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HOW MANY IID SAMPLES DOES IT TAKE TO SEE
ALL THE BALLS IN A BOX?

By THOMAS M. SELLKE

Purdue University

Suppose a box contains m balls, numbered from 1 to m. A random
number of balls are drawn from the box, their numbers are noted and
the balls are then returned to the box. This is done repeatedly, with the
sample sizes being iid. Let X be the number of samples needed to see all
the balls. This paper uses Markov-chain coupling to derive a simple but
typically very accurate approximation for EX in terms of the sample size
distribution. The approximation formula generalizes the formula found by
Pélya for the special case of fixed sample sizes.

1. Introduction. Suppose we have a box containing m identical white
balls. Let K1, Ko,... be iid random variables taking positive integer values.
We randomly sample K; A m balls without replacement, paint the sampled
balls red and return them to the box. Then K3 A m balls are sampled, the
white ones are painted red and all are returned to the box and so forth. Let X
be the number of samples needed to paint all the balls red. When max;;<x K;
is with high probability smaller than m /2, say, then a good approximation for
EX is given by

Y 1/ (m — i)
ymol1/(m —i)P{K > i}
4 Yrlly/(m—r)P{K >}y 1/(m—j+1)
[C75l1/(m —i)P{K > i}]? '

“(1.1)

(A K without a subscript represents a generic K;.) For instance, if m = 10
and the (K; — 1)’s are binomial (4, —21-), then the true value of EX is 8.8937,
whereas (1.1) gives 8.8933. For m = 20 and (K; — 1)’s that are binomial (4, %),
the values are EX = 22.90753529760067 and (1.1) = 22.90753529760074. For
m = 10 and K;’s that are uniformly distributed on {1,2,3,4,5}, EX = 8.74239
and (1.1) = 8.74236. For m = 20, the values are EX = 22.740208948996 and
(1.1) = 22.740208948981. (The true values were computed by Jacek Dmo-
chowski using exact recursive formulas suggested by Larry Shepp.) It is diffi-
cult to determine the size of the approximation error when m is much larger
than 20. Even with double-precision computation, the round-off error seems
to dominate the true approximation error.
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The justification of formula (1.1) involves Wald’s identity [which gives the
first term of (1.1) as a first approximation to EX] and coupling [which gives the
second term of (1.1) as a correction for “boundary overshoot error” in the first
term]. A bound on the difference between EX and (1.1) can be given in terms
of, say, P{max;.x K; > m/2} and the probability that a certain Markov-chain
coupling is unsuccessful.

Section 4 gives some explicit bounds on the approximation error. These
bounds are generally very crude, but they show that the approximation error
converges to zero faster than exp(—m'3) as m — oo when the (fixed) K-
distribution has a finite moment generating function near 0. If the K;’s are
bounded, or if the hazard function of the K;’s is bounded below by 6 > 0, then
the approximation error converges to zero exponentially (in m) as m — oo.

Section 5 presents a generalization of (1.1) applicable to the case where
some of the balls in the box are red to begin with and where only a specified
number of the white balls need to be painted red.

Pélya (1930) found an approximation formula for EX when the sample size
K is constant. Formula (1.1) agrees with Pélya’s formula in this special case.
Poélya (1930) indicated how to prove that the approximation error converges
to zero as m — oo, but with no rate. However, he also showed that the ap-
proximation error is exactly (—1)"m(m — 1)/{(2m — 1)2(2":,:2)} when K = 2,
so he probably suspected that his approximation would be extremely good in
general for large m. His methods were completely different from ours.

2. Application of the Wald identity. Assume the balls are numbered
1,2,...,m. If balls are sampled one at a time, with replacement, then analyz-
ing the number 7 of single-ball draws needed to see all the balls is easy: it is
just the standard coupon collector problem, as described for example by Ross
(1988) or Feller (1968). Once j balls have been seen, the number of additional
draws needed to see a new ball is a geometric ((m — j)/m) random variable
independent of everything that has come before. [Here, X ~ geometric (p)
means P{X = k} = (1 — p)*1p for k = 1,2,..., with EX = p~l] Adding
expectations yields

m

-1
m
L]
[(Note that (1.1) = (2.1) when P{K =1} =1.]
More generally, if K is a random variable (independent of the drawing
process) taking positive integer values, the number D of single-ball draws
needed to see K A m distinct balls has expectation

m—1

1, '
(2.2) ED = ; m10{1{ > i},

since P{K > i} is the probability that the geometric ((m — i)/m) number of
draws needed to get the (i + 1)st distinct ball is included in D.
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Suppose our successive samples of balls are obtained as follows. First we see
the value of K;. Then we draw balls, one at a time, with replacement, until
K A m distinct balls have been obtained. Let D; be the number of draws
needed to obtain the required K; A m distinct balls. Then we see K9 and
draw balls one at a time with replacement, until Ko A m distinct balls have
been obtained to form the second sample, and so forth. Let D; be the number
of draws needed to obtain the K; A m distinct balls in the ith sample. Let
& i be the o-field generated by all observations made while generating the
first i samples. Thus, .%; is generated by K, K, ..., K; and by the sequence
of Dy + --- + D; draws needed to obtain the first i samples. The K;’s are
assumed to be iid. The numbers on the balls obtained on successive draws are
iid, uniformly distributed on {1,2,...,m} and independent of the K;’s. The
D;’s are also iid, and K;,1 and D;,; are independent of 7.

Again, let X be the number of samples needed to see all the balls. The event
{X <i}is #; measurable, since we know after the first D +--- + D; draws
whether or not we have seen all the balls. Thus, X is an {%;} stopping time.
By Wald’s identity/equality/lemma/relation and the fact that the D;’s are iid,

(2.3) E(Dy+---+ Dx) = EX ED;.
With 7 as above, note that
X=inf{i: D1 +---+D; > 1}

Thus, the sum Y% D; and 7 are equal except for the “overshoot” given by the
number of draws needed to complete the last sample after the last new ball
has been obtained on the rth draw. Let V be the size of this overshoot, so that

s X
2.4) V= (Z D,-) — .
1

From (2.1), (2.2), (2.3) and (2.4) we get

EY{D; Er+EV _ z;’;;,?n;/(m—i)+EV
ED, ED; ;';Blm/(m—i)P{K> i}

(2.5) EX =

Let A, be the number of distinct balls already in the last sample after the
7th draw. The same “coupon collector” argument used for (2.2) shows that

r=j

m—1
. m .
E(V|Aoo=.l)=ZmP{KX>"|Aoo=J}-

However, the conditional distribution of Ky, given that A, = J, is exactly
the same as that of K; given that K; > j. Thus,
’ "m-1 m

(2.6) E(V|Aw=j)=ZmP{K>r|sz}.

r=j



SEEING ALL THE BALLS 297

[We interpret (2.6) as zero if j = m.] If we can get a good approximation for
distribution of A, we can combine this with (2.6) to approximate EV in (2.5).
The next section will show that

m/(m - j+1)P{K > j}

ymtm/(m —i)P{K > i}

@.7) P{As = j} ~

Combining (2.7) with (2.6) yields

m—1
EV =) E(V|Ax=Jj)P{Ax=j}
Jj=1

et m/(m —r)P{K > r| K > jim/(m — j+ DP{K = j}
Yrotm/(m —i)P{K > i}

_Xrtm/(m = r)P{K > r}Yam/(m — j+1)

- Y7 im/(m —i)P{K > i} ‘

(2.8)

Substituting this approximation for EV into (2.5) and cancelling some factors
of m yields (1.1).

3. Approximation of P{A. =j} by coupling. This section will explain
the approximation (2.7) above:

m/(m — j+1)P{K1 > j}
ymtm/(m—i)P{K > i}’

(3.1) P{Ax=j}~ Jj=12,...,m.

The idea is to construct a finite-state-space Markov chain with m absorbing
states labelled 1,2,...,m for which A, equals the label of the state where
absorption occurs. This chain is coupled to an approximating chain for which
the distribution of the absorbing state is given (modulo truncation) by the right
side of (3.1). [For a general account of the coupling technique, see Lindvall
(1992).1

For the purposes of this section, it will be better to use a recipe for generat-
ing the required samples that is different from that of the previous section. To
start, draw a single ball from the box. Then ask whether the next ball should
continue the first sample. The probability of continuing the first sample should
be

_P{KAm>1}

(32) Cc1 =. m .

If we decide to continue the first sample, draw another ball from the box
without replacing the first ball. With probability ;3 =: 1—c;, we decide to end
the first sample with the first ball. In this case, we return the first ball to the
box and then draw the first ball of the second sample.
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The general rule for sampling goes as follows. If the number of balls already
in the current sample is a, we decide to continue this sample with the next
ball with probability

_ P{KEAm>a}
(3.3) ‘ Cq =: ——————————P{K/\mza}.

With probability A, =: 1 — ¢,, we end the current sample, return all balls in
this current sample to the box and then draw the first ball of the next sample.
Balls are returned to the box only when we decide that the current sample is
complete and that it is time to start a new one. It should be obvious that this
protocol really does generate independent samples whose common sample size
distribution is as required.

Let A, be the number of balls already in the current sample after the
nth draw. Let U, be the number of previously unsampled (i.e., white) balls
left after the nth draw. Let Ty be the number of draws needed to get all
balls at least once (according to the sampling protocol of this section), so that
To = inf{n: U, = 0}. Define

(3.4) A, =:App, and U, =: Upar,.
Then {(A,,U,)}%2, is a Markov chain with state space
S ={(a,u): ac{l,2,...,m}, ueci{0,1,....m -1}, a+u < m}.

Since we start with n = 1, the starting state is (1,m — 1). For u > 1, the
transition probabilities are

P{(An+1,Uny1) = (a',u) | (An,Un) = (a,u)}

m—u

ha ’ for (a/, u/) = (l’u)’
m
u
ho—, for (a',u’) = (L,u - 1),
(3.5) rf—a—u
T eceq—, for (a,u') =(a+1,u),
m-—a
Cq “ , for (¢/,u')=(a+1,u—1),
m-—a
0, otherwise.

Since the (A,, U,) chain stops at time Ty, states of the form (a,0) are absorb-
ing. Note that Ar, = A, where A, is as defined in Section 2. See Figure 1.

Now we define the approximating Markov chain. Fix b € {1,2,...,m — 1}
Let (Aﬁlb), U ﬁlb)) be a Markov chain on S,, whose transition probabilities are as
above, for the (A,,U,) chain, but with K A b in place of K. Thus,

c(b)_ Ca, ifa<b,
e 710, ifa=b



SEEING ALL THE BALLS 299

m-17 O
m-24 O o
m-34 e [} [}
‘m-4 4 .ﬁ. o
L
g m-54 e (] [ ] (o] [e]
5
o
<}
o
o
14 e L] [ ] o] o] o
0-e () [ o o] o] o
1 2 3 4 5 m-1 m

A coordinate

Fig. 1. The dots, both solid and open, show the state space of the (A,,U,) Markov chain. For
b = 3, the solid dots show the state space of the (A®),U®)) chain, which starts on U-level m — b.
The arrows show the possible transitions out of state (A,U) = (2, m — 4). The states on the bottom
row are absorbing.

and hg’) =1- cf,b). Note that the two chains (A,,U,) and ( Aflb), U flb)) have the
same transition probabilities out of states (a, u) for which @ < b. Our coupling
construction below will work well when we can choose a value of b not too close
to m but with P{K > b} small enough to make P{max;.x K; > b} negligible.

The {(AY,U®))}>, chain will be started with U”’ = m — b. The value of
A" will be random, with

mb/(lm—a+1)P{Kza}, f<a<b,
Yigm/(m—i)P{K > i}

(3.6) P{AY =a} =

[Compare (3.6) to (3.1). The distribution for A(lb) in (3.6) is the distribution on
the right side of (3.1), conditioned to be less than or equal to b.]
For u € {0,1,...,m — b}, define

(3.7 T® = inf{n: UY = u}.
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Thus, Tﬁ,b’ is the time at which the (Aflb), Uﬁlb)) chain drops down to U-level
u. In analogy with previous notation, set Affo’) = A(Tb‘l], so that (Aff,),O) is the
state where the (Aﬁlb), U ﬁf’) ) chain is absorbed. 0

Here is the key result for understanding formula (3.1):

PROPOSITION 3.1. If U\" = m — b and A'" has distribution (3.6), then
A(b{z,, has distribution (3.6) for all u € {0,1,...,m — b}. In particular, AL has
Tll
distribution (3.6).

PROOF. Define {Bﬁf’) >, to be a Markov chain on state space {1,2,...,b}
that acts like a nonstopped version of AY. Thus, the transition probabilities
for the Bﬁlb’ chain are

P{B? =a | BY =a)}
w _ P{EAb>a}

- f = 1
(3.8) “ T PEnbzay "OTOTH
' = P{KAb=a} .
(b) — T ——————— /:
b= PR Abzay TYTE
0, otherwise.

It is well known (and trivial to check) that the stationary distribution of this
“renewal age process” chain is

39 oo PiKzal _PlK>a)

= = , l1<acx<b.
St PK>i) EEAD) “

Define another Markov chain (B(nb), Wilb) ) by having Bilb) as above and the
W' a sequence of Bernoulli random variables. Set W(lb) = 1. Conditional on
the entire path

BY = (BY,BY,...)

of the Bﬁlb) chain, the Wﬁlb’ ’s, n > 2, are to be independent, with
d

3100 PWYP=1|B?}=1-PWP=0|B"}= —
m — Bil)+1

for some constant d, 0 <d <m —b.

Here is how to think about the (Bﬁlb> s Wﬁlb)) chain in terms of Figure 1.
Suppose the (A‘,f’) U ff” ) chain is stuck on some U-level d, in the sense that it
is artificially held at U-level d whenever it “wants” to drop down to U-level
d-1.1f Bﬁlb) is the A coordinate of this process and Wilb) is an indicator of the
event that the process “wanted” to drop its U-level from d to d — 1 between

times n — 1 and n, then (Bﬁ,l”, Wﬁ,b)) is as above.
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Now consider the “embedded chain” whose consecutive states are the con-
secutive states of the (B;b), Wﬁf’)) chain at which Wflb) = 1. (The times at which
Wﬁlb) = 0 are skipped.) The stationary distribution for ng) in this embedded
chain is

emb _ 1/(m —a+ 1)m,
¢ Yo 1/(m—i+1)m;
_ 1/ (m—-a+1)P{K > a}
Z‘—o 1/(m —i)P{K > i}’
[Note that (3.11) and (3.6) are the same distribution.] The reasoning for (3.11)
is as follows. The stationary distribution of an ergodic Markov chain gives the
long-run fraction of the time that the chain spends in each state. By (3.9),
(3.10) and the strong law of large numbers, the long-run fraction of the time
that the (B'Y), W®)) chain spends in state (a,1) equals 7.(d/(m — a + 1)).
Thus, the long-run fraction of the time that the embedded chain spends in a
state (a, 1) is given by (3.11).

Recall that if the starting state of an ergodic Markov chain is chosen ac-
cording to the stationary distribution, then the state one time unit later will
also have the stationary distribution.

Now compare the (Aﬁlb), U flb)) chain with the (szb), Wflb)) chain. The differ-
ences U Lb)l -U i}” are Bernoulli random variables. For n < TEVIZ)—b—1 [i.e., until
the (AY, U'Y) chain drops from its starting level m — b to the next lower
level],

(3.11)

l1<ac<b.

m-—>b
—AP 41
which looks like (3.10) with d = m — b. Thus, up until time

T®,  =inf{n: UP, —UY =1},

PIUY, —UP =1|4P, (AP, UP) 1]—

(Aﬁlb), U g’_) -U (b)) is a chain with the same state space and transition probabil-
ities as (B, W(). Since A®) ® corresponds to the second value of B\ in the

mbl

embedded chain, Al 3,) will have the stationary distribution (3.6) = (3.11)

m —-b-1
if A(b) starts out in this stationary distribution.

It follows in the same way that A(b()b, has distribution (3.6) if A(b&) has
distribution (3.6). Thus, Proposition 3.1 follows by induction. O

It remains to show that the distribution of A, is close to the distribution
(3.6) of AY for properly chosen b. Although analytic arguments may be pos-
sible, the easiest way to achieve this would seem to be to couple the (A,,U,)
and (Agb), U ﬁlb)) chains so that, with high probability, they end up at the same
absorbing state. We start by choosing a starting state for the (AL UY) chain
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as described above, with u(lb) =m-—band A(lb) ~(3.6). Then we let the (A,,U,)
chain [which always starts in state (1,m — 1)] run until U, = m — b. Once
the chains are on the same U-level, we can sequentially choose one or the
other chain to take a step, with the goal of course being to get them to inhabit
the same state at the same time. Alternatively, we can let both chains move
simultaneously, with the transitions for the two chains being dependent if we
want. The only requirement is that each time a chain takes a step, it must do
so according to its own transition probabilities; this will guarantee that the
path of each individual chain has the right probabilities. (In particular, the
distribution of the absorbing state will be correct.) If we can get the chains to
meet, we couple them so that they move together. Since the transition proba-
bilities are the same as long as A, and A are less than b, the chains stay
coupled as long as the common A coordinate is less than . A coupling can fall
apart, however. If the common A-value of the two coupled chains reaches b,
then with probability c, the chains will be decoupled after the next step. If one
chain has its U coordinate decrease before coupling is achieved on a common
U-level, we just leave this chain alone for a while and run the other chain
until its U coordinate also drops, after which we try to achieve a coupling at
this next lower U-level.

The next section will use a certain coupling strategy, in which we sequen-
tially choose one or the other chain to take a step, to derive explicit error
bounds for (3.1) and (1.1). When the discrete hazard function A, of K is
bounded below by a constant 8 > 0, another coupling strategy involving si-
multaneous and dependent steps whenever the two chains are on the same
U-level sometimes gives better error bounds. The next section will also state
but not prove some bounds of this type.

4. Bounds on the approximation error of (3.1) and (1.1). Let

|P{A € } = P{A® ¢ }] = 3" |P{Aw = j} - P{AD) = |
=1

J

denote the total variation distance between the distributions of A., and Affé).

PROPOSITION 4.1." If P{K > b} =0, then /‘
|P{Ax € -} — P{AD € .}| < 15e™™/°,

PROOF. The total variation distance is obviously bounded by twice the
probability that the (A,,U,) and (Ailb), Uf,b)) are not coupled when they are
absorbed [cf. Lindvall (1992), page 12]. )

Here is a coupling strategy that has probability less than (15/2) exp(—m /b)
that the chains are not coupled at absorption. Order the (at most) b possible
. states on each U-level of the state space S,, as follows:

(2,u) < (B,u) <--- < (bu) < (1,u).
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When both chains are on the same U-level, run the chain that is “behind”
according to this ordering and leave the other chain alone. If the chains meet,
couple them. (Since A, > b is impossible, the coupling will not be broken
later.) If one chain drops below the other, run the upper chain until both are
again on the same U-level.

If no decrease in a U coordinate occurs for the first b6 — 1 steps taken
when the Markov chains are both on U-level u, then the chains are guar-
anteed to couple on this U-level. Each time a chain takes a step starting on
U-level u, the probability that its U coordinate will not decrease is at least
(m —b—u)/(m — b) [see (3.5)]. Thus, the probability of no coupling on U-level

u is at most
1 (m—b—u)b_I‘
m-—>5

The probability that coupling never occurs on any of the U-levels m — b, m —
b-—1,...,2,11is at most

m—b—1 i b-1
b -G

= \m-b
However,
m—b—1 i b-1 m—>b i b—1
2 () -LEm)
42) i \m—b i \m-—b
1
- blge_1-M-b__m_
> (m b)/ox di-1=""2-1=" -

Thus, exp{2 — (m/b)} bouﬁds the probability that the chains are not coupled
at absorption. Since 2e? < 15, the proposition follows. O

We will see that Proposition 4.1 still holds when P{K > b} > 0, provided we
add 2P{max;-x K; > b} onto the right side of the inequality in Proposition 4.1.
To bound P{max;.x K; > b}, it will help to have a bound on X.

If we let 7 be the number of single-ball draws (with balls replaced after
each draw) needed to see every ball at least once (as in Section 2), then it is
, obvious that P{X > ¢t} < P{7 > t} for all £. (Recall we assume P{K > 1} =1.)

ILEMMA 4.1. P{X > m?} < P{r > m?} <4m12e ™2,
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PROOF. As was mentioned just before formula (2.1), 7 is a sum of indepen-
dent geometric ((m — j)/m) random variables, j =0,...,m — 1. Thus 7 — m
has factorial moment generating function

m _m—lm__j_m i
doen(0) = B = [T S = T o

Setting s =1+ 1/2m, we get

1\"™ m m—i
El{l14+ — = 14 —— =
<+2m) n( +2mi—m+i)

However,

VZj NG YU IR PRI

H2i-1 3 5 2m -1

4 1 1 log m
< § 5 x+d 1+ D)
Thus,
1 T—m
E(l + —) < (me)Y2.
2m

However,

1\™m 11 5
(1+%) >exp{(—2—r;z——w)(m2—m)] =exp(%-——8-)

2
[since log(l+x) > x — % for0<x < 1].

Thus, by the Markov inequality,

)1/265/8_'"'/2 < 4m1/2e-m/2. 0

P{r > m?} < (me

PROPOSITION 4.2. If P{K > b} < ¢, then

|| P{Ay -} - P{AD ¢ }” < 15e7™/% 4 2m2s + 8m1/2e ™2,
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Proor. Use the same coupling strategy as in the proof of Proposi-
tion 4.1. Expression (4.1) [and therefore (15/2)e~"/°] bounds the probability
of the event “no (initial) coupling occurs and max;.x K; < b.” However, by
Lemma 4.1,

P{max;>x K; > b} < m?P{K > b} + P{X > m?}
(4.3)
< m2e +4mt/2e~m/2,
Thus the probability of “no (initial) coupling occurs or max;-x K; > b” is
bounded by

(4.4) 1?56_'"/1’ + m2e +4mt/2e /2,

Note that a coupling, once made, is never broken on {max;.x K; < b}. Thus,

(4.4) bounds the probability that the (A,,V,) and (Aflb), Vﬁf’)) chains are not
coupled at absorption. Multiplying (4.4) by 2 gives the desired bound on the
total variation distance. O

Using the bounds on the total variation distance || P{Ay € -} — P{AY ¢ .}
given by Propositions 4.1 and 4.2, it is easy to derive bounds on the difference
between (1.1) and EX. First a few more lemmas.

LEMMA 4.2. Forany be {1,2,...,m — 1},

EV-Y E(V|Ax=j)P{AY = j}

Jj=1

<3| P{Aw €} - P{AD € }| max E(V | Ay = j),
J
where E(V | A = Jj) is set equal to 0 when P{K > j} =0.
PROOF. The left side equals

ST E(V | A = D[PlAx = } - PLAY = ]|,

Jj=1
which is less than or equal to the right side. O

LEMMA 4.3. Forany be {1,...,m — 1},
wim/(m—r)P{K >r}Y_ym/(m— j+1)
Yrotm/(m —i)P{K > i}
_Xim/(m—r)P{K >} Y m/(m = j+1)
Y m/(m —i)P{K > i}
3 Ytm/(m —r)P{K >} Yy m/(m— j+1)
- Yo im/(m —i)P{K > i} '
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REMARK. The first term in Lemma 4.3 is the approximation (2.8) for EV
that we used to get (1.1). The second term in Lemma 4.3 equals

S E(V | A = )P(AY = j).

Jj=1

PROOF. 3"_;m/(m — j+ 1) is obviously increasing in r, so the first term
between absolute value signs is larger than the second term. The first numera-
tor is greater than the second numerator, and the first denominator is greater
than the second denominator. Thus, the difference is less than the difference
between numerators divided by the second (smaller) denominator. O

PROPOSITION 4.3. The difference between EX and (1.1) is bounded in ab-
solute value by

®) m—1 m )
013)1<n {—”P{A e} - P{AD e }| %lzaf([; ————m_rP{K >r| K> J}]

Er_b m/(m —r)P{K > r} Z;zl m/(m— j+ 1)}
Zz‘o m/(m —i)P{K > i}

m—1 m -1
—P{K>i .
x (g — {K > L})
PROOF. This bound follows from (2.5) and Lemmas 4.2 and 4.3. O

Now let us specialize to get bounds that are not quite such a horrendous
mess like the bound in Proposition 4.3.

PROPOSITION 4.4. If P{K > b} = 0, the difference between EX and (1.1) is
bounded in absolute value by

(15/2) e ™(m(b —1))/(m — b) - 15m(b — 1) e ™/
Yo lm/(m—i)P{K > i} 2(m — b)EK

ProoF. If P{K > b} =0, then

m—1 —
male—P{K>r|K>J}<—nL(?—bi).
PES Wy -

Apply this and Proposition 4.1 to the bound in Proposition 4.3. O
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REMARK. If m = 100 and each K; — 1 is binomial (4, %), the second error
bound in Proposition 4.4 equals 1.96 x 10~* (with b = 5 and EK = 3).

PROPOSITION 4.5. If P{K > k} <Ce ** for k <b, C > 0 and a > 0, then
the difference between (1.1) and EX is bounded in absolute value by

15 _ _ _ mlog m _ mlogm \2
Y ,—m/b C ab 1/2 ,—m/2 ab
(2 +m +4m'“e )—_E(KAm)+Ce (—_E(KAb)>'

REMARK. If P{K > k} < Ce* for all k, then letting b ~ /m in the
Proposition 4.5 bound shows that the approximation error converges to zero
faster than exp(—m1/3) as m — oo.

PROOF OF PROPOSITION 4.5.

-1 m—1
IIJl>aer2;—P{K>7'|K>J}<mZ r<mlogm.
Also,
;’ m—P{K >r} Z —— < Ce *®(mlogm)?,

-1 .

Z — - P{K>i}>E(KAb)

= m—1
and

m—1 m

m_

i=0

Combining these bounds and Proposition 4.2 with Proposition 4.3 proves
Proposition 4.5. O

REMARK. If m = 800 and the K;’s are geometric (%), then taking b = 40
in Proposition 4.5 yields the error bound 0.0016. The next proposition is much
more effective for geometric K;’s.

PROPOSITION 4.6. If the hazard function h, of the K;’s is bounded below
by 6 >0fora <mandif (m—>5b)é=>1, then

88 m—b
(1 + 6)1+3 }
+8m2e ™2 4+ 2m%(1 — 6)°

IP{Aw € -} — P{A®) € -} < 6(m — b)l/Z{
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and the difference between (1.1) and EX is bounded in absolute value by
68 m-b
_pey -
[s0m -0 55}

m(1—9) o mlogm \?
5 T-9 (E(KM))‘

Proposition 4.6 is proved in Sellke (1992).

+4m1 e ™2 £ m2(1 - 5)b]

REMARK. If the K;’s are geometric (%) and m = 100, then taking b =
62 and 6 = 3 causes the bounds in Proposition 4.6 to be 1.08 x 10~ and
5.64 x 10713,

5. Generalization. Suppose we start with r red balls and w = m — r
white balls in the box. Let Y,; be the number of iid samples needed to see (or
paint red) [ — r of the white balls, so that we go from r red balls at the start
to I red balls at the end (thus, X = Y ;). The formula

Yil1/(m — i)
Yot/ (m —i)P{K > i}
+z;';11 1/(m —i)P{K > i} Y5, 1/(m — j+1)
[275t1/(m — ) P{K > i}]

(5.1)

should (usually) be a good approximation for EY ,; when the first term of (5.1)
is large. The argument for the first term is exactly the same as in Section 2:
the numerator is the expected number of single-ball draws needed to get the
required number of white balls, and the denominator is the expected number of
draws needed to complete a sample. The second term of (5.1) [which is exactly
the same as the second term of (1.1)] is again a correction for the error in
the first term caused by “boundary overshoot.” In this case, the {(A,,U,)}%>
chain of Section 3 starts either in state (1, w) or in state (1, w — 1), depending
on whether the first ball chosen is red or white. The (A,, U,) chain is absorbed
by the states on U-level m — [. If a successful coupling can be achieved with
high probability between this (A,,U,) chain and an (Aﬁlb), U f,b)) chain, then
the A coordinate of the absorbing state will have a distribution approximated
by (3.12). Providing also that the bound in Lemma 4.3 is small, the second
term of (5.1) will do a good job of correcting the error in the first term.

If the sample sizes are geometric (%) and the box contains m = 30 balls,
r = 18 of which are red, then the expected value EY 1396 of the number of
samples need to see 26 — 18 = 8 of the white balls is 15.289268, whereas (5.1)
gives 15.289282, for an error of 0.000014. For the same situation with K;’s
* uniformly distributed on {1,2,3,4,5}, EY 1526 = 10.18018794, whereas (5.1)
gives 10.18018721, for an error of —0.00000073.
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