 4c®M) < exp(—gyM),
(22) P(Bs, (1,1) > 6¢°M ) < exp(—&,0M)
and

(23) P(ys, (2,1) > 5¢*M) < exp(—&,, M).

ProOF. We first investigate the behavior at S, ;. Customers at (1,1) and
(1,2) are served at rate 5!, and those at (1,3) are served at rate c~!.
Applying (5) together with (9) twice (to mean-6 and mean-c exponentials), it
follows that for any a > 0,

(24) P(S;;> (8(1+c%) +c®+ a)M) < exp(—&;,M)

for appropriate &;, > 0 and large enough M. Since 6(1 + ¢®) < 1c®, choosing
@ = 3¢5, one has

(25) P(S;,,>2c¢°M) < exp(—&;,M).
Another application of (9) implies that
P(Baespy(1,1) > 3¢°M) < exp(—&,3M), &3> 0.
Together with (25), this shows that
(26) P(Bs, (1,1) > 8¢°M) < exp(—£;,M), &4 > 0.

By time S, ;, the M, customers originally at (u,1,1) have moved to at
least the second queue, and the M, customers at (I,1,1) to ([, 1,2), where
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they remain. An upper bound on the number of new customers at (1,1) is
given by (26). The same reasoning as in (24) and (25) gives
(27) P(Sy; — 8,1 >2c°M) < exp(—&;sM)  for g5 > 0.
Together with (25), this implies (21). The same reasoning as in (26) gives

P( Bs, (1,1) — Bg, (1,1) > 3¢°M) < exp(—&,sM)  for 5,5 > 0.
Together with (26), this implies (22). Customers are served at (2,1) at rate
¢~ 1. So (23) follows from (21) and (9). O

Us1ng Lemma 1, we can analyze £, 2,17, £s, | (2,1) and &s, 2,D%+
s, (1, 3).

PROPOSITION 3. Suppose that (5) holds. For &,, and &,, as above, appro-
priate g7 > 0 and large enough M,

(28) P(&, (2,1)" > 6¢°M ) < exp(—&,0M),

(29) P(l&s, (2,1) — M| > cM) < exp(—&;,M)

and

(30) P(&, (2,1)" + vs, (1,3) > 11c*M ) < exp(— £, M).

PROOF. By time S, ;, all of the customers originally at (1,1) U (1,2) are
no longer there. Therefore,

&, (2,1) < B, (1,1),
and so (28) follows from (22). Note that
€s,(2,1) > 332,1(2, 1) — s, (2, 1).

All of the M customers originally at (1, 1) have arrived at (2, 1) by time S, ,,
and so 332 (2,1) = M. Together with (23), this implies the lower bound in
(29). It is easy to check that

€s, (2,1) < £(3,1) + Bg, (1,1),

which by (5) and (22) is at most (1 + 7c¢3) M off of the exceptional set. So the
upper bound in (29) follows as well. Since

(31) &, (2,1)" + v5, (1,8) = £(2,1) " + 7, (2,1),

(30) follows from (23). (The coefficient 11 is chosen for compatibility later on.)
O

4. The induction step. In this section, we track the behavior of 5, over
the time interval (S2 15 S, 7], which comprises the major part of [0,T]. As we
show below, nearly all customers in the network at t =S, ; i = 2,3,.
and j=1,...,7, will be at (i, ). This explicit structure w111 enable us to
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argue inductively on i and j in Propos1t10ns 4 and 5, the main results here.
Proposition 4 treats the evolution of =, over the intervals (S; 1,8, 7] i =
2,..., m, and Proposition 5, the evolution over (S; 7, SHI Ji=2,.. -1
Together, they imply the behavior at ¢ = S,, .7 given in (39)-(41). The rest of
the section is devoted to demonstrating the two propositions.

Proposition 4 gives careful bounds on the state of the network at times
S, 7,1=2,...,m. The actual proof employs analogous bounds at the interme-
diate times Sl i J = ,6, as well. Note that the factor (1 — ¢)~! below
gives the rate of 1ncrease for the number of customers at successive queues.
The factor 1 + c? is an error term which we will show to be negligible.

PROPOSITION 4.  Suppose (5) holds and that for a given i, i € {2,..., m)},

(32) P(&s, (i,1) > ¢*M/(1 - ¢)' ) < exp( &, , M),
1+c2)7?

(33) Pllgs, (i,1) —M/(1—¢c) " >c — ) M) < exp(—¢; , M)

and

(34) P(& (5,1)" + v, (1,3) > 11c*M/(1 - ¢)'?) < exp(— ¢, , M),

with &; 1, & 5, & 3 > 0. Then for appropriate €4, &5 >0 and large
enough M,

(35) P& (i,2) > 8c5M/(1 - ¢)'?) < exp(—¢, M),
i—1 ( + 2)
(36) |§S (i) —M/(1-c¢) |>c(1+ ) c)l I
< exp(—¢& ;M)
and

(87) P&, (i,7)" + v5, (1,3) > 11e*M/(1 - ¢)' %) < exp(— &, M)
all hold.
Proposition 5 gives similar bounds at times S;1,i=38,...,m.
PROPOSITION 5. Suppose that (35)-(37) hold for a given i, i €
{2,...,m — 1}. Then (32)-(34) all hold with i=i+1 for appropriate

€15 &2, &3 > 0, and large enough M.

By (28)—(30) of Proposition 3, (32)—(34) are satisfied for i = 2. One can
therefore alternately apply Propositions 4 and 5 to obtain the following
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bounds for the network at ¢ = S,, . Since m = [2¢ ! log(c™!)] and ¢ < 1/100,
we may use the estimates

38 (1 —¢) ™ = ¢ 2| <3¢ tlog(c™Y), 1+¢2)" <1.1.
2

(m was chosen in (4) so that (1 —¢)™™ ~ ¢~2))

COROLLARY. Suppose that (5) holds. Then for large enough M,

(39) P(&, (m,2) > 9c¢*M) < exp(— &, M),

(40)  P(&, (m) —c72M| > (2¢7 " log(c ™)) M) < exp(—&,, ;M)
and

(41) P(&s, (1,8) + vs, (1,8) > 12¢°M) < exp(—&,, 3M).

Demonstration of Proposition 4. Before proceeding with the proof of
Proposition 4, we obtain a better picture of the qualitative nature of E,. This
is supplied by Lemma 4, which will show that at times ¢ > S; ;, there are not
many customers in (i, 1)~. These bounds will enable us to conceptualize new
customers as moving quickly to the ith queue. We require an upper bound on
the number of customers at ([, 1, 3) at moderate times, in order to avoid any
feedback in the system which could delay the service of new customers at
(1, 1). A first step is Lemma 2, which ensures that the system is quickly able
to complete the service of the customers originally (at ¢ = 0) in (2, 7)*. Denote
by R the time at which the last such customer leaves the system. We observe
that by (29) and (9),

(42) P(S;,;— 85,1 < 3¢M) < exp(—&,5M),

for appropriate €, > 0 and large M.

LEMMA 2. Assume that (5) holds. Then for appropriate &4, £59 > 0 and
large enough M,

(43) P(R> S, + icM) < exp(—&;oM)
and
(44) P(R > 8, , — icM) < exp(—&50M).

PrOOF. Only those customers already in (2,6)" at time S, ; can enter
(2,7 by time S, ,. By (30),

(45) P(&, (2,6)" > 11c*M) < exp(—&,, M).

Each of these customers needs to be served at most m times at stages with
rates ¢! ((i,1), i = 2,...,m, and (1, 3)) and 6m times at stages with rates
61 ((,)),i=2,...,mand j=2,...,7. By (45) and (9), the amount of time
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spent serving these customers until they leave the system is, off of an
exponentially small set, at most

(46) 12m(c + 68)c*M < (25¢®log(c™1))eM < §cM.

Also note that by (28), there are typically at most 6¢5M customers in (2, 1)~
at S, ;. By (9), the number of further customers entering the system over
(S, 1,S2 . + 3cM1 is typically at most cM. (The exact choice of the right
endpomt is not important.) Each customer in these two groups needs to be
served at most twice at stages with rates 6 ! before entering the second
queue. By (9), the amount of time spent serving these customers there is
typically at most

(47) 36(6c® + c)M < 3cM.

Let p denote the amount of time spent serving all of the customers at the
stages mentioned above. By (46) and (47),

(48) P(p> icM) < exp(—&5, M),

for &5, > 0 and large M.

Observe that only the above customers can be served by any queue, other
than the second, over (S, ;,S;, A (S, ; + 5¢M)]. By (42), this interval
typically contains (S, , S, ; + 3¢M]. It therefore follows from (48) that all of
the queues, With the exception of the second, are simultaneously empty at
some ¢ < S, 4cM off of a set of exponentially small probability. All
customers orlglnally in (2,7)* must have left the system by this time. This
implies (43). The bound in (44) follows upon another application of (42). O

It was mentioned in Section 1 that the analog of Theorem 1 holds even if one
shortens (2) so as to allow only four visits to each queue. We remark here that
one reason for instead specifying seven visits is the bounds given in (46). For
only four visits, one loses the factor c?, and therefore needs to work harder
elsewhere.

Let {(s,t) denote the total number of (lower) customers ever at (1,3)
during [ s, t); £(0, ¢) = £(¢) in the notation given before Proposition 1. Also, let
L denote the time at which the first of the lower customers originally at (1, 1)
arrives at (1, 3). Since by (5), £,(1,2) + £,(2) < ¢®M, one automatically has

(49) {(R,L) <cM.

Comparison of (49) with &,(1,1)*< ¢*M in (5) shows that the number of
possible customers visiting (1, 3) has been reduced by a factor of c, at least
over [R, L). In (44), we saw that, typically, R < S, ,. We will also show that,
typlcally, L > S,, ;. So the analog of (49) typlcally holds over the interval
(Sy 2,8, 71 Although the substitution of ¢® for c* may at first glance appear
insubstantial, it is needed for exhibiting sharp upper bounds for &,(i, 1)~ [in
particular, the term 2¢®M in (50)]. Without these bounds, one would not be
able to control ¢,(1,1)* sufficiently in (6) to prevent the main body of
customers (or “mass”) from eventually dissipating throughout the system.
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This would break down the “singular” (or “clumped”) configurations which
are needed in order to show the system is transient.

We now apply Lemma 2 and (49) in conjunction with Proposition 1 and the
corollary to Proposition 2 to obtain upper bounds for £,(i,1)7, i € {2,...,m},
over long stretches of time. Here, we set L;, = L A M? and

m
(50) F=F2(2C6M;S2’2,LM) N nFi(ZCSM;Si’l, LM)'
i=3

LEMMA 3. Assume that (5) holds. For appropriate €4, > 0 and large
enough M,

PrOOF. Since S, , <S3, < -+ <, ;, one has

F¢ CF5(2¢°M; S, 5, Ly)
(52) ’"
Ul U (Fi-1(2¢5M; S, 1, Ly ) N Ff(2¢°M; S, 1, L)) |-
i=3
On account of (44),
P(F§(206M;Szy2,LM)) < P(F;(zc"'M; R + icM, LM))
+ exp(—&yM).

One can apply the strong Markov property to the probability on the rlght side
of (53). Letting Fz( ;) denote the set corresponding to the process =, for
the queueing network with =, = &, r, one can replace the right side by

P(Fg(2¢°M; 5cM, Ly — R)) + exp(—&5 M).
By (43), typically R < S, ; + ;cM. So by (28) and (9),
P(£(2,1)" > cM) < exp(— £33 M),

for £55 > 0 [where £4(2,1)" = £(2,1)"]. From (49), {(L,, — R) = {(R, L,,) <
c®M. Setting N, = cM and N, = c¢5M, it therefore follows from Proposition 1
and (10) that

(53)

P(F5(2¢°M;S; 5, Ly ))
(54) < M?exp(—&,¢°M)
+ exp(—&e90 M) + exp(—e93 M)

< exp(—é&yu M),

for £54 > 0 and large M.

One can argue in the same basic manner to control the other terms in (52).
Letting , F Gyoyt) denote the set corresponding to the process /:t for the
queueing network with ;5, = E,, s, , one has

P(F,_1(2¢°M;S; 1, Ly ) N FS(2¢°M; S, 1, Ly )

55 . .
(55) = P(;F,_(2¢°M; Ly — S; 1) N Ff(2¢°M 5 Ly — S, 1))
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Note that ; £,(i — 1) = & (i — 1) = 0 for i > 3. Setting N = 2¢M, it follows
from the corollary to Proposition 2 that

(56) P(F,_\(2¢°M; S, 1, Ly) N FS(2¢°M; 8, 1, Ly )) < Mexp(—284¢°M),
for large M. Applying (54) and (56) to (52), one obtains

P(F°) < exp(—&34M) + mM?exp(—2e5¢®M) < exp(—£4, M),
for appropriate £, > 0 and large M. O

In order for the bound in (51) to be applicable, the upper bound L,, in (50)
must be made more concrete. To do so, we employ the induction assumptions
(32)—(34), which we assume hold for a given i, i € {2,..., m}. It is important
to note here the following feature of the network: All of the M, customers
originally at (u,1,1) have by time S, ; advanced beyond (1,2). On the other
hand, all of the M, customers originally at (,1,1) are still at (1,2) at
t = 8; ;. All of the lower customers originally at (1, 1) have thus fallen behind
all of the corresponding upper customers, and are served at each (i, ),
i=2,...,m, only after all such upper customers have been served there.
[This is the purpose of the extra stage (I,1,2) in (2).] This relationship
continues until the upper customers leave the network. In particular, none of
the lower customers originally at (1, 1) can arrive at (1, 3) until at least M,
(= M) customers have left the network.

LEMMA 4. Suppose that (5) is satisfied. If (32)—(34) hold for i = 2, then
for appropriate &, ¢ > 0 and large enough M,

(57) P(£/(2,1) > 2¢®M for somet €[S, 5,8, 7]) < exp(—&,sM).

If (32)—(34) hold for a given i € {3,..., m}, then for appropriate &; ¢ > 0 and
large enough M,

i—2

- 1+c2\
Pl &(i,1) >2(:6( 1—0) M for somet €[S, 1,8, 1]

(58)
<exp(—s ¢M).
Proor. By (50) and (51),
(59) P(F5(2¢5M; S, 5, Ly )) < exp(— &35 M)

for large M. To demonstrate (57), it suffices to replace the term L, (=L A
M?) by S, ;. It follows immediately from (34) that

P(&, (2,7 + vs, (1,8) > 11¢*M) < exp(—&; s M).

So, typically at most 11c*M < M customers have left the network by
t =S, ¢, in which case L > S, ;. That is,

(60) P(S;,>=L) <exp(—&,3M).
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It follows, on the other hand, from (32)-(34), that
P(gsz’1 > 2M) S eXp( _82’7M),

with &, ; > 0 and M large. Also, off of an exceptional set, at most 2 further
customers enter the network over (S, ;,S, ; + M]. Each customer needs to
be served at most seven more times at the second queue. So, by (9), the
amount of time spent serving all of these customers at the second queue is
typically at most 80cM < $M. So the second queue is empty by then, and
S, 7 < 8,1 + 3M. Together with the bound for S, ; given in (21), this implies
that

(61) P(S;7,>2M) <exp(—e&;3M),
for £, g > 0. Plugging (60) and (61) into (59), one obtains
P(F35(2¢°M; S, ,, Sy.7)) < exp(—&y ¢M)

for £, ¢ > 0 and large M, as in (57).

The demonstration of (58) is the same, except that one is not presented
with a bound for S; ;. One can remedy this by applying (32)-(34) and (38) to
check that

P(gsi,l + g, (1,8) = 2c_2M) <exp(—¢; M),
for £, ; > 0, and so by (9),
P(S;,23c2M) < exp(—¢; M),
for &, ¢ > 0. One can then check as before that
P(S;;>=4c?M) < exp(—¢; M),
for &, ¢ > 0, which is the analog of (61). O

The bounds in (567) and (58) are improvements over (32). Together with (33)
and (34), they can be employed to demonstrate Proposition 4. The proof
consists of obtaining explicit bounds for 5, at the successive times ¢ = S, ,
J=2,...,7 as in (62) and (63). For this, one employs the evolution of =, over
the cycles (S; ;,S; .11, j = 1,...,6, together with (9). We note that here, as
in Lemma 2, the assumption in (2) of seven rather than fewer visits to each

queue simplifies the reasoning.
PrOOF OF PROPOSITION 4. It follows immediately from (34) that
(62) P(&, (i) + 75, (1,8) > 11e*M/(1 — ¢)'7?) < exp(—&; 1 M)

for j = 2,...,7. Setting j = 7 produces (37). To demonstrate (35) and (36), we
will employ the bounds

(63) P(l€s, (i,7) —c/ M/ (1) "% > ny(i, j, /)M ) <exp(— & ;_; M)
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with
i-2

1+e¢ 2)

ni(i,j,j) = (cf AT ((5(j =J)cU=I+drTy v 306)) —

for j=1,...,7 and ;' <j, and some ¢ _j-7,1 > 0. [The unwieldy format for
ni,j,j')is due to the somewhat different behavior of &, (l J') for small and
large j — j'; ¢/7/*! is the larger term for j — j < 4.] Apphcatlon of (57)—(58),
together with (63) for j = 7 and j' = 1, implies (85). (Use (38) to get rid of the
factor (1 + ¢2)'~2)) Adding up the estimates in (63) for j =7 and j' < 7, it is
also not hard to check that (36) will hold, since the term c? is easily large
enough to absorb the term in n,(i, 7, j/) which follows ¢®~7.

For j =j =1, (63) follows from (83). We will show that if (63) holds for
J < 6and j <j,then it holds for j + 1 and j/ <j + 1. First note that (63), for
the pair {j,j'), immediately implies (63) for {j + 1, + 1), since the cus-
tomers under consideration advance precisely one stage over (S; ;, S, ;,;I. In
order to demonstrate (63) for (j + 1,1), we first estimate S, jr1 =S
Applying (63) at <j, '), j/ <j, one can check that the total number of
customers in all stages of the ith queue other than the first is typically at
most 2M /(1 — ¢)'~2. Each of these customers is served at rate 5~ > ¢~8, so
by (9) the time spent serving them is typically at most ¢’M /(1 — ¢)'~2. The
customers at (i, 1) are served at rate ¢~1. Applying (9) to the bound for {j, 1)
in (63), one can check that the time spent serving all the customers in the ith
queue therefore satisfies

(64) P(1S;, 11— Siy = 'M/(1 =)' % > ny(i, /) M) < exp(—s; ; , M)
with

iJ

i-2

. . 1+¢2
ny(i,J) =(cf+1+(5j—3)c(f+3)”)( ) )

1-c¢
for appropriate &; ; , > 0. Another application of (9) shows that the number of

customers entering the network over (S, ;, S; ;] satisfies

P(IBs,,,(1,1) = Bs, (1,1) = ¢’M/(1 = ©)'" " > ny(i, ) M)

(65)
< eXp(—Si’j’:;M)

with
i-2

. . 1+¢?
no(inf) = (/1 + (5]~ 2)c<f+3>”)( — ) ,

for appropriate ¢, i3> 0.

To justify (63) for (j + 1,1), we note that all the customers entering the
network over (S; ;,S; ;1] must be in either (i,1)” or (i,1) at ¢t =S, ;..
Moreover, only those customers entering over (S;,;»8;, j+1] or those in (i, 1)~

at ¢t =S; ; can be at (i,1) at ¢ =S, ;,;. We can apply (65) together with
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(57)—-(58) in all cases except for the upper bound when i =2 and j =1, in
which case we use (65) and (28). One can check that of the exceptional sets,

2

. : . (1 e
1€s, ,,(8,1) —c/M/(1 - ¢)' 7 < ('t + 5jcf+3)( ) M forj <3,

1—-c¢

) M for j > 3.

1
< (¢t + 3¢t
(c c )( T o
This implies (63) for (j + 1,1). Hence (63) for (j + 1,/), j/ <j + 1, holds.
Induction on j shows that (63) holds for j < 7 and j/ < j. This completes the
proof of the proposition. O

Demonstration of Proposition 5. The argument for Proposition 5 is consid-
erably shorter than that for Proposition 4. The main estimate is the following
lemma, which gives an upper bound for S;,; ; — S; ;. The corresponding
bound for S, , — S,, ; will be used in Section 5. We therefore, with some
abuse of notation, set S,,,, ; =8, , and (m + 1,1) = (1, 3) here, and demon-
strate both bounds together.

LEMMA 5. Assume that (35)—(37) hold for a given i € {2, ..., m}. Then for
appropriate &; 1, > 0 and large enough M,

(66) P(S;i1, — Siq > 10¢™M /(1 —¢)'™") < exp(—&; 10 M).

ProOF. We use reasoning analogous to that in Lemmas 2 and 4. The only
customers served at the ith queue over (S; ;,S; ; + 11¢'M/(1 — ¢)'"'] are
those in (i + 1,1)” at ¢t = S, ; and those entering the network over this time
interval. Each such customer needs to be served at most six times at stages
with rates 867!, and, if starting in (i, 2)~, once at (i, 1) at rate ¢~ !. By (35) and
(36), there are typically at ¢ =S, ; at most 2M /(1 — ¢)'"' customers in
(i + 1,1)", and by (85), at most 8¢®M /(1 — ¢)'~2 customers in (i,2)". By (9),
there are typically at most 12¢’M /(1 — ¢)'~! customers entering the net-
work. So, typically, at most 3M /(1 — ¢)'~! customers need to be served at the
ith queue, and 9¢®M /(1 — ¢)'~! customers at (i, 1). Applying (9) again, one
obtains that the total time these customers will be served at the ith queue is,
off the exceptional set, at most 10¢’M /(1 — ¢)i~1, since ¢ < 1/100. The ith
queue must in such cases be empty within time 10¢’M /(1 —¢)'~! of S, ;.
This implies (66). 0O

Customers enter the network at rate 1; they are served at (i + 1,1),
 =2,...,m — 1, at rate ¢~ !. Two immediate consequences of Lemma 5 and
(9) are therefore given by the following corollary.

COROLLARY. Assume that (35)—(37) hold for a given i €{2,...,m — 1}.
Then for appropriate &; 1, &; 15 > 0 and large enough M,

(67) P(Bs,,, (1,1) = Bs, (1,1) > 11™M/(1 - ¢)' ") < exp(&,,1,M)
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and

P(ys,, (i+1,1) — v (i +1,1) > 11c°M/(1 — )" Y)
< exp(—¢; 1, M).

(68)

Using (67) and (68), the argument for Proposition 5 is now straightforward.

PROOF OF PROPOSITION 5. Only those customers in (i’,1)” at t =S ;, or
those entering the system over (S; ;,S;,,,] can be in (i’ + 1,1)” at ¢ =
S+ 1,1, since the i'th queue is empty Together (35) and (67) provide an easy
upper bound for (32), with i = i’ + 1. One has

§Si'+1,1(i, +1, 1)+ + ysi’+1,1(1’3)
(69) < (&, D" + s, (1,3))
(s, (4 11) = 75, (7 + 1,1)).

That is, the only customers who can be past (i’ + 1,1) at ¢ = S 11,1 are those
already past (i',7) at t = S; ; and those leavmg (@' +1,1) over (Sl 7> Siv1,1]
By (87), (68) and (69), (34) holds with i = i’ + 1.

It remains to demonstrate (33) for i =i + 1. Note that since the i'th
queue is empty at ¢ =S, ,

£, (V' +11) > €s, (i) — (ysi,ﬂ’l(i’ +1,1) —yg, (V' + 1, 1))

The lower bound in (33) therefore follows from (36) and (68). Since customers
at (' + 1,1) at t =8S;,,,; must come from somewhere in the network at
t =S; ; or enter the network over (Sy 7,8 41, 1], an upper bound for the
quantity &s,., (@' + 1,1 is provided by summing up the bounds in (35)-(37)
and (67). Since ¢ < 1 /100, it is easy to see that

8c®(1 —¢) +¢(1+ 3c2)(1 + ) 7% 4 1le*(1 —¢) + 11c" < ¢(1 +c2)" !
So the upper bound in (33) with i = i’ + 1 also holds. O

5. Conclusion. The bounds (39)-(41) of the corollary to Propositions 4
and 5 provide us with an accurate description of 2 i Further detail is given
by Lemmas 6 and 7 below. We next analyze = s, S1 , being the next time

after S,, ; at which the mth queue is empty. We then proceed to E Er, T being
the time at which the last customer in the first queue at £ = S, , is served.
The assertion in (6) of Theorem 2 follows. We then demonstrate (7).

We will use the following bound on S, ;

LEMMA 6. Assume that (5) holds. Then for appropriate £, > 0 and
large M,

(70) P(1S,,7 — ¢ ?M| > (3¢ log(c ™)) M) < exp( —ey5M).
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ProoF. By (39)-(41), the total number of customers visiting the network
by ¢ = S,, ; will typically be close to ¢2M, that is
P(l§sm'7 + s, (1,8) — c 2M| > (%c‘llog(c‘l))M) < exp(—&,5M),

for £, > 0 and M large. By (5), there were initially between M and (1 + c*)M
customers in the network. So,

(71)  P(Bs, (1,1) —c 2M| > (3¢ tlog(c™!)) M) < exp(—e56M).
(70) follows from (71) and (9). O

To demonstrate (6), we will need to bound the number of customers in
3,

LEMMA 7. Assume that (5) holds. Then for large M,

(72) P(Sm,7 ZL) Sexp(_“?m,.?M)
and
(73) P(&, (8,1) > 2c°M) < exp(— ;M) for 65, > 0.

PrROOF. By (41), typically at most 12¢2M < 1M customers have left the
network by ¢ = S,, ;. As shown after Lemma 3, this implies that on this set,
none of the lower customers originally at (1, 1) has yet arrived at (1, 3), and so
S,,.7 < L. This implies (72). By (70), S,, ; < M? is typically also the case. So
S,..7 <L A M? = Ly, typically holds. By (50) and (51),

P(F§(2CGM$ S3,1, L)) < exp(—e3. M),
and (73) follows by substituting S,, ; for L,,. O

We mention several simple consequences of Lemma 5, with { = m, and of
Lemma 6 regarding the behavior of =, up to ¢t = S, ,. Since customers enter
the network at rate 1, it follows from Lemma 5, (38) and (9) that

(74) P(Bs, (1,1) = Bs, (1,1) > 11c¢°M ) < exp(— &3 M),

for £95 > 0 and M large. Upper customers exit from the network after (m,7),
but lower customers are served at (1, 3) at rate ¢~ 1. So one also obtains from
Lemma 5 that

(75) P(ys, (1,1,3) = vs, (1,1,8) > 11c*M) < exp(— 59 M),
for €99 > 0 and M large. By the two lemmas,
(76) P(ISy,; — ¢ 2M| > (4c™ ' log(c™')) M) < exp(—&e3,M),

for €40 > 0 and large M. Together with (9), (76) allows us to control the
number of lower customers entering the network by ¢ = S, ,, so that

(77) P(1Bs, (1,1,1) — 3¢"2M| > (3¢~ log(c™1)) M) < exp(~s5, M),

for £4; > 0 and large M.
We now analyze the behavior of Eg .
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PROPOSITION 6. Assume that (5) holds. Then for appropriate &, > 0 and
large M,

(78) P(&s, (1,3) > 10¢*M) < exp(—e52 M),

(79) P(&s, (3,1) > 12¢°M) < exp(— 53 M),

(80) P(l&s, (1,1,3) — 3¢72M| > (3¢ log(c ™)) M) < exp(—e34 M)
and

(81) P(vs, (1,1,8) > 12¢*M) < exp(— &5, M).

PROOF. Only those customersin(m,1)” at ¢t =8, 75 OF those entering the
network over (S,, ;,S; ;] can be in (1,3)” at ¢ = S, ,, since the mth queue is
empty. So (78) follows from (39) and (74). Similarly, only those customers
already in (8,1)” or those entering the network over (S,, ;,S; ;] can be in
(3,1)” at t = 8, ,, and so (79) follows from (78) and (74). By (5), &L D <

¢*M. Together with (72), this implies that

(82) P(ys, (1,1,8) > ¢*M) < exp(—&,, s M).

Inequality (81) follows from (75) and (82).

To demonstrate (80), we note that by (77), typically about 3¢ 2M lower
customers have entered the network by ¢ = S; ,. Since these customers must
be somewhere, subtraction of the bounds given in (78) and (81) from (77)
gives the lower bound for (80). Since at ¢ = 0, there are less than M lower
customers in the network, the upper bound in (80) also follows from (77). O

T - 8, , is the time required for all the customers in the first queue at
t = 8, , to be served. Customers at (1, 1) and (1, 2) are served at rate 6~ 1 and
those at (1, 3), at rate ¢ !. Applying (9) to (78) and (80), it is easy to check
that

(83) P(IT - 8,5 — 3¢ 'M| > (Flog(c™ ")) M) < exp(—e36 M),
for £4, > 0 and large M. Another application of (9) implies that
P(IBr(u,1,1) — Bg, (u,1,1) — 3¢ M| > (2log(c™ ")) M)

84

N < exp( &y M)

and

(85) P(1Br(1,1,1) — Bg, (1,1,1) — ¢~ 'M| > (2log(c™1))M)

for £4; > 0 and large M. It is now straightforward to analyze the behavior of

Ep.
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PROPOSITION 7.  Assume that (5) holds. Then for large enough M,
(86)  P(lér(u,1,1) — ¢ ™M| > (21og(c 1)) M) < exp(— &5, M),
(87)  P(lé7(1,1,1) — 3¢7'M| > (2log(c™!)) M) < exp(—e5, M),

(88) P(&7(1,1)" > 10¢*M) < exp(— 55, M)
and
(89) P(£7(1,2) + £7(2) > 12¢5M) < exp(— &4 M),

where €35, £33 and e4; are as in (78), (79) and (84)—(85).

ProoF. Over (S, ;, T'], those customers arriving in the network end up at
(1, 1), those starting at (1, 3) leave the network, and those starting elsewhere
in the network either leave the network or end up in (1, 1)*. Consequently,
(86) follows immediately from (84), (87) from (85), (88) from (78), and (89)
from (79). O

The bounds in (6) of Theorem 2 follow easily from Proposition 7, since
¢ < 1/100. By decreasing c further, they can of course be improved. By
replacing (84)-(85) with bounds for B;(u,1,1) — Bsu(u, 1,1) relative to
Br(1,1) — Bg, (1,1), one can choose &,(u,1,1)/¢7(1,1) as close to 3 as de-
sired. Also note that by (76) and (83),

(90) P(IT - ¢*M| > (5c¢™'log(c™))M) < exp(—e33 M),

for appropriate 553 > 0 and large M.
We still need to demonstrate (7) of Theorem 2.

PRrOPOSITION 8.  Assume that (5) holds. Then for appropriate £59 > 0 and
large enough M,

(91) P(¢ < M for somet € [0,T]) < exp(—e39M).

Proor. By (81), the number of lower customers leaving the network by
t =8, , is typically at most 12¢*M. Since M, > 1M, it follows that
(92) P(¢ < §M forsome t € [0,S, ,]) < exp(—¢&35M).

(The bound can be made arbitrarily close to M by decomposing [0, S, 21) To
examine the behavior of ¢, over (8, ,,T], we introduce the time 7" = Syt
2M. By (9),

(93) P(Br(1,1) - Bs, (1,1) <M) < exp(—s54,M)
and

94 P(yp(1,1,3) — vg (1,1,8) > 4¢™ M) < exp(—&,M),
1,2 41
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for &4, £4; > 0 and large M. On account of (80), there are typically about
1¢72M customers at (/,1,3) at ¢ = S, ,. Together with (94), this shows that

(95) P(& <M forsome t € (S; ,T']) < exp(—¢&, M),

for £, > 0 and large M. Since customers entering the network after S, ,
remain at (1, 1) until time 7', (93) implies that

(96) P(¢ <M forsomet € (T'AT,T]) <exp(—g4M).
Inequality (91) follows from (92), (95) and (96). O

Proposition 8 demonstrates (7), which completes the proof of Theorem 2.

Consequently, Theorem 1 also holds. The process E, is thus unstable, with
¢ — » as t — . More detail on the asymptotics of =, under (5) is provided
by Propositions 4-7.
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