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FREE LUNCH FOR LARGE FINANCIAL MARKETS WITH
CONTINUOUS PRICE PROCESSES

BY IRENE KLEIN

University of Vienna

A large financial market is described by a sequence of traditional market
models with finite numbers of assets. There are various concepts in the
spirit of no asymptotic arbitrage related to the contiguity of a sequence of
equivalent martingale measures with respect to the sequence of historical
probabilities. In this article, I show that in the case of continuous price
processes, the existence of a bicontiguous sequence of martingale measures
is equivalent to the property of no asymptotic free lunch with bounded risk.

1. Introduction. A large financial market is a sequence of traditional market
models, each of them based on a finite number of assets. Under the assumption that
there is no kind of arbitrage on any of the finite markets, Kabanov and Kramkov
(1994) introduced the notions of no asymptotic arbitrage of first (NAA1) and
second kind (NAA2). The notion NAA1 happens to be equivalent to the contiguity
of the sequence of the objective probabilities with respect to the sequence of the
upper envelopes of the equivalent local martingale measures, whereas NAA2 is
equivalent to the contiguity of the sequence of the lower envelopes of the local
martingale measures with respect to the sequence of the objective probabilities;
compare Kabanov and Kramkov (1998). These results can be formulated in
another way to show that the results on NAA1 and NAA2 are not symmetric,
but are of a different nature; see Klein and Schachermayer (1996a, b). In any
case, NAA1 and NAA2 could be related only to one-sided contiguity properties
of sequences of equivalent local martingale measures, which is the analogue of
absolute continuity of measures in the case of a sequence of probability spaces.

However, the direct analogue to the existence of an equivalent martingale
measure for the case of a large financial market seems to be the existence
of a sequence of martingale measures which is contiguous with respect to the
sequence of the objective probabilities and vice versa (i.e., bicontiguous). So it was
natural to ask whether the symmetric property of bicontiguity has an economic
interpretation. The general answer to this question was given by Klein (2000),
where the notion of no asymptotic free lunch (NAFL) was introduced. This led to
a general version of the fundamental theorem of asset pricing for large financial
markets. The condition NAFL is rather technical and, unfortunately, cannot be
replaced by a weaker condition in general. The aim of the present note is to
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show that for continuous processes, the bicontiguity property is equivalent to
no asymptotic free lunch with bounded risk (NAFLBR), which has an intuitive
interpretation.

Let me conclude the Introduction with a remark on the history of the theory
of large financial markets. The idea of asymptotic arbitrage appeared first in Ross
(1976) and in the important note of Huberman (1982). The theory of large financial
markets can be seen as a “modern” version of arbitrage pricing theory (APT).
However, the classic APT does not touch the problem of the existence of an
equivalent martingale measure, so it does not provide a version of the fundamental
theorem of asset pricing for a large financial market.

2. Definitions and notations. I slightly adapt the setting of Kabanov (1997)
so that it is appropriate for our presentation. Let S be the space of semimartingales
X defined on the infinite time interval [0,∞) and starting from zero; S is a Frechet
space with the quasinorm

D(X) = sup

{∑
n≥1

2−nE(1 ∧ |H · Xn|) :H predictable, |H | ≤ 1

}
.

As usual H · Xt is the stochastic integral of H with respect to X on the
interval (0, t]. We fix in S a closed convex subset X1 of continuous processes
X such that |X| ≤ 1, which contains 0 and satisfies the following condition:
If X,Y ∈ X1 and H,G ≥ 0 are bounded predictable processes, HG = 0 and
|Z| ≤ 1, where Z = H · X + G · Y , then Z ∈ X1. Let X = ⋃

α>0 αX1. Note
that the concatenation property is not identical to that in Kabanov (1997).
Indeed, there the processes were only assumed to be bounded below by −1.
I consider only continuous processes, so I can, without loss of generality,
assume that the processes are bounded. Indeed, continuous processes can always
be bounded above as well. Define convex sets Kα = {X∞ :X ∈ αX1} and
K = {X∞ :X ∈ X} = ⋃

α>0 Kα . Moreover, define a set of equivalent probability
measures Me(X) = {Q ∼ P : EQX∞ ≤ 0 for all X ∈ X}.

Note that X1 can be taken as the set of all stochastic integrals H ·S with respect
to one fixed d-dimensional continuous semimartingale S based on (�,F , (Ft ),P)

such that |H ·S| ≤ 1. The space X1 is closed by the theorem of Mémin (1980). This
setting describes a financial market with d assets, where the price process is given
by S. The elements of the set K are interpreted as final outcomes when trading
according to a certain strategy H . An easy consideration shows that Me(X) �= ∅

is equivalent to the existence of an equivalent probability measure Q such that S is
a local martingale under Q. This implies any condition of no arbitrage type on the
market.

In a large financial market, consider a sequence of small market models, that
is, a sequence of semimartingales (Sn), where Sn is based on (�n,F n, (F n

t ),Pn).
The interpretation of the superscript n in expressions such as Kn and Me(Xn) is
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then obvious. Throughout this article, Me(Xn) �= ∅ for all n ∈ N, which ensures
that there is no form of arbitrage opportunity on any of the small markets.

The following notations are used: (Qn) � � (Pn) means that the sequence
of probability measures (Qn) is contiguous with respect to the sequence of
probability measures (Pn) and vice versa. For Lp(�n,F n,Pn), write Lp,n where
p = 1 or ∞. Let suppµ denote the support of a probability measure µ on the real
line and let δx denote the Dirac measure at the point x ∈ R. Write I for the interval
[−1,1] and αI for [−α,α].

3. Main result.

DEFINITION 3.1. There is an asymptotic free lunch with bounded risk
(AFLBR) on a large financial market if there is c ∈ (0,1] and a sequence ξnk ∈ Knk

1
such that:

(i) Pnk(ξnk ≥ c) ≥ c for all k ∈ N and
(ii) limk→∞ Pnk(ξnk < −ε) = 0 for all ε > 0.

We use the notation NAFLBR if there is no AFLBR.

An alternative description of NAFLBR using the distributions of the random
variables in all attainability sets Kn will be presented. It is indeed the continuity
assumption that enables a characterization using measures on R with bounded
support. In general, the laws of the elements of the attainability sets Kn would be
unbounded on the positive real line [cf. the notion of admissible integrands as in
Delbaen and Schachermayer (1994), where the corresponding stochastic integrals
were only supposed to be bounded below]. However, continuous processes can
always be stopped to allow them to be bounded above as well.

Let Pb be the space of all probability measures on R with bounded support.
Equip Pb with the topology σ(Pb,C), where C are the continuous functions on R.
For α > 0, let P (αI) = {µ ∈ Pb : suppµ ⊆ αI } and Pb(R+) = {µ ∈ Pb : suppµ ⊆
[0,+∞)}.

REMARK 3.2. The topology σ(Pb,C) does not coincide with the topology
of weak convergence in a probabilistic sense on Pb. Indeed, the set of functionals
C is used, not the bounded continuous functions Cb(R) as usual for the topology
of weak convergence. Consider, for example, µn = 2−nδ2n + (1 − 2−n)δ0. This
sequence converges weakly to δ0, but does not converge in σ(Pb,C). However,
restricted to P (αI), the topology of weak convergence and σ(Pb,C) are equal.

Let L(Kn
α) = {L(ξ) : ξ ∈ Kn

α}, where L(ξ) denotes the law of ξ . Define Lα to
be the closure of

⋃
n≥1 L(Kn

α) in P (αI) with respect to the topology of weak
convergence [which equals σ(Pb,C) closure]. Let L = ⋃

α>0 Lα and let L be the
closure of L with respect to the topology σ(Pb,C).



FREE LUNCH FOR CONTINUOUS LARGE MARKETS 1497

LEMMA 3.3. NAFLBR ⇔ L ∩ Pb(R+) = {δ0}.

PROOF. (⇒) If the claim fails, there is α > 0 and µ ∈ Lα such that suppµ ⊆
[0, α] and µ �= δ0. There is a sequence µk ∈ L(Knk

α ), such that µk → µ weakly.
So the result is µk[−α,−ε] → 0 for all ε > 0. Because µ �= δ0, there is c ∈ (0, α)

such that µk[c,α] ≥ c for all k large enough. The ξk ∈ Knk
α with µk = L(ξk) form

an AFLBR.
(⇐) The laws of the ξnk of the AFLBR have a cumulation point µ ∈ L1

(because L1 is compact for the topology of weak convergence). This yields a
contradiction. �

Now let us introduce a variant of the NAFL condition of Klein (2000). Again
it is the continuity of the processes that enables a characterization using measures
on R with bounded support. In the following discussion it will become clear that
this characterization is equivalent to the original definition of NAFL.

DEFINITION 3.4. There is NAFL′ if L ∩ Pb(R+) = {δ0}.

The model fulfills bicontiguity if there is a sequence Qn ∈ Me(Xn) such that
(Qn) � �(Pn). Let us now state the main result of this article:

THEOREM 3.5. For the model of a large financial market with continuous
processes NAFLBR, NAFL, NAFL′ and bicontiguity are equivalent.

The proof is organized as follows. In Section 4 it is shown that NAFLBR
⇒ NAFL′ (immediate from Proposition 4.1). Lemma 4.5 gives bicontiguity ⇒
NAFLBR. In the Appendix the definition of NAFL is recalled and NAFL′ ⇒
NAFL is proved. Moreover, the main theorem of Klein (2000) is recalled which
gives NAFL ⇒ bicontiguity.

4. Proofs.

PROPOSITION 4.1. NAFLBR ⇒ L is σ(Pb,C) closed and so L = L.

The consequence of Proposition 4.1 for the attainability sets is that whenever
a measure µ on the real line is approximated by the laws of some elements of
the attainability sets Kn in the sense of the topology σ(Pb,C), this µ also can be
approximated by the laws of random variables which are, moreover, bounded by
some fixed α > 0. This is not clear a priori, because without Proposition 4.1, there
is no way to know whether it is possible to choose elements of the attainability
sets such that the weight of the points “far off” is zero. Heuristically speaking, the
reason for this is that continuous processes can be stopped in a manner that they
are all bounded by a uniform constant.
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LEMMA 4.2. Let α > β . Then Lα ∩ P (βI) = Lβ .

Lemma 4.2 is very similar to Lemma 5.3 of Delbaen (1992) and its proof
is adapted to the present setting. The following lemmas are analogues of
Lemmas 5.1 and 5.2 there.

LEMMA 4.3. Let (ξk) be a sequence in
⋃

n≥1 Kn
1 such that Pnk(ξk− ≥ ε) → 0

for all ε > 0. Then Pnk (supt |Xnk
t | ≥ ε) → 0 for all ε > 0, where X

nk∞ = ξk .

PROOF. Review the proof of Lemma 5.1 of Delbaen (1992). Instead of
convergence in probability on one fixed probability space, use the following
convergence for (ξn) : ξn → 0 if Pn(ξn ≥ ε) → 0 for each ε > 0. Proceed as in
Delbaen (1992). �

LEMMA 4.4. Let ξk = xk + X
nk∞ , where xk ∈ R+ and X

nk∞ ∈ Knk for some nk .
Suppose that |ξk| ≤ 1 for all k ∈ N and Pnk(ξk− ≥ ε) → 0 for all ε > 0. Then
Pnk (supt (x

k + X
nk
t )− ≥ ε) → 0 for all ε > 0.

PROOF. Adapt the proof of Lemma 5.2 of Delbaen (1992) using Lemma 4.3.
�

PROOF OF LEMMA 4.2. The proof proceeds in a similar way as the proof
of Lemma 5.3 in Delbaen (1992). Let β < α and µ ∈ Lα ∩ P (βI). There is
a sequence (µk) in

⋃
n≥1 L(Kn

α) such that µk → µ weakly. Each µk is the law

of a random variable ξk ∈ Knk
α . It is necessary to find a sequence (ηk) with

ηk ∈ ⋃
n≥1 Kn

β such that the corresponding laws νk = L(ηk) converge weakly to µ.

I claim that the sequence ξk +β satisfies the assumptions of Lemma 4.4. Indeed,
|ξk + β| ≤ α + β . Moreover, for all ε > 0 and k → ∞,

lim Pnk (ξk + β ≤ −ε) = lim Pnk
(
ξk ≤ −(β + ε)

)
= limµk[−α,−(β + ε)] = 0.

Lemma 4.4 yields, for Xnk with X
nk∞ = ξk , that Pnk (supt (β + X

nk
t )− ≥ ε) → 0 for

all ε > 0. Equivalently, Pnk(supt (β − X
nk
t )− ≥ ε) → 0 is shown. Define stopping

times T k
ε = inf{t : |Xnk

t | ≥ β + ε}. Then Pnk (T k
ε < ∞) → 0 for all ε > 0. Let

εl → 0 be a strictly positive sequence and let (kl) be a subsequence such that

Pnkl
[
T kl

εl
< ∞] → 0.(4.1)

To simplify notation, assume that (4.1) holds for the whole sequence (k). Set τ k =
T k

εk
and define ηk = β/(β + εk)X

nk∞∧τk
. Then |ηk| ≤ β by continuity. Moreover, by
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definition, ηk ∈ Knk . I claim that the laws νk = L(ηk) converge to µ weakly which
implies µ ∈ Lβ . Indeed, let w ∈ C(αI). Then

|〈νk − µk,w〉| = ∣∣Enkw(ηk) − Enkw(ξk)
∣∣

≤
∣∣∣∣Enk

[(
w

(
β

β + εk

ξk

)
− w(ξk)

)
1{τk=∞}

]∣∣∣∣
+ ∣∣Enk

[(
w(ηk) − w(ξk)

)
1{τk<∞}

]∣∣.
The 1{τk=∞} part converges to 0 because |ξk| ≤ α and w ∈ C(αI). The 1{τk<∞}
part is bounded above by 2‖w‖∞Pnk (τ k < ∞), which converges to 0 by (4.1).
So |〈νk − µ,w〉| ≤ |〈νk − µk,w〉| + |〈µk − µ,w〉| → 0 for each continuous w.

�

PROOF OF PROPOSITION 4.1. Suppose the statement of the proposition is
not true. Then there is µ0 ∈ L such that µ0 /∈ L. Without loss of generality,
suppµ0 ⊆ I . In particular, µ0 /∈ L1. Hence there exist w1

1,w
1
2, . . . ,w

1
N ∈ C(I)

and ε0 > 0 such that for all µ ∈ L1, there is i = i(µ) ≤ N with

〈µ0,w
1
i 〉 > 〈µ,w1

i 〉 + ε0.(4.2)

It is shown that there are w2
1,w

2
2, . . . ,w

2
N ∈ C(2I ) such that w2

j |I = w1
i for some

i ≤ N and (4.2) holds for all µ ∈ L2 with the functions w2
j instead of the w1

i .

CLAIM. Let µ ∈ L2. Then there exists wµ ∈ C(2I ) such that wµ|I = w1
i for

some i ≤ N and such that 〈µ0,wµ〉 > 〈µ,wµ〉 + ε0.

Indeed, either µ is already in L1 and then (4.2) holds anyway or µ ∈ L2 \ L1
and then δ > 0 exists such that µ((1 + δ)I ) < 1 − δ, because otherwise µ ∈ L1 by
Lemma 4.2. Take w1

1 and define wµ ∈ C(2I ) as

wµ = w1
11I + v1(1+δ)I\I − c12I\(1+δ)I ,

where c = (2ε0 − 〈µ0,w
1
1〉 + ‖w1

1‖∞)/δ and v : (1 + δ)I \ I → R is chosen such
that wµ is continuous and ‖v+‖∞ ≤ ‖w1

1‖∞, where v+ = v ∨ 0. Observe that

〈µ0,wµ〉 − 〈µ,wµ〉 ≥ 〈µ0,wµ〉 − ‖w1
1‖∞ + 2ε0 − 〈µ0,wµ〉 + ‖w1

1‖∞ > ε0,

which proves the claim.
For u ∈ C(2I ) such that u|I = w1

i for some i ≤ N , define an open set in P (2I )

by Vu = {ν ∈ P (2I ) : 〈µ0 − ν,u〉 > ε0}. By the above considerations, the sets Vu

form an open covering of the set L2, which is compact with respect to the topology
of weak convergence on P (2I ). So there is a finite subcovering of L2, that is,
functions w̃1, . . . , w̃k such that L2 ⊆ ⋃k

j=1 Vw̃j
. (Without loss of generality, take
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k ≥ N and assume that for each i ≤ N , there is at least one j ≤ k such that
w̃j |[−1,1] = w1

i .) For i ≤ N , let

w2
i = min

{j : w̃j |I=w1
i }

w̃j .

Thus w2
1, . . . ,w

2
N ∈ C(2I ) is found such that (4.2) holds for all µ ∈ L2.

By induction, find for each n ∈ N functions, wn
1 , . . . ,wn

N ∈ C(nI) such that
wn

i |(n−1)I = wn−1
i for i ≤ N and (4.2) holds for all µ ∈ Kn. Hence there are

w1, . . . ,wN ∈ C defined by wi(x) = limn→∞ wn
i (x), such that for each µ ∈

L there exists an i ≤ N with 〈µ0,wi〉 > 〈µ,wi〉 + ε0. This shows µ0 /∈ L,
a contradiction. �

LEMMA 4.5. Bicontiguity ⇒ NAFLBR.

PROOF. Suppose there is an AFLBR. The contiguity (Pn) � (Qn) implies
that there is δ > 0 with Qnk (ξnk ≥ c) ≥ δ for all k. Moreover, (Qn) � (Pn)

gives Qnk (ξnk < −ε) → 0 for all ε > 0. Taking ε small and then nk large gives
EQnk ξ

nk > 0, a contradiction to the definition of Me(Xn). �

APPENDIX: ABOUT ASYMPTOTIC FREE LUNCH

Recall the definition of NAFL in Klein (2000). Let C = K − L∞+ and define
Dε = {η ∈ L∞ : 0 ≤ η ≤ 1,Eη ≥ ε}. Let (aj ) and (bj ) be strictly positive
sequences and define V a,b = convj≥1[Baj

(L1)∩Bbj
(L∞)], where Br(L) denotes

the closed ball with radius r of the Banach space L. Recall that the superscript n

denotes the respective sets for the nth small market.

DEFINITION A.1. There is NAFL if, for each ε > 0, there exist a strictly
positive, decreasing sequence (aj ) with aj → 0 and a strictly positive, increasing
sequence (bj ) with bj → ∞ such that Cn ∩ (Dε,n + V a,b,n) = ∅ for all n ∈ N.

By Definition A.1 it is clear that the set Cn is separated from Dε,n for each ε > 0
by some Mackey neighborhood V a,b,n. This separation is a direct translation of the
concept of no free lunch given by Kreps (1981) to a sequence of probability spaces.
Indeed, if NAFL holds, it is not possible to approximate a strictly positive gain by
elements of the sequence of sets (Cn) in a Mackey (or, equivalently, weak star)
sense.

PROPOSITION A.2. NAFL′ ⇒ NAFL.

LEMMA A.3. Let (aj ) and (bj ) be sequences as in Definition A.1 and let
ζ ∈ V a,b,n. Then Pn(|ζ | ≥ 2bk) < ak/bk for all k ∈ N.
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PROOF. Begin with ζ = ∑∞
i=1 λiζi , where ζi ∈ Bai

(L1,n) ∩ Bbi
(L∞,n) and∑∞

i=1 λi = 1. For fixed k ∈ N, |ζi | ≤ bi ≤ bk for i ≤ k and ‖ζi‖L1,n ≤ ai ≤ ak for

i > k. Let ζ̃1 = ∑k
i=1 λiζi and ζ̃2 = ∑∞

i=k+1 λiζi . Then

Pn(|̃ζ2| ≥ bk) ≤ 1

bk

En |̃ζ2| ≤ 1

bk

∞∑
i=k+1

λiE
n|ζi | < ak

bk

and, because |̃ζ1| < bk , Pn(|ζ | ≥ 2bk) < Pn(|̃ζ2| ≥ bk). �

LEMMA A.4. There is an AFL ⇔ there is c > 0 such that for all sequences
(aj ) and (bj ) as in Definition A.1, there exists n = n(a, b) and Xn∞ ∈ Kn∩(Dc,n +
V a,b,n) such that Xn

t ≤ 1 for all t ∈ R+.

PROOF. (⇒) Indeed, for each pair of sequences (a, b), let ξn ∈ Cn be the
random variables that form an AFL, where n = n(a, b). There is Xn ∈ Xn and ηn ∈
L

∞,n
+ such that Xn∞ = ξn + ηn. Define the stopping time T n = inf{t ≥ 0 :Xn

t ≥ 1}.
Because Xn is continuous, clearly Xn

t∧T n ≤ 1 for all t ∈ R+ and by the definition
of Xn, (Xn

t∧T n) ∈ Xn. Clearly Xn∞∧T n ∈ Kn ∩ (Dc,n + V a,b,n).
(⇐) is obvious. �

PROOF OF PROPOSITION A.2. Suppose there is an AFL. Then there is c > 0,
and for all (aj ) and (bj ) as in Definition A.1, there is n = n(a, b) and Xn∞ as
in Lemma A.4. Define a partial order on the pairs of sequences by ((a1), (b1)) ≤
((a2), (b2)) if a2(j) ≤ a1(j) and b2(j) ≤ b1(j) for all j . Let µn(a,b) = LXn∞ .

CLAIM. The net (µn(a,b)) in L has a σ(Pb,C) cumulation point µ ∈ L such
that suppµ ⊆ [0,1] and µ �= δ0 (which is a contradiction).

Indeed, Xn∞ = ηn + ζ n, where ηn = Xn∞1{Xn∞≥0} and ζ n = Xn∞1{Xn∞<0}. By

Lemma A.4, ηn ∈ Dc,n and ζ n ∈ V a,b,n. First let us prove that δ0 is a cumulation
point of (Lζ n(a,b) ). Let ε > 0 and w1, . . . ,wN ∈ C such that, without loss of
generality, wi(0) = 0. Let (bj )j≥2 be an arbitrary increasing sequence with
bj → ∞. Put Kj = max1≤i≤N ‖wi |[−2bj+1,0]‖∞ for all j ∈ N. There is δ > 0 with
max1≤i≤N ‖wi(s)|[−2b2,0]‖∞ < ε/2 for |s| < δ. Define now b1 = min(b2, δ/3) and
define a decreasing sequence (aj ) with aj → 0 by aj = εbj/2j+1κj ∧aj−1, where
κj = max(Kj , bj ). Then, by Lemma A.3,

|〈δ0 − Lζ n,wi〉| = |Enwi(ζ
n)|

≤ En(|wi(ζ
n)|1A0

) +
∞∑

j=1

En(|wi(ζ
n)|1Aj

)

<
ε

2
+

∞∑
j=1

Kj

aj

bj

< ε,
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where n = n(a, b) and Aj = {−2bj+1 ≤ Xn∞ < −2bj } for j ≥ 0 and b(0) = 0.
This shows that δ0 is a σ(Pb,C) cumulation point of the net (Lζ n(a,b) ).

From now on, take a subnet of n(a, b) still denoted by n(a, b), such that
(Lζ n(a,b) ) converges to δ0. By the definition of the random variables ηn(a,b), it
is evident that the net (Lηn(a,b) ) has a cumulation point µ ∈ P ([0,1]) such that
µ[c/3,1] ≥ c/3. I claim that µ is a σ(Pb,C) cumulation point of (µn(a,b)).
Indeed, choose a subnet of (µn(a,b)) such that (Lηn(a,b) ) converges to µ. Choose
now ε > 0 and w1, . . . ,wN ∈ C. There exists (a0, b0) such that, for all (a, b) ≥
(a0, b0), |〈δ0 − Lζ n(a,b) ,wi〉| < ε/2 and |〈µ − Lηn(a,b) ,wi〉| < ε/2 for all i ≤ N .
For the same n = n(a, b) and all i ≤ N ,

|〈µ − µn,wi〉| = ∣∣〈µ,wi〉 − En
(
wi(η

n)1{Hn·Sn∞≥0}
) − En

(
wi(ζ

n)1{Hn·Sn∞<0}
)∣∣

= |〈µ,wi〉 − Enwi(η
n) − Enwi(ζ

n) + wi(0)|
≤ |〈µ − Lηn,wi〉| + |〈δ0 − Lζ n,wi〉| < ε,

so µ is a σ(Pb,C) cumulation point of (µn(a,b)); hence µ ∈ L, proving the claim.
�

Finally let us recall the main theorem of Klein (2000). Note that this theorem
was proved for general (i.e., not necessarily continuous) semimartingales.

THEOREM A.5. NAFL ⇔ Bicontiguity.

In particular, Theorem A.5 closes the final gap in the proof of Theorem 3.5.
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