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EXPONENTIAL DECAY OF ENTROPY IN THE RANDOM
TRANSPOSITION AND BERNOULLI–LAPLACE MODELS
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We give bounds on the exponential decay rate of entropy in the random
transposition model and the Bernoulli–Laplace model which are independent
of the number of sites and the number of particles. This is then used to give a
bound on the time to stationarity in the total variation norm.

1. Introduction. This article concerns the decay of entropy and time to
stationarity in two models of continuous time interacting random walks: the
random transposition model and the Bernoulli–Laplace model.

Random transposition model. The state space Sn is the permutation group
of n objects. The random transposition model is the Markov process uniquely
characterized by an initial distribution on Sn and the Markov generator Ln given
by

(Lnf )(σ ) = 1

n

n∑
i,j=1

[f (σ ij ) − f (σ )],

where f is a function on Sn and (σ ij )i = σj , (σ ij )j = σi and (σ ij )k = σk for
k �= i or j . We can think of n distinct particles, numbered 1 through n, placed
in n distinct sites numbered 1 through n. Sn is the set of configurations with σi the
number of the particle in site i. At rate one, a particle chooses uniformly from the
n sites and exchanges position with the particle at that site. The model is symmetric
and irreducible and has the uniform distribution µn(σ ) = 1

n! as unique stationary
distribution. The associated expectation will be denoted En.

Bernoulli–Laplace model. The Bernoulli–Laplace model has two parameters
n and r , 1 ≤ r ≤ n, the number of distinct sites and the number of identical
particles. A site can be occupied by at most one particle. So the state space, denoted
by Cn,r is the space of all subsets of the n sites with r elements. For η ∈ Cn,r ,
denote by ηi the number of particles at the site i. The Bernoulli–Laplace model is
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the Markov process with the state space Cn,r and with the Markov generator Ln,r

given by

(Ln,rf )(η) = 1

n

n∑
i,j=1

ηi(1 − ηj )[f (ηij ) − f (η)] = 1

n

∑
i<j

[f (ηij ) − f (η)],

where f is a function on Cn,r and (ηij )i = ηj , (ηij )j = ηi and (ηij )k = ηk for
k �= i, j . Each particle, at rate one, picks a site with uniform probability, and jumps
there as long as it is unoccupied. The model is symmetric and irreducible and
has the uniform distribution µn,r(η) = (n

r

)−1 as unique stationary distribution. The
associated expectations will be denoted En,r .

Let L be an ergodic Markov process on a finite state space S symmetric with
respect to invariant measure µ. Let Pt = etL denote the associated semigroup.
If ν is the initial distribution then Ptν → µ. We are interested in the speed of
convergence. There are several choices of norm. Suppose that ν � µ and f = dν

dµ
.

The V (p) norm is defined

V (p)(ν,µ) = Eµ[|f − 1|p]1/p

if f ∈ Lp(µ) and +∞ otherwise. The 1
2V (1), the total variation norm, is most

common, but V (2) is used as well. The relative entropy is defined by

H(ν,µ) = Eµ[f logf ]
if f logf ∈ L1(µ) and +∞ otherwise. If µ is the invariant measure we will use
H(f ) or Hµ(f ) for H(f µ,µ).

The time to stationarity, τ (p) is defined by

τ (p) = inf
{
t > 0 : sup

ν
V (p)(Ptν,µ) ≤ e−1

}
.

Often the bound τ (1) ≤ τ (2) is used. The Dirichlet form is defined by

D(f,g) = −Eµ[f Lg], D(f ) ≡ D(f,f ).

The logarithmic Sobolev constant α is defined by

α = sup
{
H(f )/D

(√
f

)
:f ≥ 0;Eµ[f ] = 1

}
.

It is known [7] that c1α ≤ τ (2) ≤ c2α where c1 = 0.5 and c2 = 1 + 1
4 log log 1

µ∗
where µ∗ = minx∈S µ(x).

On the other hand, if one is interested in convergence of H(Ptν,µ), let ft =
dPtν/dµ and note that

d

dt
H(ft) = −D(ft, log ft).

The entropy contant β is defined by

β = sup{H(f )/D(f, logf ) :f ≥ 0;Eµ[f ] = 1}.
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Therefore,

H(Ptν,µ) ≤ e−t/βH(ν,µ).

The entropy constant was obtained for Poisson measure in [3]. From the general
inequality, (√

b − √
a

)2 ≤ 1
4 (b − a)(logb − loga),

valid for a, b ≥ 0, we have D(
√

f ) ≤ 1
4D(f, logf ) and hence β ≤ 4α. Since

H ≥ V (1) it is easy to check that

τ (1) ≤ β

(
1 + log log

1

µ∗
)
.

The relative entropies and Dirichlet forms for the random transposition model
and Bernoulli–Laplace models are given respectively by

Hn(f ) = 1

n!
∑
σ∈Sn

f (σ ) logf (σ ),

Dn(f, g) = 1

n!2n

∑
σ∈Sn

n∑
i,j=1

[f (σ ij ) − f (σ )][g(σ ij ) − g(σ )],

Hn,r(f ) = 1(n
r

) ∑
η∈Cn,r

f (η) logf (η),

Dn,r (f, g) = 1

2n
(n
r

) ∑
η∈Cn,r

∑
1≤i<j≤n

[f (ηij ) − f (η)][g(ηij ) − g(η)].

Let αn and βn denote the logarithmic Sobolev constant and entropy constant of
the random transposition model on Sn, and αn,r and βn,r denote the logarithmic
Sobolev constant and entropy constant of the Bernoulli–Laplace model on Cn,r .
In [7] and [14] it is shown that there exists 0 < c < ∞ such that for any n ≥ 2,

c−1 logn ≤ αn ≤ c logn

and for any r = 1, . . . , n − 1,

c log
n2

r(n − r)
≤ αn,r ≤ 2

log 2
log

n2

r(n − r)
.

The upper bound on τ
(2)
n for the random transposition, and τ

(2)
n,r for the Bernoulli–

Laplace models then read

τ (2)
n ≤ C(log n)2, τ (2)

n,r ≤ C log
n2

r(n − r)
log log

(
n

r

)
.
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Our purpose in this paper is to bound the entropy constants for the two models of
random walks. We obtain the bound which is independent of the numbers of sites
and the numbers of particles. The method used is the martingale method of [15].
The main results of this article are:

THEOREM 1 (Random transposition model). For any n ≥ 2,

1/2 ≤ βn ≤ 1.

In particular, for any probability measure νn on Sn, for n ≥ 2,

H(Ptνn,µn) ≤ e−tH (νn,µn),

and for some C < ∞,

τ (1)
n ≤ (1 + log logn!) � log n.

THEOREM 2 (Bernoulli–Laplace model). For any n ≥ 2 and any 1 ≤ r ≤
n − 1,

1 ≤ βn,r ≤ 2.

In particular, for any probability measure νn,r on Cn,r , for n ≥ 2 and 1 ≤ r ≤ n−1,

H(Ptνn,r ,µn,r) ≤ e−t/2H(νn,r ,µn,r),

and for some C < ∞,

τ (1)
n,r ≤ 2

(
1 + log log

(
n

r

))
.

The main conclusion is that the commonly used bound τ (1) ≤ τ (2) gives the
wrong order for the time to stationarity in the total variation sense in the random
transposition model and in the Bernoulli–Laplace model at high or low densities.

The upper bounds on βn and βn,k are proved in Sections 2 and 3, respectively.
The lower bounds are obtained from the general inequality [2],

β ≥ λ/2,

where λ is the Poincaré constant (= 1/spectral gap),

λ = sup
{

Var(f )/D
(√

f
)}

,

where Var(f ) = E[(f − E[f ])2]. The spectral gap can be computed for both
models [8, 9, 16]. In the random transposition model λn = 1 and for the Bernoulli–
Laplace model λn,r = 2.
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2. Random transposition model. To prove the upper bound for βn, using
martingale methods as in [14], we will derive an inequlity involving βn+1 and βn.
First of all we give an entropy inequality as follows.

LEMMA 1. Let µ be the uniform distribution on {1,2, . . . , n} and f a
probability density function relative to µ. Then for all n ≥ 2,

Hµ(f ) ≤ 1

2n2

n∑
x,y=1

(
f (y) − f (x)

)(
logf (y) − log f (x)

)
.

PROOF. Set

f (x1, . . . , xn) =
n∑

i,j=1

(xi − xj )(logxi − log xj ) − 2n

n∑
i=1

xi logxi,

where x1, . . . , xn ≥ 0. The lemma is equivalent to f (x1, . . . , xn) ≥ 0 for any
x1, . . . , xn ≥ 0 with x1 +· · ·+xn = n. Since under the condition x1 +· · ·+xn = n,

f (x1, . . . , xn) = −2n

n∑
i=1

logxi,

we need only prove that 1
n

∑n
i=1 log xi ≤ 0 for any x1, . . . , xn ≥ 0 with x1 + · · · +

xn = n, which is an obvious consequence of the concavity of the logarithm. �

PROOF OF THEOREM 1. Let f be the probability density function relative to
the uniform distribution µn+1 on Sn+1. Let fi be the marginal probability density
function of σi and f (·|σi) be the conditional probability density function given σi .
Define

I1,i,j,k(f ) = En+1

[
fi(σi)En+1

[(
f (σ jk|σi) − f (σ |σi)

)
× (

logf (σ jk|σi) − log f (σ |σi)
)∣∣σi

]]
,

I1,i = ∑
i,j �=k

I1,i,j,k

= En+1

[ ∑
j,k �=i

(
f (σ jk) − f (σ )

)(
logf (σ jk) − logf (σ )

)]
,

I2,i(f ) = En+1[fi(σi) logfi(σi)],

Il(f ) = 1

n + 1

n+1∑
i=1

Il,i(f ), l = 1,2.

Then

Hn+1(f ) = En+1
[
fi(σi)En+1[f (·|σi) log f (·|σi)|σi]] + I2,i .
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Since the uniform distribution on Sn+1, given σi , is the uniform distribution on Sn,
from the definition of βn we have that

Hn+1(f ) ≤ βn

2n
I1,i + I2,i,

thus

Hn+1(f ) ≤ βn

2n
I1 + I2.(2.1)

Note that

I1(f ) = 2(n − 1)D(f, logf ).(2.2)

Applying Lemma 1 to fi , we get

I2,i (f ) ≤ 1

2(n + 1)2

n+1∑
x,y=1

(
fi(y) − fi(x)

)(
log fi(y) − log fi(x)

)
.(2.3)

Since fi(x) = En+1[f (σ )|σi = x)] and the function: (a, b) → (a − b)(loga −
log b) is convex for a, b ≥ 0, Jensen’s inequality implies (with E[·] = En+1[·]),(

fi(y) − fi(x)
)(

logfi(y) − logfi(x)
)

= (
E[f (σ )|σi = y] − E[f (σ )|σi = x])
× (

logE[f (σ )|σi = y] − log E[f (σ )|σi = x])
(2.4) = (

E[f (σ xy)|σi = x] − E[f (σ )|σi = x])
× (

logE[f (σ xy)|σi = x] − log E[f (σ )|σi = x])
≤ (n + 1)E

[(
f (σ xy) − f (σ )

)(
logf (σ xy) − log f (σ )

)∣∣σi = x
]
.

Combining (2.3) and (2.4) we have

I2,i ≤ 1

2(n + 1)
En+1

(
n+1∑

x,y=1

(
f (σ xy) − f (σ )

)(
logf (σ xy) − log f (σ )

))
.

Therefore,

I2 ≤ 1

(n + 1)
D(f, logf ).(2.5)

By the definition of the entropy constant βn+1, inequalities (2.1), (2.2) and (2.5)
now imply

βn+1 ≤ (n − 1)βn

n
+ 1

(n + 1)
.(2.6)

The desired upper bound is from (2.6) by an induction on n ≥ 2. The initial
check for n = 2 follows from the n = 2 case of Lemma 1 which gives β2 ≤ 1/2.
Assuming that βn ≤ 1, the last inequality yields

βn+1 ≤ n − 1

n
+ 1

(n + 1)
< 1. �
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3. Bernoulli–Laplace model.

LEMMA 2. Let µρ be the Bernoulli measure on {0,1}, 0 < ρ < 1. Then for
any probability density function f on {0,1}, relative to the Bernoulli measure,

Hµρ(f ) ≡ (1 − ρ)f (0) logf (0) + ρf (1) logf (1)

≤ ρ(1 − ρ)
(
f (0) − f (1)

)(
log f (0) − logf (1)

)
.

(3.1)

PROOF. If (1 − ρ)x + ρy = 1, x ≥ 0, y ≥ 0, one can check easily that

f (x, y) = ρ(1 − ρ)(x − y)(log x − log y) − (1 − ρ)x log x − ρy log y

= −(1 − ρ) logx − ρ logy

≥ 0. �

PROOF OF THEOREM 2. We will prove Theorem 2 by induction. Let f be the
probability density function relative to the uniform distribution µn,r on Cn,r and
denote by fi the marginal probability density function of σi and by f (·|ηi) the
conditional probability density function of η given ηi . Define

I1,i(f ) = En+1,r

[
fi(ηi)En+1,r

[
βn,r−ηi

∑
j,k �=i

(
f (ηjk|ηi) − f (η|ηi)

)

× (
logf (ηjk|ηi) − logf (η|ηi)

)∣∣∣ηi

]]

= En+1,r

[ ∑
j,k �=i

βn,r−ηi

(
f (ηjk) − f (η)

)(
logf (ηjk) − log f (η)

)]
,

I2,i(f ) = En+1,r

[
fi(ηi) logfi(ηi)

]
,

Il(f ) = 1

n + 1

n+1∑
i=1

Il,i(f ), l = 1,2.

Simple calculation yields

Hn+1(f ) = En+1,r

[
fi(ηi)En+1,r[f (·|ηi) logf (·|ηi)|ηi ]] + I2,i .(3.2)

Since if ηi = 0 or 1, then the inner expectation is with respect to µn,r or µn,r−1,
respectively, from the definition of βn,r and I1,i we have that

Hn+1,r (f ) ≤ 1

2n
I1,i + I2,i,

and hence

Hn+1,r (f ) ≤ 1

2n
I1 + I2, 2 ≤ r ≤ n − 1.(3.3)
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We have

I1,i(f ) = βn,rEn+1,r

[ ∑
j,k �=i

(
f (ηjk) − f (η)

)(
logf (ηjk) − logf (η)

)∣∣∣ηi = 0

]

+ βn,r−1

× En+1,r

[ ∑
j,k �=i

(
f (ηjk) − f (η)

)(
log f (ηjk) − logf (η)

)∣∣∣ηi = 1

]

and so

I1 = 1

n + 1

n+1∑
i=1

I1,i = 2
(
(n − r)βn,r + (r − 1)βn,r−1

)
Dn+1,r (f, logf ).(3.4)

Now applying Lemma 2 with ρ = r
n+1 to fi , we get

I2,i(f ) ≤ r(n + 1 − r)

(n + 1)2

(
fi(0) − fi(1)

)(
logfi(0) − log fi(1)

)
.(3.5)

Now

fi(0) = En+1,r[f (η)|ηi = 0] = 1

n − r + 1

∑
j �=i

En+1,r[(1 − ηj )f (ηij )|ηi = 1].

(a, b) → (a − b)(loga − logb) is convex for a, b ≥ 0 so by Jensen’s inequality,(
fi(0) − fi(1)

)(
logfi(0) − log fi(1)

)
≤ 1

n − r + 1

∑
j �=i

En+1,r

[
(1 − ηj )

(
f (ηij ) − f (η)

)

× (
logf (ηij ) − logf (η)

)∣∣ηi = 1
]
.

Summing over i and writing out the conditional expectation, we get

n+1∑
i=1

(
fi(0) − fi(1)

)(
log fi(0) − logfi(1)

)

≤ n + 1

r(n + 1 − r)

∑
i �=j

En+1,r

[
ηi(1 − ηj )

(
f (ηij ) − f (η)

)
(3.6)

× (
log f (ηij ) − logf (η)

)]
.

Combining (3.5) and (3.6) we have

I2 ≤ 2

n + 1
Dn+1,r (f, logf ).(3.7)
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By the definition of the entropy constant and (3.3), (3.4) and (3.7),

βn+1 ≤ (n − r)

n
βn,r + (r − 1)

n
βn,r−1 + 2

n + 1
.(3.8)

Now we prove the upper bound by (3.7) and an induction on n ≥ 2. The initial case
n = 2, r = 1 is a consequence of Lemma 2. Suppose βk,j ≤ 2 for any 2 ≤ k ≤ n

and 2 ≤ j ≤ k − 1. Then:

(i) for any 2 ≤ r ≤ n − 1,

1

2
βn+1,r ≤ n − r

n
+ r − 1

n
+ 1

n + 1
< 1;

(ii) for r = 1 or r = n, by Lemma 1 we have βn+1,1 ≤ 2
n+1 < 2. �
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