The Annals of Applied Probability
1995, Vol. 5, No. 1, 121-127

ON THE WEAK CONVERGENCE OF DEPARTURES
FROM AN INFINITE SERIES OF - /M /1 QUEUES'

By T. MOUNTFORD AND B. PRABHAKAR

University of California, Los Angeles

In this note we observe that the recent argument of Ekhaus and Gray
combined with the approach of Liggett and Shiga shows that the limit
from passing a stationary ergodic arrival process of rate a < 1 through a
sequence of independent, rate one, exponential server queues is a Poisson
process of rate «. This builds on work of Liggett and Shiga and Anan-
tharam.

1. Some background. Given a stationary point process A on (Q,.%, P)
indexed by two-sided time, we define

0, ift =0,
(1) A(t) = number of points of A in (0, ¢], if ¢t > 0,
—number of points of A in (¢,0], if ¢ <O0.

By stationarity,

A(t) A(t) .

tlgrolo — = tlimm —— =V(w) exists P as.
We will be exclusively concerned with the case where this limit is P a.s.
constant, equalling « < 1. In this case we will construct a stationary output
process D obtained from passing A through an independent single-server
queue whose service times are i.i.d. exponentials of rate 1. As in [1], we view a
/M /1 node (the symbol “- /M /1” stands for a single-server queue with ii.d.
exponential service times and an arbitrary arrival process that is indepen-
dent of the service process) as specified by its “virtual departure process,”
which is a Poisson process of rate 1. The construction of D from A takes place
in two steps:

STEP 1. Given A and an independent rate 1 Poisson process N (which we
think of as the service process), we construct for 7' > 0, the departure process
DT by ignoring all points of A that are less than —7. Thus, D7 is the
departure process from the queue if it were started empty at time — 7' and is
processing arrivals since that time. The corresponding queue-size process X7
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is a nonnegative integer-valued process with almost surely right continuous
paths that are constant outside points in A and N and varying at points of A
and N as follows:

0, ift < -T,
(2) XT(t)={XT(t7)+1, fort>-T,t€A,
XT(t7)—-1, fort>—-T,teNand X7(t") > 0.

Of course, by the independence of A and N we need not consider points in
both A and N. The departure process D7 can then be defined as the points
{t>-T:teNand X7(") > 0).

STEP 2. It is easy to see that as T increases, the processes X7 (¢) and DT
increase. What is not so easy to see but is true by virtue of Loynes’ construc-
tion (Loynes [7]) and the fact that the arrival rate is strictly less than the
service rate (i.e., a < 1) is that both D = lim,_, D and X(¢) = lim, .,
X7(t) exist as finite increasing limits. As Prabhakar and Bambos [8] note,
this is a nonstandard application of Loynes’ construction, which is possible
because of the memoryless property of the Poisson process.

If we set

0, ift =0,
(3) N(¢) = { number of points of N'in (0, ¢], if £t >0,
—number of points of Nin (#,0], if¢#<0

and similarly define D(¢), we at once see that

t
D(¢) = fo Lixs-y> 0) AN(5).

In fact, this is how a G/M /1 queue is defined in [4]. Also if A is stationary
and ergodic of rate a < 1, then so is D. To see this, notice that if A and N are
shifted by ¢, then by construction, so is the output process D. Thus D is
stationary if A and N are. By the independence of A and N, the joint process
(A, N) is ergodic. Because any shift invariant function of D is a shift invariant
function of (A, N), ergodicity of D follows from that of (A, N). See [1],
Theorem 2, for more details.

Given the concluding remark of Step 2, we may rename D as Al =#(N, A),
where #(N, - ) is an exponential server node with service process N mapping
arrival processes to departure processes. Now D = Al can be thought of as
the arrival process to a second independent queue. And, as before, we may
“feed” it through a Poisson process of service times N!, independent of A, N
to obtain a departure process A? =#(N', Al), which we can think of as an
arrival process, and so on, obtaining a sequence of arrival processes A" =
Z(N"~1, A"~ 1). We may now state the result we shall prove.
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THEOREM 1. If A is a stationary, ergodic point process of rate a < 1, then
A" converges in distribution to a Poisson process of rate a.

A result crucial to our argument is the classical Burke’s theorem, which
states that when a Poisson process of rate o (< 1) is fed into a rate 1
exponential server queue, the output is also a rate a Poisson process. Liggett
and Shiga [6] and Anantharam [1] show that this is the unique (ergodic) fixed
distribution of rate a. Our result confirms a conjecture made by Reiman and
Simon [9] in 1981. This conjecture was motivated by a desire to replace a
complex flow in a queueing system by a Poisson process for the purpose of
approximation.

A conclusion similar to Theorem 1 is obtained in the classical result of
Vere-Jones [10], which states that if a stationary ergodic mixing point process
is passed through a sequence of independent -/GI/» queues, then the
limiting output is a Poisson process of the same rate as the original arrival
process.

2. Coupling. As in [6], we rely on coupling arguments. We fix our
(independent) sequence of Poisson processes of rate 1, N* and consider a
Poisson process P of rate «a, independent of these Poisson processes and A. As
with the A", we obtain the sequence of point processes P" by P! = #(N, P);
P"*1 = #(N", P"). Given that Poisson processes of rate strictly less than 1
are fixed by transformations /Z, all the point processes P" are Poisson of rate
a. We will adopt the colouring scheme of Ananthram [1]: points of A U P"
are coloured yellow, blue or red according to the rules:

1. Points in A* N P" are coloured yellow.
2. Points in A" but not in P" are coloured blue.
3. Points in P" but not in A" are coloured red.

Of course no points (or customers) in A or P are coloured yellow, by the
independence of A and P. For each n, define Y*, B” and R" to be the process
of yellow, blue and red customers, respectively. It is not hard to see that for
every n, the joint process (Y", B", R") is stationary and ergodic. The problem
is that a limiting distribution of (Y", B*, R") need not be so.

We now give our labelling procedure for customers in A and P that will
enable us to speak of a customer’s path. It would be natural to adopt a “first
in, first out” policy for queues. The disadvantage is that such a policy would
have as a consequence the possibility that a customer of A could be yellow in
A" but blue in A**1, It is vital for us that once a customer (of A or P) becomes
yellow, they remain yellow forever. Thus at a queue we adopt the following
rules for all n:

(a) Yellow customers in A" or P" observe a “first in, first out” rule.
. (b) Yellow customers in A" or P" take priority over any blue or red
customers.

(¢) If a blue customer in A" arrives at a queue at which there are red
customers, then she immediately “coalesces” with the red customer who
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arrived first and has not yet coalesced. Both the “coalesced” customers will be
coloured yellow in A"*! and P"*!. Likewise if a red customer of P” arrives at
a queue at which blue customers are present, then she “coalesces” with the
blue customer who arrived first and has not yet coalesced.

Note that because a yellow customer remains yellow forever, the (nonran-
dom) density of yellow customers is nondecreasing in n. In fact, as Liggett
and Shiga [6] show, for an exponential server queue the density of yellow
points in A” strictly increases with n (unless almost every path has either
yellow and blue points or yellow and red points, but not both blue and red
points simultaneously). With the symbol 2(-) denoting density, we formally
record the preceding information.

Fact 1 (Liggett and Shiga [6]). For every n, 2(Y"*1) >2(Y"), and if
2(Y"*1) =9(Y"), then either A NP" = A" or A NP"” = P" pathwise.

As a consequence of Fact 1 and the fact that mixtures of Poisson processes
of rate @ <1 are invariant for the -/M/1 node, Liggett and Shiga [6]
deduced that the limit from passing an arbitrary ergodic stationary arrival
process A through an infinite tandem of -/M/1 queues is a mixture of
Poisson processes. In this note, we rule out the nonergodic mixtures as
possible limits. Our method of proof will be to try and prove that as n tends
to infinity, the density of red and blue points tends to zero and that,
therefore, the limiting distribution of A" is that of P”, that is to say, Poisson
of rate «. In Section 3 we will assume that the density of yellow customers
does not increase up to « and argue by contradiction. Specifically, this
assumption implies that there exist customers in the initial arrival processes
A and P that never coalesce and hence never become yellow. We call these
customers “everblues” and “everreds,” respectively.

NoOTATION. Given a customer V (in either A or P), we write their depar-
ture times from the nth queue as V(n).

From our construction of A**! and P"*! from A”, P", N* and the forego-
ing labelling scheme we readily obtain the following lemma.

LEMMA 2.1. Let V and U be two customers (in A or P, not necessarily
belonging to the same initial point process) such that V(n) > U(n). If
Un + 1) > V(n + 1), then customer V must be coloured yellow after n + 1
queues.

The importance of Lemma 2.1 is that among customers that never become
(and therefore remain) yellow, order is preserved: if an “everblue” in A
arrives before an “everred” in P, then it will arrive before the “everred” after
passing through any number of queues. That is, the only way a customer can
get ahead is by being yellow.
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3. Proof of Theorem 1. In this section we will argue by contradiction
and hence assume that the density of customers in A that never coalesce is
strictly positive with strictly positive probability. Consider the distribution of
points in A that never become yellow. Given the stationarity of A and the
translation invariant nature of the transformation %, these customers give a
stationary point process. It should be noted that while A is an ergodic point
process, it is not a priori true that the process of everblue customers in A is
so. Accordingly, a priori the limiting density of everblues of A (and therefore
of all the A™’s) must be considered as a random quantity I, which satisfies
E[Il=c>0.

However, the following fact follows from ergodicity of A*, P". The (nonran-
dom) density c(n) of blue customers in A* must decrease to c. Similarly for
red customers in P”. Thus I is nonrandom.

Therefore, initially there coexist, with probability 1, everblue and everred
customers, both of density ¢ > 0. It is possible to derive a contradiction from
this by considering couplings of A with Poisson processes of order different
from « as in [6]; however, we prefer to follow Ekhaus and Gray’s [5] method.
Because we have a.s. (according to our assumption) customers in A that are
everblue and customers in P that are everred, we may consider the points of
A U P that represent customers that never become yellow as an alternation
of intervals of everblue customers with intervals of everred customers. By
Lemma 2.1, these intervals will have their “orderings” preserved. Thus if a
customer is the left endpoint of an interval of everblues in A, then she will be
the left endpoint of an interval of everblues in A" for every n (and similarly
with the everreds). Let us call these customers “left everblues”. The process of
left everblues is stationary (for the same reason as with the everblues) and
thus possesses a (possibly random) density. Additionally, because the density
of everblues ¢ > 0, the density of left everblues is a strictly positive random
variable, which we will denote by L (following Ekhaus and Gray [5] slavishly).
Therefore, there exists &> 0 such that P(L > &)>¢e. Now L =L, + L,
where L, is the density of left everblues V such that there is another left
everblue U € (V,V + 2/¢] and L, is the density of the remaining left
everblues for whom the next left everblue is at a distance greater than 2/¢.
Because by definition, L,<¢&/2 P as, this means L; > ¢/2 whenever
L > &. By similar reasonlng, for any n, the density of left everblues V such
that there exists another left everblue U such that U(n) € (V(n), V(n) + 2/¢]
must be at least &/2 with probability greater than &. A vital observation of
Ekhaus and Gray [5] is that between two left everblues there must be an
everred. We deduce from this that the density of everreds W in P” such that
there is an everblue V with V(n) € (W(n), W(n) + 2/¢] must be at least £/2
with probability £. Now everblues and everreds are distinguished customers,
identified by looking into the future; however, they must be, respectively,
, blue and red in A” and P" for any n. For any n consider the event S:

{£/2 < the density of red customers W in P"
s.t. 3 a blue customer of A” in (W, W + 2/¢]}.
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Clearly, this event is translation invariant and is contained in the jointly
stationary and ergodic process (B", R"). Moreover, by the preceding argu-
ments, P(S) > &. Thus P(S) = 1 and we obtain the following lemma.

LEmMA 3.1.  If the density of everblues is strictly positive, then there exists
an &, not depending on n, such that the (nonrandom) density in P" of red
customers W satisfying

there exist blue customers of A" in (W(n), W(n) + 2/¢]

must be at least ¢/2.

Let X"(-) denote the queue size at the n + 1st queue that has P" as the
arrival process and N” as the service process. Thus X"(¢) denotes the total
number of red and yellow customers present in queue n + 1 at time ¢. Now
for any n, P" is a Poisson process of rate « < 1, independent of Poisson
process N". Accordingly, for any ¢, € P”",

P(X"(t,) = 0P") = P(X"(¢,) = OX",R",B") > 0,

where the equality follows from the fact that X"(-) is the queue-size process
corresponding to yellow and red customers only and so is independent of the
process B™. Given this, we easily see the following lemma.

LEMMA 3.2. Under the assumptions of Lemma 3.1, there exist strictly
positive & and 8 such that for every n, red points t, in P" with the properties
(a) there exists a blue point (or customer) of A* in (t,, t, + 2/¢] and (b)
P(X™(t,) = 0[P") > & have density at least £/3.

Suppose that a red customer R satisfies properties (a) and (b) of Lemma
3.2. Then because of property (b), the chance that R finds the n + 1st queue
empty of yellow and red customers upon entering it is at least 6. By the
Markov property of the Poisson process N”, given this, the chance that there
are no services in the time interval (tp, t, +2/ £] is exactly e 2/¢. However,
if there are no services in this time, then because by property (a) a blue
customer must arrive during this interval, it must be the case that R is
yellow in P"*1, Therefore, under the assumptions of Lemma 3.1 we have
shown that for all n, the density of red (or blue) customers in P” (A*) minus
the corresponding density in P**! (A**1) is at least £8e~2/°/3. This contra-
diction proves Theorem 1.

Conclusion. An old conjecture in queueing theory has been considered
and proved to be true. The general case is still undecided. That is, does every
-/G/1 queue have an invariant distribution (an issue originally discussed in
Bambos and Walrand [3])? If yes, will an arbitrary ergodic stationary arrival
‘process converge weakly to the invariant distribution as it traverses through
an infinite tandem of - /G /1 queues? As Anantharam [1] has remarked, the
methods used by him and those used here do not translate readily to the
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general case. This is due to the fact that the memoryless property of the
service Poisson processes N", which facilitated couplings, is typical only of
/M /1 (and - /M /k) queues. Thus new methods need to be devised.
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