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In this paper we treat a discrete-time generalized semi-Markov pro-
cess in which simultaneous deaths of more than one lifetime and simulta-
neous arrivals are permitted and service scheduling is probabilistic. Nec-
essary and sufficient conditions for insensitivity are derived and a simple
algorithmic procedure provided whereby the equilibrium probabilities can
be furnished when insensitivity holds. Some particular cases of special
interest are examined in detail.

1. Introduction. Traditionally, queueing systems have usually been
analysed with continuous-time models. In most models a convenient conse-
quence is that simultaneous events occur with probability zero. However with
the increasing use of slotted systems, particularly in telecommunications and
computer systems, there is a growing demand for discrete-time modelling. In
such systems there are natural time points, defined by the time taken for the
system to process a single slot, at which to make observations. Moreover it is
"natural to define loads upon the system, such as requested amounts of
service, in discrete amounts corresponding to integral numbers of slots.

Although they can arise via uniformization [see, e.g., Keilson (1979)], such
models are not always able to be treated as embeddings in suitable continu-
ous-time processes. Indeed, even a simple two-state Markov chain in discrete
time cannot be an embedding in a continuous-time two-state Markov process
unless the trace of the one-step transition matrix is at least unity. Discrete-
time theory thus does not even in principle automatically lift from that for
continuous time.

The most obvious analytical complication for discrete-time queueing mod-
els that does not arise in the corresponding continuous-time models is that
transitions involving multiple movements may occur. For example, it might
easily happen that many arrivals occur during the processing of a single slot.

Received March 1990; revised May 1994.

! Supported by the Australian Research Council Grant A69112151.

AMS 1991 subject classifications. Primary 60K15; secondary 60K20.

Key words and phrases. Insensitivity, generalized semi-Markov process, product form.

78

GTJ
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [Pz
The Annals of Applied Probability . STOR

@
S

5
] ®
www.jstor.org



DISCRETE-TIME INSENSITIVITY 79

For this reason it is often much more difficult to obtain expressions for
performance measures of discrete-time systems than for related continuous-
time systems.

In continuous models, differential service rates are imposed through the
device of speeds [see, e.g., Konig and Jansen (1974) and Schassberger (1978b)].
In discrete time, this translates to probabilistic choices of the service ele-
ments to be worked on in each time slot. Slotted-time services with proba-
bilistic choice can be useful in ATM switching systems when one wishes to
give a differential grade of service to many connections, but it is impractica-
ble to keep track of how much service has been given in the past to each
connection. In a military context, it is often impracticable to do connection
setup, and one may want to be able to accept traffic on a connectionless basis
but with a bias in favour of packets on the basis of their priority category.
Probabilistic choices also allow the priority implementation to depend, for
example, on a bias factor both for a class and for the number of customers
(packets) of that class present.

We shall note in the following section that deterministically sequenced
servicing can be recovered from our model.

In cases where demands for numbers of slots in a system can have an
arbitrary distribution concentrated on the positive integers, the need for
manageable analyses poses the question of insensitivity: When does the
equilibrium distribution of the process depend on the demand only through
the mean number of slots requested? In this article we consider this question.
We employ a discrete-time generalized semi-Markov process (GSMP)
framework analogous to that treated in investigations of insensitivity in
continuous-time processes [see, e.g., Schassberger (1977, 1978a, b)] except
that now multiple events (simultaneous service commencements and/or
completions) are possible.

Criteria for insensitivity in continuous-time GSMPs and similar structures
have been given by Konig and Jansen (1974), Schassberger (1977, 1978a, b
1986), Kelly (1979), Burman (1981), Franken, Konig, Arndt and Schmidt
(1982), Henderson (1983), Whittle (1985, 1986), Taylor (1989), Fakinos (1990)
and Miyazawa (1991, 1993). Such criteria usually take the form of partial-
balance equations that must be satisfied by the GSMP when all its lifetimes
are taken to be exponential. Insensitivity is associated also with the existence
of a product-form supplemented distribution. We shall see that the corre-
sponding balance criteria in discrete-time GSMPs are more stringent, be-
cause of the possibility of transitions involving multiple lifetimes. As an
example, we shall see in Section 5 that in contradistinction to the
continuous-time case, the discrete-time version of the M/G/N/N loss sys-
tem is not insensitive. However, there are cases. where the criteria are
satisfied, leading to insensitive discrete-time models.

The subject of insensitivity in discrete-time processes appears to have been
discussed by only a few authors. In Daduna and Schassberger (1981) it was
shown that a round-robin queue with general service times has a product-form
stationary distribution. Daduna and Schassberger (1983) proved that a
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discrete-time network of queues with a first-come-first-served discipline at
nodes with geometric service times and so-called doubly stochastic disciplines
at nodes with type-dependent deterministic service times has a product-form
supplemented equilibrium distribution. In both papers the queues operated
according to quite restrictive rules, principally disallowing the possibility of
multiple simultaneous departures. A similar condition exists in the recent
investigation of insensitivity in single-server queues with a moving server
[Henderson and Taylor (1992)]. Arrivals were assumed to occur singly, and
because only a single server is involved, it is impossible for more than one
customer to depart at a time.

Employing a model for a discrete-time GSMP that allows multiple events
and probabilistic servicing, we derive necessary and sufficient conditions for
there to exist an invariant measure with product form. A useful practical
feature of the conditions is that they may be partitioned into a small set of
equations, which provides a simple algorithmic derivation for the equilibrium
probabilities when insensitivity does hold, and a larger set that acts as a
collection of consistency conditions needing to be satisfied for insensitivity to
hold. As will become clear, the consistency conditions are not satisfied auto-
matically, nor do they admit simple immediate flux interpretations as in
single-movement continuous-time analysis. The model is set up in Section 2
and the basic results are proved in Sections 3 and 4.

In some special cases of practical interest the algorithmic procedure leads
to an expression in closed form for the equilibrium probabilities and to simple
forms for the consistency conditions. Some particular cases of practical impor-
tance are discussed in Sections 5 to 8. The first of these treats the case when
all lifetimes are served simultaneously. The following two sections deal with
probabilistic servicing when only one lifetime receives service at a time. The
final section addresses a model of Daduna and Schassberger (1981, 1983) in
which, when multiple lifetimes die simultaneously, all are restarted. We shall
assume irreducibility and ergodicity throughout without further comment.

2. The model. Consider a discrete-time process that moves on a set of
states G. Incorporated in each state g € G are active elements, or lifetimes,
from a set S. With a customary abuse of notation we use g to denote also the
set of active elements associated with the state g, that is, we assume
implicitly that the set of active elements uniquely specifies the state.

This is done only to keep the notation as simple as possible. In some
applications it is convenient to allow an active set g of service lifetimes to
correspond to a number of states g, the index a specifying the lifetime(s)
undergoing service in the current time slot. We shall remark just before the
close of Section 4 on the modifications of our key results necessary to embrace
the extension to the general case.

The primary application of systems in which more than one state has the
same active elements is in the modelling of round-robin and related service
disciplines, in which the plurality of states is to keep track of the sequence of
servicing in consecutive time slots. As only one lifetime dies at a time in such
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models, the present level of generality is not required. For a treatment of
such queues, see Henderson and Taylor (1991).

When the element o becomes alive, it is allocated a nominal lifetime
sampled from a discrete distribution F (-) with probability mass function
f,(-) and finite mean u,, independently of any other lifetimes that may
become alive at that time. At each time point, with probability c(s, g), each
element of a subset s C g has one unit worked off its residual lifetime and the
lifetimes of the elements of g — s are unaffected. (Here and subsequently
A — B is used to denote a set difference A\ B when B is a subset of A. We
shall also use A + B to denote a disjoint set union.) If the residual service
requirement of one or more elements is reduced to zero at this time, then
those elements will die and the process will make a transition to a state h. If
the active elements of the subset s, C s die, the process moves to the state
h D g — s, with probability p(g,s,,s,h) with the set s; = h — (g — s;) of
elements being activated. We write s, = s — s, for the set of elements that
have a unit worked off their residual lifetimes without these thereby being
reduced to zero.

The possibilities g = h, g = & and s, = J are not excluded in the transi-
tions described above. In particular, allowing the choice s, = J allows greater
economy in modelling than is offered by the standard continuous-time GSMP
model [see Schassberger (1978b)]. In the standard model the set S of lifetimes
is usually decomposed into a set S’ of exponentially distributed lifetimes and
a set S* of generally distributed lifetimes. In many modelling situations the
former are used as “triggers” to activate the latter. For example, to model a
Poisson arrival to a queue that activates a generally distributed service time,
it is necessary to have an exponentially distributed lifetime for the inter-
arrival time and a generally distributed lifetime for the service time. This
arises because, in the standard continuous-time GSMP formulation, transi-
tions occur only when a lifetime dies. By contrast, our discrete-time formula-
tion allows lifetimes to be created at a time point at which none has died.
Such a device is equivalent to having a set S’ of geometrically distributed
lifetimes triggering these transitions, but is simpler notationally and concep-
tually.

Supplement the states g with a vector of lifetimes x, where x, > 1 is the
residual lifetime of an active element o € g and x, = 0 for 0 € S — g. Then
the process with supplemented states is a Markov chain. A transition from
state (g, x) to state (h,y) is possible only if h is of the form

(2.1) h=(g—-s;) +s;
with the set of residual lifetimes y of the form
(2:2) y =x —e(s) +yy(s;)

for some s, € S — s,. Here e(s) is the vector with unity in each position o € s
" and zeros elsewhere, and y, is the vector of freshly created lifetimes corre-
sponding to s;.
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The equilibrium equations for the Markov chains are then

(23) w(hy) = Y w(gx)c(s,g)p(gss,8h) [ 1 (5)
$0,81,89 oe S
where g and x are related to h and y by (2.1) and (2.2).
We are interested in the situation in which there exists a solution to (2.3)
with product form over the supplementary variables, that is, when

(2.4) w(h,y) = m(h) T r"iy") . heg,

where r,(y) = F¥(y) == ¥, , f,(n). Before examining this situation, we de-
rive Proposition 1 below, which conveniently encapsulates the notion of
insensitivity. To this end, we define first, for each o € S, the set of distribu-
tions

@, - {f0(~): Y i, (1) - m,}
=1
and for each state h, the set of lifetimes

H(h) = {c € h: p, = 1}.
Where there is no ambiguity, the argument of H is suppressed.

PropPOSITION 1. Let (h,y) be a supplemented state, with y, > 1Vo € h —
H and y, = 1V o € H. Then in order that (ay;k C h) be a solution to

L | TT 70| IT, 7o(o,+ =0
(2.5) kch ek occh-k

Vfi,ed ,ocech Vkch,

with (a,) not depending on {f,} except possibly through the means{ u,; o € h},
it is necessary and sufficient that

(2.6) ay, =0 forall k satisfying HC k C h.

3. Proof of Proposition 1. The constraint that £, is a probability mass
function with mean u, can be expressed as the conditions that r, is a
nonnegative and monotone nonincreasing function satisfying

r,(1) =1
and

(3.1) Y or. (1) = py-

=1
If  u, = 1, this necessarily means that

(3.2) r,(l)=0 VI>1,0eH.
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On account of (3.2), we have if H # (J, that
(3.3) IT r,(y,+1) =0 forallk 2 H.

ceh-k

Condition (3.3) holds also (vacuously) if H = . Sufficiency follows immedi-
ately.
For necessity, observe that (2.5) may be written as

. % . ay l—[k{r‘,(y‘,) -r,(y, + 1)}
(3.4) cke 7<

IT r,(y,+1) =0, kch.
oceh-k

Because p, > 1 for all o € h — H, there exists for each such o a net
(f, st € I) € ®, such that:

(a) For each ¢,
re (I=1)>r, (1)y>r, (I+1)>r, (I+2)

for [ =y, and also for some [ =y, >y, + 1.

(b) By varying the choice of ¢, the values r, (I) and r, (I + 1) can be
varied continuously and independently over nontrivial intervals J_, J*, with
the mean constraint (3.1) being maintained through simultaneous variations

of r, (v,), 7, (y,+ 1.

It follows from the elementary properties of analytic functions in several
complex variables that the coefficient of each distinct multinomial

([M2) IT

oEN cch—n

in the multilinear form

)y ak[n<z0—z;> 1 2

Hckch oEK oceh-k
must vanish, that is,

(3.5) Y a(-1)"*=0 VkHckch.

kcnch
An induction on |h — k| establishes that each a, = 0. The basis, with k = h,
is trivial. For the inductive step, the assumption a, = 0 for all n D k gives
a,, = 0 immediately from (3.5). O
The proposition can be paraphrased as saying that the functionals

I17)| IT ro(y,+1)
ocek k

ceh—
for H € k C h are linearly independent.
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4. The balance conditions. Define
0(h) ==a(h) [ I] w,,
o€h

with the denominator of the right-hand side taken as unity when h = J, and
recalling that s = s, + s,, write
(41) ‘p(m,sz,u:h) = Z c(s,u)p(u,sz,s,h)

soCm

for the total transition probability from u to h with at least the lifetimes in
h — m not having a segment processed, conditional on the lifetimes in s,
expiring. We have the following result.

THEOREM 1. A necessary and sufficient condition for the supplemented,
discrete-time GSMP to have an invariant measure of the form (2.4) is that
0(h) satisfy the equations
(42) H(h) = Z Z 0(t + 52)¢p(m,s2,t + S2,h)

mctch s,cS-t

taken over all h andd cm ch — H.

ProoF. Consider a state (h,y) with y, > 1 for all o € h — H. Of necessity
we have y, = 1 for o € H. On substitution of the product form (2.4) into (2.3)
for such states, the right-hand side becomes

by Y. 0(g)c(s,g8)p(g,s,,s,h)

sots;Ch s,c(S—h)+s;

x nfg(ya)] I ra(y¢,+1>] T )

oEs; oES, oeh—(s;+s()

(4.3)

because I1, <, 7,(1) = 1. Because

IT 7 (v,) = 1T1I[r.(y, +1) + £ ()]

oEu ocEu

= L | AGo| I1 ri(o+ D),

wCculoEw

(4.4)

(4.3) can be rewritten as

> )y 9(g)c(s,g)p(g,s,,s,h)

sots;+wch s,c(S-h)+s;

l_I fa'(yo) ].—I r(r(y(r+1)'

ocES +W oceh—(s;+w)

X

The substitution k = s, + w provides

Z Z Z O(g)c(s,g)p(g,sz,s,h)

so+kch s;,Cck s,c(S—h)+s;

(4.5
X nfa<ya>] 1 (5 +1).
ocek ceh-k



DISCRETE-TIME INSENSITIVITY 85

An expansion of the left-hand side of (2.3) with (2.4) substituted, gives by
virtue of (4.4) and the definition of 6(h),

(4.6) o(h) X | IT fo(9)| I1 ro(y,+1).

kchloek ceh-k

By Proposition 1 a necessary and sufficient condition for (4.5) to equal (4.6)
for all possible vectors of distributions with £, (-) selected from @, is that the
corresponding coefficients of [IT, ¢ £, (¥,)1, c n_k 7, (¥, + 1) are equal for
k O H. The balance equations
(4.7) o(h) = Y Y  6(®)v(h-k,s,,gh)

s1Ck s,c(S—h)+s;
follow. The alternative form (4.2), which obviates the need for (2.1) to give g,
arises under a change to relative complement setsm =h —kandt =h —s,.
For states with y, = 1 for some o € h — H the sufficiency part of the proof of
Proposition 1 goes through and so (2.4) is still satisfied. O

REMARK. Based on experience with continuous-time GSMPs it is tempting
to try to explain the balance relations (4.2) in terms of fluxes experienced by
the process when all lifetimes are taken to be geometric. For this process a
lifetime o, which receives a segment of service, dies with probability 1/u,
and remains alive with probability 1 — 1/u,. Write (4.2) as

7 (h)
I—[aeh—m Mo

= X X

mctch s,cS—t nae(t+52)~m Mo

(48) 7(t + 8y)

Y(m,s,,t +s,,h).

The numerator terms on the right-hand side suggest an interpretation in
terms of the total flux into h from states containing m due to subsets s, of m
receiving service but not dying and subsets s, of lifetimes not in m receiving
service and dying. The left-hand side invites an interpretation in terms of the
flux leaving h due to deaths of all lifetimes not in m. However, for this
interpretation to be correct, we would expect a factor of I, ¢, (1 — 1/u,) on
the right-hand side and we would not expect the factor I'T, ,_,, 1/u,. Also,
on the left-hand side no account is taken of which lifetimes actually receive a
segment of service. Thus, in general, there seems to be no flux interpretation
for the balance condition. Later we shall see that certain special cases of (4.8)
can be given a flux interpretation.

CoOROLLARY. Let 6(h) = 7#(h)/T1, cy,_m &, be a solution to (4.2) and let
~ (m(h,y)) be the supplemented solution to (2.3) when the o component of the
vector of distributions is selected from ®_ . Then

Z W(h,y) = W(h), h € G.
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PROOF. The result follows from Theorem 1 on summation of (2.4)
overy. O

The corollary gives us a sufficient condition for insensi/tivity of the
discrete-time GSMP. If a solution can be found to (4.2) that corresponds to a
probability distribution 7(h), then the marginal distribution that the process
is in state h remains invariant provided each distribution f, is selected
from ®,_.

THEOREM 2. When product form occurs, the scaled probabilities 6(h) may
be determined recursively from the formula

o(h) = Zh 0(r)Q(7,h),

where

Zh—Hctch ll’(h_H’T_t’T’h)
Q(7,h) = —— h S.
(rh) =y Uh—Hh_thh) C<RCTS

ProoF. Each t in (4.2) contains no elements o for which u, = 1. Accord-
ingly for m = h — H, relation (4.2) can be recast, after a change of the order
of summation, as

o(h) = Y o(7) Y y(h-H,7—t,7,h),

72h h-Hctch

whence we have the stated result. O
We deduce the following.

COROLLARY. When the supplemented GSMS has product form (2.4), the
invariant measure is given by

O(h) = O(S) Z nl:[l Q(hi’hi+l)’ dgchcs,
i=0

where the summation is over all chains
h=h,;ch;c - ch,=8.

When h = S, relation (4.2) for m = S — H(S) is an identity. The remaining
relations (4.2) provide a set of necessary and sufficient conditions for insensi-
tivity.

In a number of special cases the balance equations (4.2) reduce to simple
equations. In the following sections we discuss some of these.

. REMARK. The foregoing arguments go through with obvious modifications
when the same set of active elements is associated with more than one state.
Suppose h is associated with states h, and g with g,, where a, B belong to
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appropriate ordered index sets. We can form corresponding row vectors
O(h), O(g) with respective entires 6,(h), §;(g), in an obvious notation. Simi-
larly we may define a matrix ¥(m,s,,u, h) with (8, a) entry

Yip, (M, 83, u,h) = ) cp(s,u)p; ,(m,s;,u,h)

soCm
relating to a transition from ug to h,. Then

Oh)y= ) 0O(r) Y Y(h-H,7—-t,7,h)
m2h h-Hctch

and we have the recursive formula

®(h) = Y 6(7)Q(7,h),

70h
where Q(7,h) is given as
Z Y(h-H,7—-t,7,h)
h-Hctch
-1
XTI - Y Y(h-Hh-thh)| , gchcrcs.
h-Hctch

The nonsingularity of the matrix in brackets is guaranteed because irre-
ducibility of the process ensures that its second term is substochastic.

For simplicity we assume henceforth for each state h that

(4.9) H(h) = &.

5. The case when all lifetimes are served simultaneously. A dis-
crete-time GSMP that operates so that every lifetime that is alive receives a
unit of service at each time point can be modelled using the structure of
Section 2 by putting

c(s,8) =& 4,
where
5 . — {1, ifa=b,
ab 0, ifa=+b.
Because

P(g, SZ,S,h) = as,gp(g’s2’g’h)>

the third argument of the routing probability p becomes redundant and p
may be contracted conveniently to p(g,s,,h).
It follows that for J cm C t,

(51) l/’(mas2’t + S2,h) = 6m,tp(t + SZ’Séah)

and so (4.2) reduces to ‘

(5.2) 6(h)= Y 6(m+s,)p(m+s,,s,,h),
' 8,CS—m

which must be satisfied for all m for which & c m c h.
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If the term 1, ., &, ' is cancelled from both sides of (5.2), this becomes,
on reverting temporarily to the use of k = h — m,

7(h) 1
l—L,Ek My o-ell—'l-[—k(l N I"l’_(r
m((h - k) +s,)

(5:3) = X

§,CS—(h—-k) Myes, o

|

Readers familiar with insensitivity results in continuous-time GSMPs will
recognize a similarity between this equation and the partial-balance equa-
tions, necessary and sufficient for product form in standard continuous-time
GSMPs. The left-hand side represents the flux out of state h due to the death
of the lifetimes in k and the right-hand side that into state h due to the birth
of the lifetimes in k.

In a number of situations, as when deaths correspond to departures from
the system, p reduces further to a two-parameter form

p((h — k) + s,,s,,h).

(5.4) p(a,v,w) = g(u — v,w).
When this holds, the insensitivity conditions (5.2) can be expressed as
(5.5) 6(h) = g(m,h) D(m), Jcmch,
where
- (5.6) D(m) = ). 0(g).
mcgc$

This simple relation leads quickly to the following characterization.

THEOREM 3. Suppose that all active lifetimes are served simultaneously
and that (5.4) holds. For h,h, € G, let g,,...,8g, be an enumeration of the
distinct states g for which g D2 h; U h,. A necessary and sufficient condition
for insensitivity is that, for each h{,h, € G for which n > 1,

q(hy,g1):q(hy,85):-:q(hy,8,)
=q(hy,g8;):q(hy,g5): - :q(hy, g,).

When this condition is satisfied, the equilibrium distribution satisfies
(5.8) m(h) a ¢g(J,h) ]—[h Mo -
oe

(5.7)

EXAMPLE. As a particular instance of such a system, consider a heteroge-
neous two-server loss system with arrival probabilities dependent on the
current state. The state space of the system may be written G = {0, 1,2, 3},
where 0 denotes the empty system, j the state in which server j only is
occupied (j = 1,2) and 3 the state with both servers busy.
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Conditions (5.7) reduce to
q(0,7):q(0,3) =q(Jj,j):q9(J,3), J=12,
or equivalently,
q(0,7) + ¢(0,3):q(0,3) =q(J,J) +q(J,3):9(J,3) = 1:q(J,3)
or
[¢(0,7) +q(0,3)]/q(2 - J,3)
= Q(0,3)/[Q(1,3)Q(2,3)], .] =1,2.

That is, (a) the ratio of the probability that server j attracts an arrival when
both servers are free, to that of attracting an arrival when server j only is
free, is the same for j = 1,2, and (b) the common value is the right-hand side
of (5.9).

The first condition may be regarded as a natural extension (allowing for
multiple arrivals) of a well-known continuous-time reversibility example for
two servers [see Kelly (1979), page 23]. The second condition is entirely novel.

Suppose now that the number of arrivals during a time slot is Poisson with
parameter A. Condition (a) says that a singleton arrival finding both servers
free chooses either with probability one-half. Given this condition is satisfied,
the second simplifies to

(5.9)

1-1/2
1420

e*)‘

which is false for all positive A. This example shows that the discrete-time
M/G/N/N system is not, in general, insensitive.

6. The case when only one lifetime is served at a time. Many
models of practical interest (such as the discrete-time version of the
processor-sharing queue) have a single server that, at each time point,
allocates its service to exactly one of the existing lifetimes according to a
probability distribution. Such GSMPs can be modelled in the current frame-
work by putting

(6.1) c(s,g) =0 ifis|# landlg|> 1.

Of course we must have

(6.2) c(J3,0) =1

because no lifetimes can be worked on if none is alive. With these restrictions
we have that for J c m C t,

c(sy,t+8,)p(t +8,,8,,8,,h), Isyl=1,
ZSOEmc(bo,t)p(t,@,oo,h), s, =0, m+*J,

p(®;®>@>h)6t,®, Sz=®>m=@;
0, otherwise.

'z//(;n,sz,t + 8,,h) =
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Here as in the remainder of the paper we write for notational convenience
o = {0} (with or without a subscript) for a singleton set associated with an

element o € S.
For & ¢ m c h, (4.2) becomes

6(h) = 6(D)p(J,,,h)I(m = D)
+ Y ) X c(oy,t)p(t,J,0y,h)I(m + &)
(6.3) mctch ooEmM
+ Y Y 0(t + oy)c(o,y,t+0y)p(t+ 0,,0,,0,,h),

mctch o,e8-t

where I(-) denotes the characteristic function.
As in the previous section, an important case is where

(6.4) p(t,u,w,v) =gq(t —u,v), ucwand|w|<1.
With this assumption, (6.3) reads
6(h) = 6(J)q(J,h)I(m = J)
+ ) 6(t) Y c(og,t)g(t,h)I(m = D)

(6.5) mctch opEm
+ Y Y oe(t+ o,y)c(o,y,t+ 0,)q(t,h)

mctch o,eS-t

for Jcmch.

The conditions for insensitivity are more complicated than in the previous
section, including conditions on both the transition probabilities g(u,v) and
the selection probabilities c(o,t). We have the following necessary and
sufficient condition for product form.

THEOREM 4. Suppose that (4.9), (6.1), (6.2) and (6.4) apply. Then (a) and
(b) below taken together are necessary and sufficient conditions for product
form.

(a) For prescribed values of {g(h,h + &); 0 € S — h}, g, the quantities
q(h,h) are given recursively (downward) by q(S,S) = 1 and

qg(h,h + o)
(6.6) g(h,h) + 0'E§—h gth+o,h+0) -

The other transition probabilities q(g,h) for |h — g| = n > 2 are fixed by
"1 q(g_1,8)

6.7 ,h) = n-1h ;
(6.7) q(g,h) = 2 q(g._, )El 2.8
. where the summation extends over all chains g =g, g, C - cg,_; Ch

. (b) The selection probabilities are given by
o(h —o)g(h - o,h)

b —o,h-o)ghem)’ °°W

(6.8) c(o,h) =
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where w(-) is defined on S recursively (upward) by o(&) = 1 and
o(h —o)q9(h - o,h)

6.9 w(h) = , Jgchcs.
69 e = X e h - e)a(an)
In the event of insensitivity, the equilibrium distribution takes the form
(6.10) 6(h) = Kw(h),
where
(6.11) K=1/Y oIl u,.
hcS oc€h

Proor. Establishing the result amounts to showing that, under (6.1) and
(6.2), condition (6.5) is equivalent to (6.6)—(6.9) with 6 in place of w. Condition
(6.11) is just the normalization

1= Y nth)= ¥ O(h)ael_lhua-

hcS hcS
For & c m = h, (6.5) gives

(612 T oh+o)e(o.h+a) - o(h) )
. o)c(o,h+ o) = —_—

oceS—-h q(h’h)
The right-hand side of this equation, and the corresponding expression
obtained when h is replaced by h — ¢, may be used to substitute for the
corresponding left-hand sides that occur in (6.5) with @ cm =h — o, to
provide

6(h — o)g(h — o,h)

(6.13) 6(h)g(h,h)c(o,h) = qh-o,h-o) o€h.
Summation over o € h gives

6(h — h-o,h
(6.14) o(hyg(h by - ¥ ‘R -@a ol o L s

ven q(h—-o,h-0) ~’

With (-) representing a constant multiple of 6(-) with the normalization
o(P) = 1, relations (6.13) and (6.14) are just (6.8) and (6.9).

In the same way, relation (6.12) may be used to simplify the insensitivity
condition (6.5) for general m satisfying & C m c h to

0(t)q(t,h
(615 T 6®ath) T cony- ¥ 20D
mctch ocg€Et—-m mctch q(t’t)

For m| = |h| — 1, this is simply (6.13). Substitution for the selection proba-
bilities from (6.13) into (6.12) reduces the latter to (6.6). Relations (6.6), (6.13)
and (6.14) thus give the insensitivity conditions for m| = [h| — 1, |h|. We show
now that, given these relations, (6.15) taken over & C m C h is equivalent to

g(m + o,h)g(m,m + o)

(6.16) g(m,h)= Y , Jdcmch.

och-m

g(m + o,m + o)
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This will suffice to establish the theorem, because (6.16) leads to (6.7) by a
straightforward (downward) induction on |m].

The connection between (6.15) and (6.16) is also established by downward
induction on Im|. A basis is provided by m| = [h| — 1, when (6.16) is trivial.
For the inductive step, we suppose that (6.16) holds for each subset t of h
properly containing m, that is,

t+o,h)g(t,t +o
617) gty - ¥ = Jalt. o)
ceh-t q(t +o,t + o)

By virtue of (6.13), (6.15) may be rewritten as
y q(t;,h) y 0(t; —04)q(t; — 0, t;) -7 6(t)q(t,h)
mct,ch 9(t161) ooet,-m  (t1 — 0y, t; —0y) mctch  4(t,t)

gcmctch.

b

or, on changing to a dummy t = t; — o, on the left-hand side,
o(t) q(t+ g, h)g(t,t + oy)
mgzt:ch q(t,t) ooezh_t q(t + oy, t + o)
B 0(t)q(t,h)
- mctch  4(t 1)

If the equation resultant on summation of a multiple 8(t) /q(t, t) of (6.17) over
all t with m c t C h is subtracted from (6.18), we obtain

6(m) > g(m + o,h)g(m,m + o) _ 6(m)q(m,h)
g(m,m) _ = g(m + o,m + o) qg(m,m)

(6.18)

and the desired relation (6.16) follows at once. O

REMARKS.

1. Because

(6.19) Y q(g.h) =1,
hog

(6.6) is implicit in (6.16). To see this, sum over h in (6.16). We have
l1=¢g(m,m) + Y g(m,h)

mchcS$S

g(m + o,h)g(m,m + o)

=Q(m7m)+ Z Z

mchcS o€csh-m

g(m + o,m + o)

g(m,m + o) Y  g¢(m+ o,h)

m+o

=q(m,m) + )

occsS—m q(m +o,m+ 0) ho

g(m,m + o)

= Q(m’m) + Z

ocSem 9(Mm+ 0, m+ o)’
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Thus if some parameterization other than that provided in terms of the
transition probabilities {q(h,h + &)} is employed, only the constraints
(6.7) need to be considered, relation (6.19) taking account of (6.6).

2. If insensitivity is known, then the quantities 6(h) are found more simply
via (6.13) than (6.14).

3. The equilibrium probabilities for singleton states are given from (6.14) as

_ 0@ @
"= @D) ao)

(6.20) o€ S.

7. One lifetime served at a time: random choice. A special case of
the previous section of some interest arises when the service facility chooses
at random which of the active lifetimes it will work on, that is,

c(oc,h)=1/h] Voehh=+J.
Because the choice probabilities are prescribed, relation (6.13) [or (6.8)] then
imposes further conditions that must be satisfied for insensitivity to occur.

These are essentially consistency conditions.
For |h| = n, (6.13) gives the solution

n!q(hn—l’h) n-l q(hi—l?hi)
q(2,2)q(h,h) i1 g(h,,h,)*’

for any chain of states @ =h,ch; c -- ch, = hwith lh; —h;_;|= 1. For
n = 1, the empty product is taken as unity. The condition imposed by (6.13) is
that, for each given h, the value of 6(h) be independent of the choice of chain.

Any such chain of states may be associated in a one-to-one manner with a
corresponding sequence h; —h,,h, —h;,...,h, —h_ _, of distinct active
elements of S. Because any ordering of n elements can be converted into any
other ordering of the same n elements by a sequence of permutations of
adjacent elements, it suffices for consistency that the value of 6(h) be the
same for any two chains of the form

=hych;c - ch,=h,
J=hych)c - ch,=h,
for which h; = h; for all i not equal to some j, 0 <j < n. If we put

h]=h]—1+0’ hj+1=hj+01’ 0#0’,

(7.1) 9(h) = 6(D) Fchcs,

then
h;=h; ; +o’, hi,;,=h;+o.

For consistency, we have from substitution in (7.1) that
q(g.g+0)g(g+o.gto+o)
(g to.gto0)
_q(g,g+o)q(gt+o,gtao+o’)
- g(g+o',g+0)

(7.2)
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where g = h;_,. Taken over all chains, the consistency condition is thus that
(7.2) holds for all g with |g| <I|S|—1and 0,0’ €S — g (o # o).

8. The models of Daduna and Schassberger. Daduna and Schass-
berger (1981, 1983) considered special cases of GSMPs in which it is not
permitted for a transition to occur when the lifetime of more than one
element of h is reduced to zero at the same time point. The mechanism they
employed is to assume that such elements are allocated a new lifetime
sampled from the original distribution. In our current model this is equiva-
lent to putting

p(h, 52 N S, h,) = 5h,h!
for all s, and s, with [s,| > 1. With this assumption we have from (4.1) that
y(m,s,,u,h) = ) c(s,u)d,, forls,|>1,

soCm

and substitution into the more physical version (4.6) of the insensitivity
equations yields

o(h) = X Y 6(8)y(h-k,s, gh)
s;Ck s,c(S—h)+s;
lsgl<1

+ X 6(h) X c(so +s;,h).
s;ck soch-k
Is11>1

Note that, for all h and k c h,
Z E C(SO + sl7h) =1

s;ck soch-k

(8.1)

From this, (8.1) can be rearranged as

o(h) X X c(so+s,h)= ) Y. 0(®y¢(h-Kk,s,,gh).
s;ck soch-k 5;Ck sy(S—-h)+s;
lsil<1 lsyl<1
If we assume, as in Section 5, that c(s, g) = §; ,, then the left-hand side of
(8.2) is zero whenever k| > 1. With the notation of Section 5 and use of (5.1),
the right-hand side becomes

Y 0((h — k) + s,)p((h — k) +s,,s,,h)
§,C(S-h)+k
Isal<1

and it follows that the only way that (8.1) can be satisfied is if p((h — k) +
S,,S,,h) = 0 whenever [k| > 1. Hence in these circumstances the GSMP can
have product form only if, in addition to no transitions occurring when more
than one lifetime dies, it is impossible for more than one lifetime to be
" created at the same time point.

* Moreover, for GSMPs satisfying this condition, only the conditions for
k| = 0,1 are nontrivial. With these two choices (and k = o, say, in the
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latter), (8.2) reduces, respectively, to
w(h) = w(h)p(h,J,h)

. h +
(83) + Z up(h+02’02,h)’
0,€8-h Mo,
7 (h) )
=7(h-0o,)p(h-0,,9,h)
(84)

m((h - o,) + 0,)

+ X
o,6(S-h)+0o, Mo,

Equations (8.3) and (8.4) are the familiar balance equations necessary and
sufficient for product form and insensitivity in a continuous-time GSMP with
unit speeds and a unit rate at which exponential transitions take place in any
state [see, e.g., Konig and Jansen (1974)]. We have thus shown that a
discrete-time GSMP, operating according to the rule of Daduna and Schass-
berger that all lifetimes start again if multiple deaths occur, possesses
product form if and only if a related continuous-time GSMP possesses prod-
uct form. Many examples of the latter are known, yielding many examples of
the former.

p((h - o;) + 0,,0,,h).

9. Conclusion. In this paper we have considered discrete-time GSMPs
in which multiple lifetimes can die simultaneously. Probabilistic choice of
service elements is allowed. We have given necessary and sufficient condi-
tions for such GSMPs to have a product-form supplemented equilibrium
distribution of probability, which are thus sufficient for insensitivity. These
conditions are seen to be much more stringent than in continuous-time
theory.

Specific applications are made to models in which all lifetimes are worked
on simultaneously, exactly one lifetime is worked on at a time and to the
models of Daduna and Schassberger (1981, 1983).
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