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LARGE DEVIATIONS IN FIRST-PASSAGE PERCOLATION

BY YUNSHYONG CHOW AND YU ZHANG

Academia Sinica and University of Colorado

Consider the standard first-passage percolation on Z
d , d ≥ 2. Denote

by φ0,n the face–face first-passage time in [0, n]d . It is well known that

lim
n→∞

φ0,n

n
= µ(F) a.s. and in L1,

where F is the common distribution on each edge. In this paper we show that
the upper and lower tails of φ0,n are quite different when µ(F) > 0. More
precisely, we can show that for small ε > 0, there exist constants α(ε,F) and
β(ε,F) such that

lim
n→∞

−1

n
logP

(
φ0,n ≤ n(µ − ε)

) = α(ε,F)

and

lim
n→∞

−1

nd
logP

(
φ0,n ≥ n(µ + ε)

) = β(ε,F).

1. Introduction and main results. We consider Z
d , d ≥ 2, as a graph with

edges connecting each pair of vertices x = (x1, . . . , xd) and y = (y1, . . . , yd) with
‖x − y‖ = 1, where the norm is defined by

‖x − y‖ = |x1 − y1| + |x2 − y2| + · · · + |xd − yd |.
To each edge e we attach a nonnegative random variable t (e). The basic
assumption is that the random variables {t (e) : e ∈ Z

d} are i.i.d. with the common
distribution F satisfying

F(0−) = 0, t (e) is not a constant and E(t(e)) < ∞.(1.1)

More formally, we consider the following probability space. As sample space we
take � = ∏

e∈Zd [0,∞), points of which are represented as configurations. Let
P be the corresponding product measure on � and the expectation with respect
to P is denoted by E. For any two vertices u and v, a path γ from u to v is
an alternating sequence (v0, e1, v1, . . . , en, vn) of vertices and edges in Z

d with
v0 = u and vn = v. The path γ is said running from A to B if u ∈ A and v ∈ B ,
and γ ⊂ C means all its vertices vi are contained in C. Here A, B and C are
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subsets of Z
d . Define the passage time of γ as t (γ ) = ∑n

i=1 t (ei). Two popular
first-passage times, face–face and point–point, are defined by

φ

( ∏
1≤i≤d

[xi, yi]
)

(1.2)

= inf

{
t (γ ) :γ is a path from A to B and γ ⊂ ∏

1≤i≤d

[xi, yi]
}
,

where A = {x1} × ∏
2≤i≤d [xi, yi] and B = {y1} × ∏

2≤i≤d [xi, yi], and

am,n = inf
{
t (γ ) :γ is a path from (m,0, . . . ,0) to (n,0, . . . ,0)

}
.

For short we denote φ([m,n]d) by φm,n. It is well known [Grimmett and Kesten
(1984)] that

lim
n→∞

1

n
a0n = lim

n→∞
1

n
φ0,n = µ(F ) a.s. and in L1,

and µ(F ) = 0 iff F(0) ≥ pc , where pc = pc(d) is the critical probability for
Bernoulli (bond) percolation on Z

d and the nonrandom constant µ(F ) is the so
called time constant.

In this paper we shall mainly investigate large deviations of θ0,n for θ = a,φ.
In fact, it is known [see Zhang (1995)] that θ0,n cannot be very large if F(0) > pc.
The so called critical case, F(0) = pc , is more complicated. Few results are known
in this direction. So we focus on the case that F(0) < pc . A subadditive argument
shows [Kesten (1986)] that

lim
n→∞

−1

n
logP

(
a0,n ≤ n(µ − ε)

) = α(ε,F )(1.3)

and the constant α(ε,F ) is positive if ε is small. Regarding to φ we have the
following

THEOREM 1. Assume (1.1), F(0) < pc and 0 < ε. Then

lim
n→∞

−1

n
logP

(
φ0,n ≤ n(µ − ε)

) = α(ε,F ).(1.4)

Note that if µ < ε then P (φ0,n ≤ n(µ − ε)) = 0 and thus α(ε,F ) = ∞.
However, it seems not trivial to decide the upper tail behavior of θ0,n for θ = a

or φ. It is proved [see Chapter 5 in Kesten (1986)] that

lim
n→∞

−1

n
logP

(
a0,n ≥ n(µ + ε)

) = ∞
and under the condition that t (e) is bounded with F(0) < pc,

0 < lim inf
n→∞

−1

nd
log P

(
a0,n ≥ n(µ + ε)

)
.(1.5)
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Note that the bounded condition on t (e) is important. Otherwise, (1.5) could fail.
For example, let t (e) be exponentially distributed with a parameter λ < pc . We
know that if all 2d bonds connected to the origin take values larger than n(µ + ε),
then a0,n ≥ n(µ + ε). Hence

P
(
a0,n ≥ n(µ + ε)

) ≥ P
(
t (e) ≥ n(µ + ε)

)2d = exp
(−2dλn(µ + ε)

)
.

Therefore, (1.5) does not hold. However, we do not need this bounded condition
for face–face first-passage time. More precisely, we will show:

THEOREM 2. Assume (1.1), F(0) < pc and 0 < ε. Then

lim sup
n→∞

−1

nd
logP

(
φ0,n ≥ n(µ + ε)

)
< ∞ holds for 0 < ε ≤ Et(e) − µ.(1.6)

Furthermore, if E(expθt (e)) < ∞ for some positive θ < ∞, then

0 < lim inf
n→∞

−1

nd
logP

(
φ0,n ≥ n(µ + ε)

)
.(1.7)

With (1.6) and (1.7) it is natural to study the limit behavior of the upper tail
of φ0,n as we did in Theorem 1. However, it is difficult to show the existence of
a limit regarding to the upper tail of φ0,n. Indeed, most limit behaviors in first
passage percolation are obtained by using subadditive arguments. More precisely,
one uses two paths to construct a longer path to set a subadditive inequality. This
argument will not work on the upper tail of φ0,n, since the tail is extremely small
with an order exp(−Cnd) indicated in Theorem 2. To overcome the difficulty,
we borrow ideas from the min-cut and max-flow theorem. Take as an example
the Bernoulli first passage percolation on Z

3, where t (e) can only take zero or
one. Then {φ0,n = k} is equivalent to the event that there are only k disjoint
dual surfaces piling from the top to the bottom of [0, n]3 such that each of their
plaquettes takes value one. These k surfaces in [0, n]3 could be connected not
only vertically with those corresponding surfaces in [0, n]2 × [n + 1,2n], but also
horizontally with those corresponding surfaces in [0, n] × [n + 1,2n] × [0, n]. As
a result k disjoint dual surfaces could be constructed piling from the top to the
bottom of [0, n] × [0, 	n]2. This sets up a multi-subadditive argument.

THEOREM 3. Assume (1.1), F(0) < pc and 0 < ε. Then there exists a constant
β(ε,F ) ≥ 0 such that

lim
n→∞

−1

nd
logP

(
φ0,n ≥ n(µ + ε)

) = β(ε,F ).(1.8)

Note that Theorem 2 above implies 0 < β(ε,F ) < ∞ if 0 < ε ≤ Et(e)− µ and
E(expθt (e)) < ∞ for some positive θ < ∞.

Theorems 1, 2 and 3 will be proved in Sections 2, 3 and 4, respectively. Finally,
we remark on the following:
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1. We are unable to show a result similar to (1.8) for a0,n.
2. It can be shown that α(ε,F ) and β(ε,F ) are convex in ε > 0. In fact the former

is done in (2.2). This implies that α(ε,F ) and β(ε,F ) are continuous in ε > 0.
We conjecture that α(ε,F ) and β(ε,F ) are also continuous in F .

2. Proof of Theorem 1. In this section we will show that the limit in (1.4)
exists and equals to α(ε,F ) defined in (1.3). Unlike a0,n, logP (φ0,n ≤ n(µ − ε))

is not a subadditive sequence any more. To avoid the problem, we use the idea in
Hammersley and Welsh (1965).

First we show the continuity of α(ε,F ) in ε > 0. It is clear that for any
0 < δ < ε,

P
(
a0,n ≤ n(µ − ε − δ), an,2n ≤ n(µ − ε + δ)

) ≤ P
(
a0,2n ≤ 2n(µ − ε)

)
.(2.1)

By the FKG inequality and translation invariance, we obtain from (2.1) and (1.3)
that

α(ε + δ,F ) + α(ε − δ,F ) ≥ 2α(ε,F ),(2.2)

which means α(ε,F ) is locally convex in ε. Hence α(ε,F ) is continuous in ε.
Let −→e1 = (1,0, . . . ,0). Now we investigate the relationship between the point–

point first-passage time am,n and the cylinder point–point first-passage times
defined by

tm,n(k) = inf
{
t (γ ) :γ is a path from m−→e1 to n−→e1

and γ ⊂ [−k + m,n + k] × Z
d−1}

,

where k ≥ 0. Denote tm,n(0) by tm,n for short. A standard subadditive argument
yields

lim
n→∞

−1

n
log P

(
t0,n(k) ≤ n(µ − ε)

)

= inf
n

−1

n
logP

(
t0,n(k) ≤ n(µ − ε)

)
≡ τk(ε,F ).

(2.3)

The same argument used in (2.2) shows that τk(ε,F ) is locally convex and thus
continuous in ε > 0 for each k ≥ 0. We claim that

τ0(ε,F ) = τk(ε,F ) = α(ε,F ) for all k ≥ 0.(2.4)

It is clear from the definitions that a0,n ≤ t0,n(k) ≤ t0,n, which implies

τ0(ε,F ) ≥ τk(ε,F ) ≥ α(ε,F ) for k ≥ 0.(2.5)

It remains to verify the other direction. Since t (e) ≥ 0, we may choose M such
that

P
(
0 ≤ t (e) < M

) ≡ δ > 0.
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For each k ≥ 0 we denote by A(k) the event that all those 2k edges e from −k−→e1 to
the origin and n−→e1 to (n + k)−→e1 along the first coordinate take values less than M .
Then

P (A(k)) ≥ δ2k(2.6)

and t−k,n+k ≤ t0,n(k) + 2kM on A(k). As a consequence,

P
(
t0,n(k) ≤ n(µ − ε),A(k)

) ≤ P
(
t−k,n+k ≤ n(µ − ε) + 2kM

)
.

By translation invariance the following holds for ε′ < ε and n large:

P
(
t−k,n+k ≤ n(µ − ε) + 2kM

) = P
(
t0,n+2k ≤ n(µ − ε) + 2kM

)
≤ P

(
t0,n+2k ≤ (n + 2k)(µ − ε′)

)
.

Using the FKG inequality, (2.6) and the continuity of τ0(ε,F ) in ε, we obtain from
the previous two equations that

τk(ε,F ) = lim
n→∞

−1

n
logP

(
t0,n(k) ≤ n(µ − ε)

) ≥ τ0(ε,F ).(2.7)

We explore the relationship between a0,n and t0,n(k) for large k. A route for a0,n

is defined as a path γ from the origin to n−→e1 with t (γ ) = a0,n. It is proved [see
page 258 in Kesten (1986)] that such a route exists for a0,n when F(0) < pc . Such
existence implies that for each configuration ω and a fixed n, a0,n(ω) = t0,n(k,ω)

for all large k. That is

{t0,n(k) ≤ n(µ − ε)} ↑ {a0,n ≤ n(µ − ε)} as k increases to ∞.(2.8)

Hence for fixed n, we have from (2.3) that for k large,

τk(ε,F ) ≤ −1

n
log P

(
t0,n(k) ≤ n(µ − ε)

)
(2.9)

≤ −1

n
log P

(
a0,n ≤ n(µ − ε)

) + 1

n
.

It follows from (2.7) and (1.3) that τ0(ε,F ) ≤ α(ε,F ). This verifies (2.4) in view
of (2.5).

Knowing the relationship between a0,n and t0,n(k) we now connect φ with τ .
Define

hm,n(k) = inf
{
t (γ ) :γ is a path from m−→e1 to n−→e1 and γ ⊂ [m,n] × [−k, k]d−1}

.

Again a subadditive argument shows the existence of the following limit for fixed
k ≥ 0:

lim
n→∞

−1

n
log P

(
h0,n(k) ≤ n(µ − ε)

)

= inf
n

−1

n
logP

(
h0,n(k) ≤ n(µ − ε)

)
(2.10)

≡ ηk(ε,F ).
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Since h0,n(k) ≥ t0,n, ηk(ε,F ) ≥ τ0(ε,F ) holds trivially. We will show that

lim supηk(ε,F ) ≤ τ0(ε,F ) and thus lim
k→∞ηk(ε,F ) = τ0(ε,F ).(2.11)

Similar to (2.8) and (2.9) we have that for fixed n,

{h0,n(k) ≤ n(µ − ε)} ↑ {t0,n ≤ n(µ − ε)} as k increases to ∞.

Hence for fixed n, we get from (2.10) that for k large

ηk(ε,F ) ≤ −1

n
log P

(
h0,n(k) ≤ n(µ − ε)

)
(2.12)

≤ −1

n
log P

(
t0,n ≤ n(µ − ε)

) + 1

n
,

from which (2.11) follows. Because φ([0, n] × [−n/2, n/2]d−1) ≤ h0,n(k) for
2k ≤ n,

lim sup
n→∞

−1

n
logP

(
φ0,n ≤ n(µ − ε)

)

≤ lim sup
n→∞

−1

n
log P

(
h0,n(k) ≤ n(µ − ε)

) = ηk(ε,F )

by (2.10) and translation invariance. It follows then from (2.11) and (2.4) that

lim sup
n→∞

−1

n
logP

(
φ0,n ≤ n(µ − ε)

) ≤ τ0(ε,F ) = α(ε,F ).(2.13)

For the opposite direction of (2.13), we introduce

tn(a, b) = inf
{
t (γ ) :γ is a path from a to b and γ ⊂ [0, n] × [0, n]d−1}

,

where a ∈ {0} × [0, n]d−1 and b ∈ {n} × [0, n]d−1. It is clear by counting that

P
(
φ0,n ≤ n(µ − ε)

) ≤ 2(n + 1)d−1 max
a,b

P
(
tn(a, b) ≤ n(µ − ε)

)
.(2.14)

On the other hand, by symmetry and translation invariance,{
P

(
tn(a, b) ≤ n(µ − ε)

)}2 ≤ P
(
t2n(a, a′) ≤ 2n(µ − ε)

)
(2.15)

≤ P
(
t0,2n ≤ 2n(µ − ε)

)
,

where a′ ∈ {2n} × [0, n]d−1 and has the same coordinates as a except the first one.
Combining (2.14) and (2.15),

τ0(ε,F ) = lim
n→∞

−1

2n
logP

(
t0,2n ≤ 2n(µ − ε)

)

≤ lim inf
n

−1

n
logP

(
φ0,n ≤ n(µ − ε)

)
.

This, together with (2.13), implies (1.4). The proof of Theorem 1 is complete.
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3. Proof of Theorem 2. We only prove Theorem 2 for d = 3. The same
argument can be adopted directly for any d > 1. If all bonds in [0, n]3 take
values no less than Et(e) and Et(e) ≥ µ + ε, then φ0,n ≥ nEt(e) ≥ n(µ + ε).
Hence P (φ0,n ≥ n(µ + ε)) ≥ P (t (e) ≥ Et(e))n

3
and (1.6) follows easily. Note

that Et(e) > µ under assumption (1.1). It remains to show (1.7). Define

Tl,k,m = inf
{
t (γ ) :γ is a path from (l,0,0) to (k,0,0)

and γ ⊂ [l, k] × [−m,m]2}
.

We first show the following lemma under an extra exponential moment
assumption.

LEMMA 3.1. Assume (1.1), F(0) < pc,0 < ε and E(expθt (e)) < ∞ for
some positive θ < ∞. Then there exists a constant η > 0 such that

P
(
T0,k,m ≥ k(µ + ε)

) ≤ exp(−ηk) for any large k = nm.

PROOF. Let γ be a route for t0,n, where t0,n is the cylinder point–point first-
passage time defined in Section 2. Define

hn(γ ) = max
2≤i≤3

{|mi| : (m1,m2,m3) ∈ γ }

and

hn = max{hn(γ ) :γ is a route for t0,n}.
It is known [see Theorem 8.15 in Smythe and Wierman (1978)] that

lim suphn/n ≤ 1 almost surely.(3.1)

In fact, they only proved (3.1) for d = 2, but extension to any d > 2 is
straightforward.

We claim that for k = m and m large,

ET0,m,m ≤ m(µ + ε).(3.2)

To see this, define Hn = {hn/n ≤ 1}. Since t0,m = T0,m,m on Hm, we have

Et0,m ≥ E(t0,m;Hm) = E(T0,m,m;Hm) = E(T0,m,m) − E(T0,m,m;HC
m).(3.3)

By Theorem 2.18 in Kesten (1986), limn→∞ Et0,n/n = µ. Hence,

Et0,m/m ≤ µ + ε/2 holds for m large.(3.4)

In view of (3.3) and (3.4), it suffices to show limm→∞ E(T0,m,m/m;HC
m) = 0.

Since T0,m,m ≤ ∑
e∈γ t (e), where γ is the path from (0, . . . ,0) to (m,0, . . . ,0)
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along the first coordinate direction. By using the Cauchy–Schwarz inequality
twice,

{
E(T0,m,m/m;HC

m)
}2 ≤ E

{(∑
e∈γ

t (e)/m

)2}
· P (HC

m) ≤ E{t (e)2} · P (HC
m).

This, together with (3.1), verifies (3.2).
It is clear from the definition that T0,nm,m ≤ ∑n−1

i=0 Tim,(i+1)m,m and thus

P
(
T0,nm,m ≥ nm(µ + 2ε)

) ≤ P

(
n−1∑
i=0

Tim,(i+1)m,m ≥ nm(µ + 2ε)

)
.

Since {Tim,(i+1)m,m} are i.i.d. with a finite common mean ET0,m,m, a standard
large deviation argument [see Durrett (1996)] and (3.2) imply that for n large,

P
(
T0,nm,m ≥ nm(µ + 2ε)

) ≤ exp(−Cn)

holds for some constant C > 0. Lemma 3.1 follows by setting η = C/m. �

Now we prove (1.7). Take k = mn and divide [0, k]2 into (k/m)2 = n2 equal
subsquares of size m × m,

S1, S2, . . . , Sn2 .

Since {φ([0, k]×Si) ≥ k(µ+ ε)}, {φ([0, k]×Sj ) ≥ k(µ+ ε)} are independent for

i �= j and {φ0,k ≥ k(µ + ε)} ⊆ ⋂n2

i=1{φ([0, k] × Si) ≥ k(µ + ε)}, we have

P
(
φ0,k ≥ k(µ + ε)

) ≤ {
P

(
φ([0, k] × [0,m]2) ≥ k(µ + ε)

)}n2
.(3.5)

By Lemma 3.1 and translation invariance,

P
(
φ([0, k] × [0,m]2) ≥ k(µ + ε)

) ≤ P
(
T0,k,m/2 ≥ k(µ + ε)

) ≤ exp(−ηk).(3.6)

Combining (3.5) and (3.6), we get that for k large and m|k,

P
(
φ0,k ≥ k(µ + ε)

) ≤ exp(−ηkn2) = exp(−C′k3),

where C′ = η/m2. This verifies (1.7) and thus Theorem 2.

4. Proof of Theorem 3. For convenience we work on φ1,n instead of φ0,n. The
basic idea is to show that − logP (φ1,n ≥ n(µ + ε)) is sort of a multi-subadditive
sequence. The proof is done by verifying κ ′ = κ, where

κ ′ = lim inf
1

nd
logP

(
φ1,n ≥ n(µ + ε)

)
and

(4.1)

κ = lim sup
1

nd
log P

(
φ1,n ≥ n(µ + ε)

)
.
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Note that κ ′ ≤ κ ≤ 0 as P (φ1,n ≥ n(µ + ε)) ≤ 1. If κ = −∞, then κ ′ = κ = −∞
and we are done. So we may assume κ is finite hereafter.

Denote the front and rear faces of the box [1, n]d in the ith coordinate by

Fi(n) = {
v = (v1, . . . , vd) ∈ [1, n]d :vi = 1

}
and

Ri(n) = {
v = (v1, . . . , vd) ∈ [1, n]d :vi = n

}
.

Choose δ > 0 such that

r = P
(
t (e) > 2δ

)
> 0.(4.2)

The number δ will be used as the mesh size in measuring the first-passage time.
Define

Gk = {
v ∈ [1, n]d : inf{t (γ ) :γ is a path from F1(n) to v and γ ⊂ [1, n]d} < kδ

}
.

In general, the geometry of Gk could be very complicated. In any case Gk is
connected as any vertex v ∈ Gk could be reached from F1(n) along some path γ

with t (γ ) < kδ. Let

	n = 
n(µ + ε)/δ� so that 	nδ ≤ n(µ + ε) ≤ (ln + 1)δ.(4.3)

On the event {φ1,n ≥ n(µ + ε)} the goal face R1(n) is contained in a certain
connected component, say Ok , of [1, n]d\Gk for each 1 ≤ k ≤ 	n. Define

Sk = {v ∈ Gk : there is a vertex u ∈ Ok with ‖u − v‖ = 1}.(4.4)

Roughly speaking, these random sets {Sk : 1 ≤ k ≤ 	n} propagate from F1(n)

toward R1(n). A key feature about Sk that will be used later is that any path γ

running from F1(n) to R1(n) must cross Sk somewhere. Hence there is an edge
e = 〈v,u〉 ∈ γ with v ∈ Sk ⊆ Gk and u ∈ Ok . In particular,

inf
{
t (γ ) :γ is a path from F1(n) to v and γ ⊂ [1, n]d}

< kδ for v ∈ Sk.(4.5)

The event {φ1,n ≥ n(µ + ε)} is classified by the intersections of {Sk} with the
faces of [1, n]d as follows:

{φ1,n ≥ n(µ + ε)}
(4.6) ⊆ ⋃{Ui,k(w) = Ci,k,Li,k(w) = Di,k for 2 ≤ i ≤ d and 1 ≤ k ≤ 	n},
where Ui,k(w) = Sk(w) ∩ Ri(n), Li,k(w) = Sk(w) ∩ Fi(n) and the union is taken
over all feasible nonempty deterministic subsets Ci,k in Ri(n) and Di,k in Fi(n).
Let Nn be the number of terms in the union of (4.6). Among these Nn terms let us
assume that

Zn = {
Ui,k(w) = C̃i,k,Li,k(w) = D̃i,k for 2 ≤ i ≤ d and 1 ≤ k ≤ 	n

}
(4.7)
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has the maximum probability. It is clear from (4.6) that

P
(
φ1,n ≥ n(µ + ε)

) ≤ Nn · P (Zn).(4.8)

We claim the following lemma.

LEMMA 4.1. lim sup(log P (Zn))/nd ≥ κ .

PROOF. By (4.1) and (4.8) it suffices to show via a combinatorial argument
that

lim(logNn)/nd = 0.(4.9)

Those prescribed sets {Ci,k} and {Di,k} on the faces Ri(n) and Fi(n),
respectively, could be very complicated. Fortunately here we need not to know
such details. Since there are 2(d − 1) faces involved, we have from symmetry that

Nn ≤ {
# of choosing C2,1,C2,2, . . . ,C2,	n on R2(n)

}2(d−1)
.(4.10)

The sets {C2,i; 1 ≤ i ≤ 	n} are determined once we know the following mapping
which associates to each lattice point v on the face R2(n) a pair of integers (t, s),
where t = inf{k ≤ 	n :v ∈ Gk} ∧ (	n + 1) and s = #{k ≤ 	n :v ∈ Sk}. Hence,

# of choosing C2,1,C2,2, . . . ,C2,	n on R2(n) ≤ (nd−1)(	n+1)2
.

Equation (4.9) is easily verified by using (4.3) and (4.10). �

Now we proceed to show κ = κ ′ defined in (4.1). Fix η > 0. By Lemma 4.1
there exist m, which can be made arbitrarily large, and {C̃2,k, D̃2,k : 1 ≤ j ≤ lm}
such that

logP (Zm) ≥ (κ − η)md,(4.11)

where Zm is given in (4.7) with n there replaced by m. We will use the event Zm

on the basic block [1,m]d and its independent copies to build up events on a
larger block. The enlargement is done sequentially along the d th, (d − 1)st, . . .

and finally the first coordinate. For brevity we will consider only the case d = 3 in
the following. The other cases can be treated similarly.

We start with [1,m]2 × [1,2m]. We set the event Zm on A1 = [1,m]3 and
event Z̄m on A2 = [1,m]2 × [m + 1,2m], which is obtained by reflecting an
independent copy of Zm on A1 with respect to the hyperplane x3 = m + 1/2. We
require t (e) > 2δ for any edge e in

E = {〈(k, j,m), (k, j,m + 1)〉 : 2 ≤ k ≤ m and 1 ≤ j ≤ m},
which connects A1 and A2. Denote by V3 the event thus obtained on [1,m]2 ×
[1,2m]. By symmetry,

P (Z̄m) = P (Zm).(4.12)
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Moreover, the construction shows both L3,k(ω) in event Z̄m and U3,k(ω) in
event Zm equal to C̃3,k except being situated respectively on hyperplanes x3 =
m + 1 and x3 = m, which can be connected vertically by edges in E above. As
a result, hyperface Sk(ω) in Zm could be joined vertically with Sk(ω) in Z̄m for
1 ≤ k ≤ lm. We claim that

φ([1,m] × [1,m] × [1,2m]) ≥ lmδ on event V3(4.13)

by showing that any optimal path π in [1,m]2 × [1,2m] will stay either in A1
or in A2 before crossing Slm in A1 or that in A2. [See (1.2) for definition of φ.]
Otherwise, some connecting edge in E appears in π . Let ē = 〈v,u〉 be the first
such edge. (See Figure 1 for a two-dimensional version.) We may assume v ∈ A1
without loss of generality. Let k = max{1 ≤ j ≤ 	m :v ∈ Oj }, which is assumed
nonempty temporarily. It is clear from the definition that v lies between hyperfaces

FIG. 1.
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Sk and Sk+1 in A1. Then u lies between Sk and Sk+1 in A2. The path π must cross
Sk+1 in A2 or that in A1 in order to reach the goal face {m} × [1,m] × [1,2m].
Suppose it happens in A2 with ẽ = 〈x, y〉 as the crossing edge (see Figure 1).
By (4.5) there is a path γ from {1} × [1,m] × [m + 1,2m] to x with

t (γ ) < (k + 1)δ.(4.14)

Since v lies outside Sk in A1 and the subpath of π from its starting point, say,
w to v lies in A1, the passage time of such subpath from w to x is no less
than kδ + t (ē) ≥ (k + 2)δ, which is worse than t (γ ) in (4.14). Similarly, the
crossing of π through Sk+1 cannot happen in A1 as it would cost the path π

at least 2δ more for using another connecting edge in E in order to get back
to A1. In case {1 ≤ j ≤ 	m :v ∈ Oj } = ∅, it means all {U3,k(ω) : 1 ≤ k ≤ 	m}
in A1 coincide at v and thus all {L3,k(ω) : 1 ≤ k ≤ 	m} in A2 coincide at u. Since
Li,k(w) = Sk(w)∩Fi(n), u ∈ S1 in A2 in this case. Because t (ē) > 2δ, the subpath
of π from w to u cannot be optimal in view of (4.5).

Let n = Mm + r , where M = 
n/m� and 0 ≤ r < m. Hence

n − m ≤ Mm.(4.15)

We may add, along the x3 coordinate, alternately more independent copies of
Zm and Z̄m on top of the previous [1,m]2 × [1,2m] until the block H1 =
[1,m]2 × [1, (M + 1)m] is reached. As before we require t (e) > 2δ for all edges
connecting these (M + 1) blocks each of size [1,m]3. Denote by W3 the resulted
event on H1. We can show as we did in (4.13) that

φ(H1) ≥ lmδ on event W3(4.16)

and thus W3 ⊆ {φ(H1) ≥ lmδ}. Since there are (m − 1)mM connecting edges in
block H1, we get from (4.11), (4.12) and (4.2) that

logP
(
φ(H1) ≥ lmδ

) ≥ log P (W3)
(4.17)

≥ (κ − η)m3(M + 1) + (m − 1)mM log r.

Now we will enlarge the block H1 along the second coordinate. Let W̄3 be the
event on H2 = [1,m] × [m + 1,2m] × [1, (M + 1)m] obtained from reflecting an
independent copy of W3 on H1 with respect to the hyperplane x2 = m+1/2. Write

Hi =
M+1⋃
j=1

{[1,m] × [(i − 1)m + 1, im] × [(j − 1)m + 1, jm]} ≡
M+1⋃
j=1

Hi,j

so that each Hi,j is identical to the basic block [1,m]3 and H1,j ,H2,j could be
connected by edges in

Ej = {〈(s,m, k), (s,m + 1, k)〉 : 2 ≤ s ≤ m and (j − 1)m + 1 ≤ k ≤ jm}.
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As before we require t (e) > 2δ for any edge in
⋃M+1

j=1 Ej and denote by V2

the event thus obtained on [1,m] × [1,2m] × [1, (M + 1)m]. Because any edge
connecting H1 and H2 must belong to a certain Ej and a result similar to (4.13)

holds on each H1,j ∪ H2,j , the same argument shows

φ
([1,m] × [1,2m] × [1, (M + 1)m]) ≥ lmδ on event V2.

As in (4.16) we then add, along the x2 coordinate, alternately more independent
copies of W3 and W̄3 on top of the previous [1,m]× [1,2m]× [1, (M +1)m] until
the block I = [1,m] × [1, (M + 1)m]2 is reached. We still require t (e) > 2δ for
any edge connecting these (M + 1) blocks each of the same size as H1. Denote by
W2 the resulted event on I . Similar to (4.16) and (4.17), we will have

φ(I) ≥ lmδ on event W2(4.18)

and thus W2 ⊆ {φ(I) ≥ lmδ}. Using (4.17) and the fact that there are (m − 1) ×
m(M + 1) connecting edges between blocks H1 and H2, we get

log P
(
φ(I) ≥ lmδ

) ≥ logP (W2)
(4.19)

≥ (κ − η)m3(M + 1)2 + 2(m − 1)mM(M + 1) log r.

Now taking M independent copies of the event W2 in I and putting these
M blocks side by side along the first coordinate, we get a big block J = [1,Mm]×
[1, (M + 1)m]2. As before we require t (e) > 2δ for all the (M − 1)(M + 1)2m2

horizontal edges connecting these M blocks. Denote by W1 the resulted event
on J . By (4.18), (4.3) and (4.15), the face–face first-passage time φ(J ) on the
event W1 is at least

Mlmδ + (M − 1)2δ ≥ M
(
m(µ + ε) − δ

) + (M − 1)2δ

≥ n(µ + ε) − m(µ + ε) + 
n/m�δ − 2δ(4.20)

≥ n(µ + ε)

if n is large. As J is thinner in the x1 coordinate but thicker in both the x2 and x3

coordinates than [1, n]3, the face–face first-passage time φ1,n in [1, n]3 is no less
than that in J . By (4.2) and (4.20),

P
(
φ1,n ≥ n(µ + ε)

) ≥ P (W1) ≥ {P (W2)}M · r(M−1)(M+1)2m2
.

Since M = 
n/m�, (4.19) and (4.1) imply

κ ≥ κ ′ ≥ (κ − η) + {
2(m − 1)m−2 + m−1}

log r.

Letting first m → ∞ and then η → 0, we get κ ′ = κ . Theorem 3 is proved.
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