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SOME FORMULAE FOR A NEW TYPE OF
PATH-DEPENDENT OPTION

By JIRO AKAHORI
University of Tokyo

In this paper we present an explicit form of the distribution function
of the occupation time of a Brownian motion with a constant drift (if there
is no drift, this is the well-known arc-sine law). We also define the
a-percentile of the stock price and give an explicit form of the distribution
function of this random variable. Using this explicit distribution, we
calculate the price of a new type of path-dependent option, called the
a-percentile option. This option was first introduced by Miura and is based
on order statistics.

1. A generalized arc-sine law. In this paper, B, denotes a standard
Brownian motion starting at 0, %, denotes its canonical filtration and P,
denotes its probability measure. Let

1
(11) At x;p) = 7];1(3#,‘3”) ds, wu>0,t>0,xecR.

Then we have the following theorem.

THEOREM 1.1. (i) We have
PO(A(t’O;FL) <y)

1 4 [2 2
-3 Oy( Eexp(—%-s) — 2ud(uVs)

2u + ;(tz_—s)exp(—%—(t—s))) —2u®(pt —s) ) ds,
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where ® denotes the tail of the distribution function of the normal distribu-
tion; that is,
o 1 y2
(0] = | — -—|dy.
(%) fx P exp( 2) ly

(i1) More generally, we have

Py(A(t,x;n) <y) = fomh(s,x;p,)(p(t -8,y —s/t;pn)ds, x#0,
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where h(s, x; u) denotes a density of the first hitting time of B, + ut to x; that
is,

h(s,x;p) = and @(t,x;p) =Py(A(t,0; n) <x).

El (Iz] — ps)®
ex
V2ms P 2s

ProoF. First we prove assertion (i). Let
(1.2) u(x) =Exfwexp(—{t)exp(—/\tA(t,O;u)) dt, x € RL.
0

Then the Feynman—Kac formula [c¢f. Kac (1951) and It6 and McKean
(1965)] claims that u(x) is the unique bounded solution of the equation

(1.3) —su" — pu' +du+ A, qu=1, {>0,A>0.

By solving (1.3),

O_MI\/M2+2(£+A) po 1 Yur+27

14 w0 =57 {+A T2T+r ¢

' 1VRE+2(0+A) Vul+2¢ w2 1

IS ¢ 2+

Since we have, by inverting the Laplace transform [see, e.g., Widder

(1946)],
\/,;,2+2§_1[; dA +1

w5 thoirraar  F

| . - exp(~ (#/2)s)

= -t ds + dt,
[ootcso| [ e
we get
o texp(—As)
0 = — [
u(0) = [ exp(~¢t) [ —
o exp(—(u?/2)7)
2 d
(1.6) x|2n+ [ oy T
w —(u2/2
< [ (/D7) o\ gsar.
s V23

Comparing (1.6) with (1.2), we get

ty 1 o exp(—(u2/2)1
PO(A(t,O;/.L) <y) =j;) 5(2“+j;_se P(‘/z(:‘rs/ ) )dT)
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dr) ds.
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Integrating by parts, we get
= exp(—(u?/2)7) [2 w?
f dr =1/ — exp| ——s
s V23 S 2

D ( il ) d
- ——-exp| — — | dr.
H) s vom P72

So we have the assertion (1).

Assertion (2) follows directly from the Markov property of B, + ut. O

(1.8)

REMARK 1.2. Since A(¢, x; —u) =1, 1 — A(¢, —x; u), we now obtain Theo-
rem 1.1 for all u € R

REMARK 1.3. Watanabe (1993) also obtained Theorem 1.1 (1) by studying
the generalized arc-sine laws of some classes of one-dimensional diffusion
processes.

2. The pricing formula for the a-percentile option. Let us consider
the Black—Scholes model [cf. Black and Scholes (1973)]: The stock price X, is
a geometric Brownian motion and the bond price b, is nonstochastic; that is,

(21) X,=X,exp(oB,+(n—-30%)t), X,>0,0>0,pcR?
(2.2) b, =bjexp(rt), r>0,b,>0.
We define the a-percentile m(T; &) for 0 < @ <1, T > 0 of {X,}, ¢ (o 1) a8

1
(2.3) m(T; a) = inf{x € RY; T,/OTI(XK"} dt > a}.

We introduce the a-percentile option (m(T'; @) — ¢)*, ¢ > 0, and present
the pricing formulae for this.

Here we think of “pricing” as the stochastic integral representation of the
option with respect to the discounted stock price under martingale measure
[cf. Harrison and Pliska (1981) and Féllmer (1991)].

We define a discounted price process Z, by setting
(2.4) Z,=b'X,.

Let us introduce a probability measure P§ under which Z, is a martingale
and let Ef denote its expectation. Let 7 be the price of the option, ¢, be the
amount of stock and v, be the amount of bond.

Then we have a stochastic representation [see, e.g., Rogers and Williams
(1987)] of the option as follows:

(2.5) bi'(m(T; ) ) = m+ ['4, dz,,
where
(2.6) m=E§((m(T; ) — )" bz'),

and we have
(2.7) Vt=E6k((m(T;a) _C)+b51|~9§)_§tzr
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We can give the following formulae for 7, ;, v, by virtue of Theorem 1.1.

THEOREM 2.1. We have

oo r 1
m= b;lf G(T,a-l log—: o, — — —0') dy
[

X, o 2
(2.8)
+cb‘1GT0'110ia r—ia
T ’ gXO 2 ’
w dG boy Ta—-C, r 1
2.9 = — —I|T—-t¢t,o0 11 —_, — — =0 | d
(29) & az,fo ax( M 7 T 2“) ¥
e boy Ta—-C, r 1
= [ 5/G|T-t, 0 log—;—-,—— =0 |d
(210)1![ Lo ( RN T 20) 7
. ~ ~ bpc Ta—C, r 1
—{tZt+cb, lG(T*t o llogz ﬁ,;—gd),
where

a s
(2.11) G(t,x;a,n) =ft h(s,x;u)cp(t—s,a—;;u) ds,
0
dG/ dx denotes the derivative with respect to the second variable and

r 1
(2.12) C, =A(t, o !logx;— — —a').
o 2

REMARK 2.2. To calculate dG/dx, we must notice that h(s,-,-) is not
uniformly integrable. However, A(s, x, w)¢(¢, a; p) is integrable in s, and so
easy calculations reduce this problem to the reflection principle P(sup,_, B,
> a) = P(|B,| > a), that is,

2 2
P a » exp(—b?/2t)
(213) j(; 3 exp(— _2—8) ds = 2]{; T db

2ms

Therefore, we have

G
-a;‘(t,x; a, p)

= fota(ﬂ + % - —:i)h(s,x;p,)(p(t —-s,a— ;;u) ds
(244 —o(t,a;p) fot (% - fsc—)exp( )h(s x; p) dx

.2
+exp(p,x)exp( x /Zta))’

2wta
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PrOOF OF THEOREM 2.1. Let Bf = B, + ((n — r)/o)t. Then B} is a Brow-
nian motion under P§ and we have Z, = X,b,' exp(0 B} — 30%t) and X, =
X, exp(aB} + (r — 30 )t).

Since

1 x r 1
. * T;a) >x) = P* —log—;— — =
(2.15) Pi(m(T; a) > x) PO(A(T,O_ogX, 20')<a),
we have from Theorem 1.1 (ii),

x r
.16) ¥ Ja = , o —-—a,— —
(2.16 P§(m(T; a) > x) G(T 1 log
X, (o

N =
q
N ————

Therefore, we get (2.8).
To obtain (2.9) and (2.10), we first observe

Pi(m(a,T) >=x|F)
x r 1

1
=P AT, —log—;— — —
0( ( ’a’logXO’a' 20

<a|9§)

T
@11 " Po(ft Lix <y ds < Ta—C, |.9§)

1 x o 1 r 1 Ta — C,
=Py A T_t’ZIng_Bt t ot~ 5o < ———

bpx Ta—-C, r 1 )

- —t o 11 = __
G(T t,o oth, T_7 % 20'.
By integrating both sides of (2.17) with respect to x, we obtain E*((m(T; «)
— oS

Ito’s formula claims that the integrand ¢, should be the partial derivative
of (2.17) with respect to Z,, so we get (2.9) and then (2.10). O

REMARK 2.3. Yor (1993) studied the relationship between the arc-sine law
and the distribution of the a-percentiles, or as he called them, the quantiles.
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