SOME FORMULAE FOR A NEW TYPE OF PATH-DEPENDENT OPTION

By Jirô Akahori

University of Tokyo

In this paper we present an explicit form of the distribution function of the occupation time of a Brownian motion with a constant drift (if there is no drift, this is the well-known arc-sine law). We also define the α -percentile of the stock price and give an explicit form of the distribution function of this random variable. Using this explicit distribution, we calculate the price of a new type of path-dependent option, called the α -percentile option. This option was first introduced by Miura and is based on order statistics.

1. A generalized arc-sine law. In this paper, B_t denotes a standard Brownian motion starting at 0, \mathcal{F}_t denotes its canonical filtration and P_0 denotes its probability measure. Let

$$(1.1) A(t, x; \mu) = \frac{1}{t} \int_0^t 1_{\{B_s + \mu s < x\}} ds, \mu > 0, t > 0, x \in \mathbb{R}^1.$$

Then we have the following theorem.

Theorem 1.1. (i) We have

$$egin{aligned} P_0(A(t,0;\mu) < y) \ &= rac{1}{2} \int_0^{ty} igg(\sqrt{rac{2}{\pi s}} \expigg(-rac{\mu^2}{2} s igg) - 2 \mu \Phiigg(\mu \sqrt{s} igg) igg) \ & imes igg\{ igg(2 \mu + \sqrt{rac{2}{\pi (t-s)}} \expigg(-rac{\mu^2}{2} (t-s) igg) igg) - 2 \mu \Phiigg(\mu \sqrt{t-s} igg) igg\} \, ds, \end{aligned}$$

where Φ denotes the tail of the distribution function of the normal distribution; that is,

$$\Phi(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^{2}}{2}\right) dy.$$

(ii) More generally, we have

$$P_0(A(t, x; \mu) < y) = \int_0^{t\alpha} h(s, x; \mu) \varphi(t - s, y - s/t; \mu) ds, \quad x \neq 0,$$

Received January 1994; revised September 1994.

AMS 1991 subject classifications. 90A69, 60H30, 60G44.

 $\it Key\ words\ and\ phrases.$ Options, Black-Scholes model, Feynman-Kac formula, arc-sine law, percentiles.

384 J. AKAHORI

where $h(s, x; \mu)$ denotes a density of the first hitting time of $B_t + \mu t$ to x; that is,

$$h(s,x;\mu) = \frac{|x|}{\sqrt{2\pi s}} \exp\left(\frac{\left(|x| - \mu s\right)^2}{2s}\right) \quad and \quad \varphi(t,x;\mu) = P_0(A(t,0;\mu) < x).$$

PROOF. First we prove assertion (i). Let

$$(1.2) u(x) = E_x \int_0^\infty \exp(-\zeta t) \exp(-\lambda t A(t,0;\mu)) dt, x \in \mathbb{R}^1.$$

Then the Feynman-Kac formula [cf. Kac (1951) and Itô and McKean (1965)] claims that u(x) is the unique bounded solution of the equation

$$(1.3) -\frac{1}{2}u'' - \mu u' + \zeta u + \lambda 1_{\{x>0\}} u = 1, \zeta>0, \lambda>0.$$

By solving (1.3),

(1.4)
$$u(0) = \frac{\mu}{2} \frac{1}{\zeta} \frac{\sqrt{\mu^2 + 2(\zeta + \lambda)}}{\zeta + \lambda} - \frac{\mu}{2} \frac{1}{\zeta + \lambda} \frac{\sqrt{\mu^2 + 2\zeta}}{\zeta} + \frac{1}{2} \frac{\sqrt{\mu^2 + 2(\zeta + \lambda)}}{\zeta + \lambda} \frac{\sqrt{\mu^2 + 2\zeta}}{\zeta} - \frac{\mu^2}{2} \frac{1}{\zeta(\zeta + \lambda)}.$$

Since we have, by inverting the Laplace transform [see, e.g., Widder (1946)],

(1.5)
$$\begin{split} \frac{\sqrt{\mu^2 + 2\zeta}}{\zeta} &= \frac{1}{\zeta} \int_0^{\zeta} \frac{d\lambda}{\sqrt{\mu^2 + 2\lambda}} + \frac{1}{\zeta} \mu \\ &= \int_0^{\infty} \exp(-\zeta t) \left(\int_t^{\infty} \frac{\exp(-(\mu^2/2)s)}{\sqrt{2\pi s^3}} \, ds + \mu \right) dt, \end{split}$$

we get

(1.6)
$$u(0) = \int_0^\infty \exp(-\zeta t) \int_0^t \frac{\exp(-\lambda s)}{2} d\tau d\tau d\tau d\tau$$

$$\times \left(2\mu + \int_{t-s}^\infty \frac{\exp(-(\mu^2/2)\tau)}{\sqrt{2\pi\tau^3}} d\tau \right) ds dt.$$

Comparing (1.6) with (1.2), we get

(1.7)
$$P_{0}(A(t,0;\mu) < y) = \int_{0}^{ty} \frac{1}{2} \left(2\mu + \int_{t-s}^{\infty} \frac{\exp(-(\mu^{2}/2)\tau)}{\sqrt{2\pi\tau^{3}}} d\tau \right) \times \left(\int_{s}^{\infty} \frac{\exp(-(\mu^{2}/2)\tau)}{\sqrt{2\pi\tau^{3}}} d\tau \right) ds.$$

Integrating by parts, we get

(1.8)
$$\int_{s}^{\infty} \frac{\exp(-(\mu^{2}/2)\tau)}{\sqrt{2\pi\tau^{3}}} d\tau = \sqrt{\frac{2}{\pi s}} \exp\left(-\frac{\mu^{2}}{2}s\right) - 2\mu \int_{\mu\sqrt{s}}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\tau^{2}}{2}\right) d\tau.$$

So we have the assertion (1).

Assertion (2) follows directly from the Markov property of $B_t + \mu t$. \square

REMARK 1.2. Since $A(t, x; -\mu) =_{\text{law}} 1 - A(t, -x; \mu)$, we now obtain Theorem 1.1 for all $\mu \in \mathbb{R}^1$.

REMARK 1.3. Watanabe (1993) also obtained Theorem 1.1 (1) by studying the generalized arc-sine laws of some classes of one-dimensional diffusion processes.

2. The pricing formula for the α -percentile option. Let us consider the Black-Scholes model [cf. Black and Scholes (1973)]: The stock price X_t is a geometric Brownian motion and the bond price b_t is nonstochastic; that is,

$$(2.1) \quad X_t = X_0 \exp(\sigma B_t + (\mu - \frac{1}{2}\sigma^2)t), \qquad X_0 > 0, \, \sigma > 0, \, \mu \in \mathbb{R}^1,$$

$$(2.2) b_t = b_0 \exp(rt), r \ge 0, b_0 > 0.$$

We define the α -percentile $m(T; \alpha)$ for $0 < \alpha < 1, T > 0$ of $\{X_t\}_{t \in [0,T]}$ as

(2.3)
$$m(T;\alpha) = \inf \left\{ x \in \mathbb{R}^1; \frac{1}{T} \int_0^T 1_{\{X_t < x\}} dt > \alpha \right\}.$$

We introduce the α -percentile option $(m(T; \alpha) - c)^+$, c > 0, and present the pricing formulae for this.

Here we think of "pricing" as the stochastic integral representation of the option with respect to the discounted stock price under martingale measure [cf. Harrison and Pliska (1981) and Föllmer (1991)].

We define a discounted price process Z_t by setting

$$(2.4) Z_t = b_t^{-1} X_t.$$

Let us introduce a probability measure P_0^* under which Z_t is a martingale and let E_0^* denote its expectation. Let π be the price of the option, ζ_t be the amount of stock and ν_t be the amount of bond.

Then we have a stochastic representation [see, e.g., Rogers and Williams (1987)] of the option as follows:

(2.5)
$$b_T^{-1}(m(T;\alpha)-c)^+ = \pi + \int_0^T \zeta_t dZ_t,$$

where

(2.6)
$$\pi = E_0^* ((m(T; \alpha) - c)^+ b_T^{-1}),$$

and we have

(2.7)
$$\nu_t = E_0^* \left(\left(m(T; \alpha) - c \right)^+ b_T^{-1} \mid \mathscr{F}_t \right) - \zeta_t Z_t.$$

We can give the following formulae for π , ζ_t , ν_t by virtue of Theorem 1.1.

THEOREM 2.1. We have

(2.8)
$$\pi = b_T^{-1} \int_c^{\infty} G\left(T, \sigma^{-1} \log \frac{y}{X_0}; \alpha, \frac{r}{\sigma} - \frac{1}{2}\sigma\right) dy + cb_T^{-1} G\left(T, \sigma^{-1} \log \frac{c}{X_0}; \alpha, \frac{r}{\sigma} - \frac{1}{2}\sigma\right),$$

$$(2.9) \quad \zeta_t = -\frac{b_T^{-1}}{\sigma Z_t} \int_0^\infty \frac{\partial G}{\partial x} \left(T - t, \, \sigma^{-1} \, \log \frac{b_0 \, y}{Z_t} \, ; \frac{T\alpha - C_t}{T - t} \, , \frac{r}{\sigma} - \frac{1}{2} \, \sigma \right) dy,$$

$$\begin{split} \nu_t &= \int_c^\infty b_t^{-1} G\bigg(T-t\,,\,\sigma^{-1}\,\log\frac{b_0\,y}{Z_t}\,;\,\frac{T\alpha-C_t}{T-t}\,,\frac{r}{\sigma}-\frac{1}{2}\,\sigma\bigg)\,dy\\ &-\zeta_t Z_t + c b_t^{-1} G\bigg(T-t\,,\,\sigma^{-1}\,\log\frac{b_0\,c}{Z_t}\,;\,\frac{T\alpha-C_t}{T-t}\,,\frac{r}{\sigma}-\frac{1}{2}\,\sigma\bigg), \end{split}$$

where

(2.11)
$$G(t,x;\alpha,\mu) = \int_0^{t\alpha} h(s,x;\mu) \varphi\left(t-s,\alpha-\frac{s}{t};\mu\right) ds,$$

 $\partial G/\partial x$ denotes the derivative with respect to the second variable and

(2.12)
$$C_t = A\left(t, \sigma^{-1} \log x; \frac{r}{\sigma} - \frac{1}{2}\sigma\right).$$

REMARK 2.2. To calculate $\partial G/\partial x$, we must notice that $h(s,\cdot,\cdot)$ is not uniformly integrable. However, $h(s,x,\mu)\varphi(t,\alpha;\mu)$ is integrable in s, and so easy calculations reduce this problem to the reflection principle $P(\sup_{s \le t} B_t \ge a) = P(|B_t| > a)$, that is,

(2.13)
$$\int_0^t \frac{a}{\sqrt{2\pi s^3}} \exp\left(-\frac{a^2}{2s}\right) ds = 2 \int_a^\infty \frac{\exp(-b^2/2t)}{\sqrt{2\pi t}} db.$$

Therefore, we have

$$(2.14) \frac{\partial G}{\partial x}(t, x; \alpha, \mu)$$

$$= \int_0^{t\alpha} \left(\mu + \frac{1}{x} - \frac{x}{s}\right) h(s, x; \mu) \varphi\left(t - s, \alpha - \frac{s}{t}; \mu\right) ds$$

$$-\varphi(t, \alpha; \mu) \left(\int_0^{t\alpha} \left(\frac{1}{2} - \frac{x}{s}\right) \exp\left(\frac{\mu x}{2}\right) h(s, x; \mu) dx + \exp(\mu x) \frac{\exp(-x^2/2t\alpha)}{\sqrt{2\pi t\alpha}}\right).$$

PROOF OF THEOREM 2.1. Let $B_t^*=B_t+((\mu-r)/\sigma)t$. Then B_t^* is a Brownian motion under P_0^* and we have $Z_t=X_0b_0^{-1}\exp(\sigma B_t^*-\frac{1}{2}\sigma^2t)$ and $X_t=X_0\exp(\sigma B_t^*+(r-\frac{1}{2}\sigma^2)t)$.

Since

$$(2.15) \quad P_0^*(m(T;\alpha) > x) = P_0^*\left(A\left(T, \frac{1}{\sigma}\log\frac{x}{X_0}; \frac{r}{\sigma} - \frac{1}{2}\sigma\right) < \alpha\right),$$

we have from Theorem 1.1 (ii),

$$(2.16) P_0^*(m(T;\alpha) > x) = G\left(T, \sigma^{-1} \log \frac{x}{X_0}; \alpha, \frac{r}{\sigma} - \frac{1}{2}\sigma\right).$$

Therefore, we get (2.8).

To obtain (2.9) and (2.10), we first observe

$$\begin{split} P_0^* \left(m(\alpha,T) > x \mid \mathscr{F}_t \right) \\ &= P_0^* \left(A \left(T, \frac{1}{\sigma} \log \frac{x}{X_0}; \frac{r}{\sigma} - \frac{1}{2}\sigma \right) < \alpha \mid \mathscr{F}_t \right) \\ &= P_0 \left(\int_t^T 1_{\{X_s \le x\}} \, ds < T\alpha - C_t \mid \mathscr{F}_t \right) \\ &= P_0 \left(A \left(T - t, \frac{1}{\sigma} \log \frac{x}{X_0} - B_t^* + \frac{1}{2}\sigma t; \frac{r}{\sigma} - \frac{1}{2}\sigma \right) < \frac{T\alpha - C_t}{T - t} \right) \\ &= G \left(T - t, \sigma^{-1} \log \frac{b_0 x}{Z_t}; \frac{T\alpha - C_t}{T - t}, \frac{r}{\sigma} - \frac{1}{2}\sigma \right). \end{split}$$

By integrating both sides of (2.17) with respect to x, we obtain $E^*((m(T; \alpha) - c)^+ | \mathscr{F}_t)$.

Itô's formula claims that the integrand $\tilde{\zeta}_t$ should be the partial derivative of (2.17) with respect to Z_t , so we get (2.9) and then (2.10). \square

REMARK 2.3. Yor (1993) studied the relationship between the arc-sine law and the distribution of the α -percentiles, or as he called them, the quantiles.

Acknowledgments. The author thanks Professor S. Kotani for a lot of advice and Professor R. Miura for fruitful discussion about the properties of the α -percentile option. The author was much encouraged to publish by the warm suggestions of the referees and Professor S. Kusuoka.

REFERENCES

Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. J. Political Econom. 81 637-659.

FÖLLMER, H. (1991). Probabilistic aspect of options. Discussion paper B202, SFB 303. Univ. Bonn.

388 J. AKAHORI

- HARRISON, J. M. and PLISKA, S. R. (1981). Martingales and stochastic integrals in the theory of continuous trading. Stochastic Process. Appl. 15 214-260.
- Itô, K. and McKean, H. P., Jr. (1965). Diffusion Processes and Their Sample Paths. Springer, New York.
- Kac, M. (1951). On some connections between probability theory and differential and integral equations. Proc. Second Berkeley Symp. Math. Statist. Probab. 189–215. Univ. California Press, Berkeley.
- MIURA, R. (1992). A note on look-back options based on order statistics. Hitotsubashi J. Commerce Manage. 27 15-28.
- ROGERS, L. and WILLIAMS, D. (1987). Diffusions, Markov Processes, and Martingales 2, Chap. 4. Wiley, New York.
- WATANABE, S. (1993). Generalized arc-sine laws for one dimensional diffusion processes and random walks. Preprint, Kyoto Univ.
- WIDDER, D. V. (1946). The Laplace Transform. Princeton Univ. Press.
- YOR, M. (1993). The distribution of Brownian quantiles. J. Appl. Probab. To appear.

DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF TOKYO 7-3-1, HONGO TOKYO, 113 JAPAN