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MALYSHEV’S THEORY AND JS-QUEUES.
ASYMPTOTICS OF STATIONARY PROBABILITIES1

BY I. A. KURKOVA AND Y. M SUHOV

Université Paris 6 and Cambridge University

Malyshev’s theory of asymptotics of stationary probabilities for a
random walk in a quarter-plane is extended to cover the case of join-the-
shorter-queues.

1. Preliminaries.

1.1. An informal introduction. In the early 1970s Malyshev [13–15] proposed
a pioneering approach to asymptotical studies of stationary probabilities of a
random walk (RW) on the lattice quarter-plane Z2+ = {(m,n) :m,n = 0,1, . . . }.
Traditionally, main applications of this approach are associated with queueing
theory (see [5] and references therein, in particular, [13–15, 2, 8, 10]), although
it is not the only domain where it is useful (see [12]). An essential condition used
in [5, 13–15] (at least to obtain treatable formulas) is that the jump probabilities
are invariant (or homogeneous) under space-shifts, separately, for the interior
Ẑ2+ = {(m,n) :m,n = 1,2, . . . } of Z2+ and the “positive” parts of its “boundary,”

Z(1)
+ = {(m,0) :m = 1,2, . . . } and Z(2)

+ = {(0, n) :n = 1,2, . . . }. We call this a
universal homogeneity condition (UHC). Unfortunately, the UHC is restrictive
from the point of view of queueing theory. For example, the simplest model of
the so-called join-the-shorter-queue (briefly, JS-queue) does not satisfy the UHC.

A JS-queue, with two exponential servers, is as follows. Tasks (or customers)
arrive within three independent Poisson processes �1, �2 and �′. Processes �1
and �2 are of rate λ and �′ of rate λ′. Tasks from �1 go to server 1, tasks
from �2 to server 2 and tasks from �′ choose the shortest queue, breaking ties
at random. In other words, �1 and �2 generate dedicated and �′ opportunistic
traffic. The service rate at each server equals 1, and tasks are served according
to a conservative discipline (say, FCFS), without interruption. Such a system is
described by a continuous-time Markov process on Z2+; in a state (m,n) there are
m tasks in the queue at server 1 and n at server 2. It is easy to check that the
corresponding continuous-time Markov process (or the embedded jump RW) is
positive recurrent iff

λ + λ′/2 < 1(1.1)
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(see, e.g., [9]). The jump probabilities in the JS-queue model do not possess the
above invariance property. Instead, they satisfy a more tricky homogeneity condi-
tion involving reflection about the diagonal Zd+ = {(m,m) :m ≥ 1}. Nevertheless,
many ideas and technical tools used under the UHC can be used in this situation
as well.

The problem we address in this paper is on asymptotics of the stationary
probabilities for a JS-queue. When λ′ = 0, we have a pair of isolated exponential
servers: This is the only case where the stationary probabilities can be precisely
calculated. The opposite case, where λ = 0 was studied in [8] by using a special
modification of methods from [13–15]. In this paper we consider the case where
λ,λ′ > 0. In fact, we introduce a class of nearest-neighbor RWs on Z2+ whose
jump probabilities satisfy (1.2) called asymmetric homogeneity condition (SHC);
this class includes the above JS-queue models.

Essentially the SHC means that we consider a RW in an eighth-plane. It is
convenient to organize the jump probabilities specifying the RW in three stochastic
vectors: a four-dimensional vector p (for jumps from the interior of the eighth-
plane), a three-dimensional vector b (for jumps from the positive half of the
x-axis) and a four-dimensional vector d (for jumps from the bisecting diagonal).
See Figure 1.

FIG. 1.
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The first novel fact about SHC random walks established in this paper is a
criterion (1.3) for its positive recurrence. See Theorem 1.1. It is written in terms of
two quadratic and two linear expressions in components of the vectors p, b and d,
and has a form adapted for subsequent analysis. For the subclass of the JS-queues
it coincides with previously established bounds; see [11, 16, 17]. Then, under
bounds (1.3), we analyze geometric asymptotics of the stationary probabilities
ρm+n,m of the RW as m,n → ∞, (m + n)/m ∼ ctg γ . Here γ ∈ [0, π/4] is a
direction in the eighth-plane. (Similar asymptotics hold for ρn,m+n.) Throughout
the paper, the symbol ∼ means that the ratio of two expressions tends to 1. As
in [13–15], the asymptotical analysis ρm+n,m is based on complex integration on a
Riemannian surface (which is a two-dimensional torus). Our analysis is restricted
to a “generic” situation where the components of vectors p, b and d [obeying
bounds (1.3)] do not satisfy certain (nonlinear) equations. These equations [there
are three of them; see (4.3)–(4.5)] describe various “degeneracies” that may occur
in the asymptotical behavior of the complex integrals under consideration. The
degenerate cases are not discussed in this paper, although it is clear that they may
be formally analyzed by using similar methods. From the practical point of view,
these cases are rather exotic; we prove that two of them, related to (4.4) and (4.5),
do not occur for a large class of SHC RWs including the JS-queues. We also believe
that the first of these cases related to (4.3) does not occur either; an argument
supporting this conjecture, although falling short of a complete proof, is given in
Section 4 (in fact, if completed, this argument would exclude all three cases).

Assuming (1.3) and the above nondegeneracy condition, we are able to identify
a “principal” geometric term qmrn defining the log-asymptotics of ρm+n,m. It
is the second novel fact on SHC RWs established in this paper. Here, the
values q, r ∈ [0,1] are determined by the direction γ . More precisely, for given p,
b and d satisfying (1.3) and (4.3)–(4.5), we define explicitly two angles, γ0, γ̃0 ∈
[0, π/4], dividing the segment [0, π/4] into at most three smaller segments
where q and r have particular properties. Specifically, (i) q, r are the same for
all γ ∈ [0,min{γ0, γ̃0}], (ii) q, r are the same for all γ ∈ [max{γ0, γ̃0}, π/4],
(iiia) if γ̃0 < γ0, then for all γ ∈ [γ̃0, γ0] the pair q, r is one of two pairs q, r

found in cases (i) and (ii) with the largest value of qrctgγ−1. [There exists an angle
γ̂0 ∈ (γ̃0, γ0) such that for all γ ∈ [γ̃0, γ̂0], this pair is the one of case (i) and for all
γ ∈ [γ̂0, γ0] this pair is the one of case (ii).] (iiib) If γ0 < γ̃0 then for γ ∈ (γ0, γ̃0)

q, r vary with γ . Globally, q and r are continuous functions of γ , smooth (and
even analytic) for γ �= γ0, γ̃0, but their derivatives may jump at γ = γ0 and γ̃0.

Furthermore, it is possible to find the factor in front of the leading term qmrn;
this factor is either a constant C [cases (i) and (ii) and (iiia) in the previous
paragraph], or has the form C/

√
n or C/(n

√
n) [case (iiib)]. The constant C

(which may vary with γ ∈ [0, π/4] in the same manner as above) can be calculated
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through values of generating functions of stationary probabilities ρm0 and ρ0n

(more precisely their meromorphic continuations). At the moment, the following
methods have been proposed for how to specify these generating functions:
(a) with the help of Abelian differentials on the uniformizing complex plane
[13, 14]; (b) by a direct analysis on the original complex plane ([3] and [5], Chap-
ter 5). Both methods use a complex boundary-value problem (of a Riemann–
Hilbert or Riemann–Carleman type). In this paper, specification of constant C

follows the second approach and is based on a remark [4] produced during
independent exchanges. In our view, specification of constant C is the third novel
fact on SHC RWs; it should be attributed to [4].

In the case of JS-queues, the general description can be made much more
precise. This is an important outcome of the present paper as it demonstrates
applicability of the general theory in its present state. As a result, most of the
facts obtained in [8] for the case λ = 0 are extended to the case where λ > 0.

We must stress that this paper emerged as a result of an attempt to understand,
clarify and unite facts scattered across the existent literature and folklore, not
always accessible to the public. From this point of view, SHC random walks and
JS-queues are a good example of where one can check the validity of general
constructions and their relevance to practical calculations.

The paper is organized as follows: In the rest of Section 1 we introduce a SHC
RW and state necessary and sufficient conditions for its positive recurrence in
Theorem 1.1. Sections 2–5 deal with further aspects of the theory of general SHC
RWs. In particular, in Sections 2 and 3 we discuss, respectively, geometric and
analytic aspects of the theory. Formulas for geometric asymptotics of stationary
probabilities for a general SHC random walk are given in Section 4 (see
Theorems 4.1–4.4, Corollary 4.1). Then Section 5 gives the Fayolle–Iasnogorodski
argument for calculating constants in front of the geometric terms. In our opinion,
the formulas from Sections 4 and 5 are rather involved, but still manageable.

The reader interested in the application to the JS-queues can concentrate on
Section 6 where all related results are stated in a self-contained fashion (see
Theorems 6.1 and 6.2 and Corollary 6.1). We also discuss the border cases where
λ = 0 or λ′ = 0.

The proof of Theorem 1.1 is given in Section 7.
Throughout the paper we repeatedly use ideas and technical tools from

papers [13–15] and the book in [5].

1.2. Random walk L: an eighth-plane symmetry. We study a discrete-
time nearest-neighbor RW L in Z2+, whose jump probabilities P(L(s + 1) =
(m′, n′)|L(s) = (m,n)) are homogeneous in time variable s = 0,1, . . . and
possess some homogeneity and symmetry properties in space variables (m,n),

(m′, n′) ∈ Z2+ (homogeneity relative to space shifts and symmetry relative to the



MALYSHEV’S THEORY AND JS-QUEUES 1317

reflection about the diagonal). More precisely, ∀ s, s′,m,m′, n, n′ = 0,1, . . . ,

P
(
L(s′ + 1) = (m ± 1, n)|L(s′) = (m,n)

)
= P

(
L(s + 1) = (m′, n′ ± 1)|L(s) = (m′, n′)

)
if m > n ≥ 1 and n′ > m′ ≥ 1, or 1 ≤ m < n and 1 ≤ n′ < m′,

P
(
L(s′ + 1) = (m ± 1,0)|L(s′) = (m,0)

)
= P

(
L(s + 1) = (0, n ± 1)|L(s) = (0, n)

)
if min[m,n] ≥ 1,

P
(
L(s′ + 1) = (m,1)|L(s′) = (m,0)

)
= P

(
L(s + 1) = (1, n)|L(s) = (0, n)

)
if min[m,n] ≥ 1,

P
(
L(s′ + 1) = (m ± 1,m)|L(s′) = (m,m)

)
= P

(
L(s + 1) = (n,n ± 1)|L(s) = (n,n)

)
if min[m,n] ≥ 1,

P
(
L(s′ + 1) = (1,0)|L(s′) = (0,0)

)
= P

(
L(s + 1) = (0,1)|L(s) = (0,0)

) = 1/2.

(1.2)

In other words, under condition (1.2), the jump probabilities are described
by a six-dimensional array formed by four stochastic vectors, p = (p10,p01,

p−10,p0−1) (probabilities of jumps from the interior of the lower π/4-angle),
b = (b10, b01, b−10) (probabilities of jumps from the positive horizontal half-
line), d = (d01, d01, d0−1, d0−1) (probabilities of jumps from the positive diagonal
half-line) and (1/2,1/2) (probabilities of jumps from the origin). See Figure 1
(the components of the above vectors are listed anticlockwise). Condition (1.2)
represents the SHC. Throughout the paper we assume that stochastic vector p has
all components greater than 0.

The ergodicity condition for RW L is stated in terms of vector d and the drift
vectors E = (E1,E2) and Eb = (Eb

1 ,Eb
2), where

E1 = p10 − p−10, E2 = p01 − p0−1, Eb
1 = b10 − b−10, Eb

2 = b01.

THEOREM 1.1. Assume that (E1,E2) �= (0,0). Then the RW L is positive
recurrent iff one of the following pairs of inequalities holds true:{

E2 < 0,

E1E
b
2 − E2E

b
1 < 0,

or
{

E2 ≥ 0,

d01E2 + d0−1E1 < 0.
(1.3)

The proof of this theorem is given in Section 6. In the above example of the
JS-queue we have p10 = λ/(2λ + λ′ + 2), p01 = (λ + λ′)/(2λ + λ′ + 2), p−10 =
p0−1 = 1/(2λ + λ′ + 2), b10 = λ/(2λ + λ′ + 1), b01 = (λ + λ′)/(2λ + λ′ + 1),
b−10 = 1/(2λ+λ′+1), d01 = (λ+λ′/2)/(2λ+λ′+2), d0−1 = 1/(2λ+λ′+2) and
p0

10 = p0
01 = 1/2, with E1 = (λ−1)/(2λ+λ′+2), E2 = (λ+λ′−1)/(2λ+λ′+2).

Condition (1.3) becomes (1.1), and the positivity of p means that λ > 0.



1318 I. A. KURKOVA AND Y. M. SUHOV

Under condition (1.3), RW L is positive recurrent and possesses a unique sta-
tionary probability distribution ρm,n, m,n = 0,1, . . . . The stationary probabilities
satisfy the symmetry condition ρm,n = ρn,m. The moment-generating functions �,
β and δ defined by

�(x, t) = ∑
m,n≥1

ρm+n,mxn−1tm−1,

β(x) = ∑
n≥1

ρn,0x
n−1, δ(t) = ∑

m≥1

ρm,mtm−1,
(1.4)

as functions of complex variables, are analytic at least in open discs |x|, |t| < 1.
Technically, we use that p > 0 to ensure that the Riemannian surface T (see
Section 2.1) is a torus. Condition (1.3) is used in the proof of Lemma 3.5
(see Section 3.3), in the same fashion as in [12] and [15].

2. Geometric aspects of the theory.

2.1. The Riemannian surface of a random walk. In this section we construct
the Riemannian surface of RW L and list useful facts about it.

A. The functional equation. Consider the functional equation

Q(x, t)�(x, t) = B(x, t)β(x) + D(x, t)δ(t) + A(x)ρ00, |x|, |t| ≤ 1.(2.1)

Here, functions �, β and δ are treated as unknowns. The functions Q, B , D, A are
related to the generating functions of jump probabilities of L in the corresponding
parts of Z2+,

Q(x, t) = xt − p01t
2 − p10x

2t − p−10t − p0−1x
2,

A(x) = (x − 1)/2,

B(x, t) = b01t + b10x
2 + b−10 − x,

D(x, t) = (2d01xt + 2d−10x − t)/2.

(2.2)

Equation (2.1) follows directly from the stationarity equations for ρm+n,m.
Note that functions Q, B , D, A defined by (2.2) give conformal homeomor-

phisms of the complex Riemannian sphere S. Our aim is to construct meromorphic
continuations of functions �, β and δ from the unit discs to the Riemannian sur-
face defined by the equation Q(x, t) = 0 (for that reason Q will be called a kernel
of the RW). Our approach is based on a series of observations.

B. Random walk L̄. A RW L̄ satisfying UHC emerges when we set, ∀ s ≥ 0
and m,n ≥ 1 [i.e., (m,n) ∈ Ẑ2+],

p̄±10 := P
(
L̄(s + 1) = (m ± 1, n)

∣∣L̄(s) = (m,n)
) = p±10,

p̄−11 := P
(
L̄(s + 1) = (m − 1, n + 1)

∣∣L̄(s) = (m,n)
) = p01,

p̄1−1 := P
(
L̄(s + 1) = (m + 1, n − 1)

∣∣L̄(s) = (m,n)
) = p0−1
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and all other probabilities p̄·· of jumps from (m,n) to be 0. [The probabilities
of jumps from the boundary Z(1)

+ ∪ Z(2)
+ ∪ {(0,0)} in L̄ do not play any role in

this observation; e.g., they may be same as in L.] The drift vectors Ē = (Ē1, Ē2)

and E = (E1,E2) for L̄ and L in Ẑ2+ obey Ē2 = E2, Ē1 = E1 − E2. The
point is that function Q from (2.2) coincides with the kernel of the RW L̄:
Q(x, t) = xt (

∑
i,j=±1 p̄ij x

i tj − 1). This fact allows us to quote a number of
properties inherited from the case where a UHC is met.

C. Solutions to the equation Q(x, t) = 0. When x (resp. t) is fixed, Q(x, t) is
a polynomial of the second degree in t (resp. x),

Q(x, t) ≡ U(x)t2 + V (x)t + W(x) ≡ Ũ (t)x2 + Ṽ (t)x + W̃ (t),(2.3a)

where
U(x) := −p01, Ũ (t) := −p10t − p0−1,

V (x) := x − p10x
2 − p−10, Ṽ (t) := t,

W(x) := −p0−1x
2, W̃ (t) := −p01t

2 − p−10t.

(2.3b)

Thus, ∀ fixed x (resp. t), the quadratic equation Q(x, t) = 0 has solutions T1(x),
T2(x) [resp. X1(t),X2(t)],

T1,2(x) = x − p10x
2 − p−10 ±

√
(x − p10x2 − p−10)2 − 4p01p0−1x2

2p01
,

X1,2(t) = t ±
√

t2 − 4(p0−1 + p10t)(p01t
2 + p−10t)

2(p0−1 + p10t)
.

(2.4)

Functions T1, T2 (resp. X1, X2) are branches of an algebraic function T (resp. X)
defined by the equation Q(x, t) ≡ 0. T (resp. X) has four branching points, xi

(resp. ti ), i = 1,2,3,4, where T1(x) = T2(x) [resp. X1(t) = X2(t)]. They can be
found explicitly by equating the square roots in (2.4) with zero:

x1 =
(
1 + 2

√
p01p0−1 −

√
(1 + 2

√
p01p0−1)2 − 4p10p−10

)/
(2p10),

x2 =
(
1 − 2

√
p01p0−1 −

√
(1 − 2

√
p01p0−1)

2 − 4p10p−10

)/
(2p10),

x3 =
(
1 − 2

√
p01p0−1 +

√
(1 − 2

√
p01p0−1)2 − 4p10p−10

)/
(2p10),

x4 =
(
1 + 2

√
p01p0−1 +

√
(1 + 2

√
p01p0−1)

2 − 4p10p−10

)/
(2p10);

t1 = 0,

t2,3 =
(
1/4 − p0−1p01 − p10p−10

±
√

(1/4 − p0−1p01 − p10p−10)2 − 4p01p10p0−1p−10

)/
(2p10p01),

t4 = ∞.

(2.5)
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Under the condition that p > 0, if E2 �= 0 then 0 < x1 < x2 < 1 < x3 < x4,
and if E2 = 0 and E1 < 0 then 0 < x1 < x2 = 1 < x3 < x4. If E1 �= E2, then
t1 < t2 < 1 < t3 < t4 and if E1 = E2 and E2 < 0 then t1 < 1 = t2 < t3 < t4.
For the proof, see [5], pages 23–26, together with observations from part B (and
use RW L̄).

D. Construction of surface T. To construct the Riemannian surface of T , we
take two copies, S1

x and S2
x , of the Riemannian sphere S and cut each of S1

x , S2
x

along the segments [x1, x2] and [x3, x4]. Then we “glue” together these spheres
along the borders of these cuts joining the “lower” border of segment [x1, x2]
(resp. [x3, x4]) on S1

x to the “upper” border of the same segment on S2
x and vice

versa. The resulting surface T is homeomorphic to a torus and is projected to S
by a canonical covering map hx : T → S. Conversely, T may be considered as a
disjoint union of the “incised” spheres Ŝj

x = Sj
x \ ([x1, x2] ∪ [x3, x4]), j = 1,2,

(the two branches of T) plus the borders of the cuts (the latter form four “cycles”:
	1,2

x , 	3,4
x , 	

1,2
t , 	

3,4
t ).

In a standard way, we can “lift” function T to T, by setting T (s) := Tj (hx(s)) if

s ∈ Ŝj
x ⊂ T; on the remaining part of T the function T assumes the corresponding

limiting values. Thus, T is single-valued and continuous on T; furthermore,
Q(hx(s), T (s)) ≡ 0, s ∈ T. We call T the Riemannian surface of T .

In a similar fashion, one constructs the Riemannian surface of function X, by
gluing together two copies S1

t and S2
t of sphere S cut along segments [t1, t2] and

[t3, t4]. It is again homeomorphic to a torus and contains the “incised” spheres Ŝj
t

= Sj
t \ ([t1, t2] ∪ [t3, t4]), j = 1,2.

Since the Riemannian surfaces for X and T are equivalent, we can work on a
single Riemannian surface T, but with two different covering maps hx,ht : T → S.
We set x(s) := hx(s) and t (s) := ht (s), s ∈ T, and will often represent a point
s ∈ T by the pair of its “coordinates” (x(s), t (s)). [These coordinates are not
independent because of the equation Q(x(s), t (s)) ≡ 0, s ∈ T.] See Figure 2.

E. “Real” points of T. The set 
 of “real” points of T is where x(s) and t (s)

are both real or equal to infinity. Note that for t real, X(t) is real when t ≤ t1 or
t2 ≤ t ≤ t3 and complex when 0 = t1 < t < t2 or t3 < t < t4 = ∞. Likewise, for
x real, T (x) is real when x ≤ x1 or x2 ≤ x ≤ x3 or x ≥ x4; t (x) is complex when
x1 < x < x2 and x3 < x < x4. Thus X(t) and T (x) are complex precisely on the
segments of the real line where the cuts were made to construct the Riemannian
surface. Therefore (see Figure 2), set 
 consists of two nonintersecting closed
analytic curves 
0 and 
1 homotopically equivalent (briefly, homotopic) to a
basic cycle on T (the equivalence class containing 
0 and 
1 is disjoint from
that containing the basic cycle h−1

x {x : |x| = 1}),

0 = {s :x2 ≤ x(s) ≤ x3} = {s : t2 ≤ t (s) ≤ t3},

1 = {s :x(s) ≤ x1 or x(s) ≥ x4} = {s : t (s) ≤ t1 = 0}.(2.6)
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FIG. 2.

Cycle 
0 will play a special role in our analysis.

F. Galois automorphisms. ∀ s ∈ T with x(s) �= x1, x2, x3, x4 there exists a
unique point s′ ∈ T different from s such that x(s) = x(s′). Furthermore, if
s ∈ Ŝ1

x then s′ ∈ Ŝ2
x and vice versa. When x(s) = x1, x2, x3 or x4, we have s = s′.

Moreover, as Q(x(s), t (s)) = 0, t (s) and t (s′) give two values of function T at
x(s) = x(s′). By Vieta’s theorem, t (s)t (s′) = p0−1x

2(s)/p01.
Similarly, ∀ s ∈ T with t (s) �= t1, t2, t3, t4 there exists a unique point s′′ ∈ T

different from s such that t (s) = t (s′′), and if t ∈ Ŝ1
t then s′′ ∈ Ŝ2

t and vice versa.
Again, if t (s) = t1, t2, t3 or t4, we have s = s′′. Moreover, as Q(x(s), t (s)) = 0,
x(s) and x(s′′) give two values of function X at t (s) = t (s′′). By Vieta’s theorem,
x(s)x(s′′) = (p01t

2(s) + p−10t (s))/(p10t (s) + p0−1).
Define mappings ξ : T → T and η : T → T by

ξs = s′ iff x(s) = x(s′),
ηs = s′′ iff t (s) = t (s′′).

(2.7)

Following [13], we call them Galois automorphisms of T. Then ξ2 = Id, η2 = Id
and

t (ξs) = p0−1x
2(s)

p01t (s)
,

x(ηs) = p01t
2(s) + p−10t (s)

(p10t (s) + p0−1)x(s)
.

(2.8)



1322 I. A. KURKOVA AND Y. M. SUHOV

Any s ∈ T with x(s) = x1, x2, x3 or x4 [resp. t (s) = t1, t2, t3 or t4] is a fixed point
for ξ (resp. η). Also ξ(
0 ∩ Ŝ1

x) = 
0 ∩ Ŝ2
x and η(
0 ∩ Ŝ1

t ) = 
0 ∩ Ŝ2
t . It is helpful

to draw the straight line through the pair of points of 
0, where x(s) = x2 or x3

[resp. t (s) = t2 or t3]. Then, for s ∈ 
0, points s and ξs (resp. ηs) are “symmetric”
about this straight line; see Figure 2.

G. Basic cycles on T. The domain Gx = {s : |x(s)| < 1} [resp. Gt =
{s : |t (s)| < 1}] on T is bordered by two closed curves, 0 and 1 (resp. ̃0, ̃1).

Here,

0 := {s : |x(s)| = 1} ∩ {s : |t (s)| ≤ 1},
1 := {s : |x(s)| = 1} ∩ {s : |t (s)| ≥ 1},
̃0 := {s : |t (s)| = 1} ∩ {s : |x(s)| ≤ 1},
̃1 := {s : |t (s)| = 1} ∩ {s : |x(s)| ≥ 1}.

(2.9)

Owing to the construction of T and the fact that x1, x2, t1, t2 ∈ [−1,1] and
x3, x4, t3, t4 /∈ [−1,1], cycles 0, 1, ̃0, ̃1, are homotopic to a “basic” cycle
h−1

x {x : |x| = 1}; the corresponding homotopy class is disjoint from the class
containing 
0 and 
1. In addition, ξ0 = 1 and η̃0 = ̃1. In the following
Proposition 2.1 we relate vector E = (E1,E2) to the location of 0, 1, ̃0, ̃1.
See Figure 3 [the point of 
0 where two or three cycles meet has x(s) = t (s) = 1].

FIG. 3.
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PROPOSITION 2.1. Cycles 0,1, ̃0, ̃1 defined in (2.9) are located on T in
the following fashion:

(a) If E2 < 0, E1 − E2 < 0, then 0 ∩ ̃0 = (1,1), 0 ⊂ Ḡy , ̃0 ⊂ Ḡx ,
1 ⊂ T \ Ḡt , ̃1 ⊂ T \ Ḡx ; see Figure 3(a).

(b) If E2 < 0, E1 − E2 > 0, then 0 ∩ ̃1 = (1,1), 0 ⊂ Ḡy , ̃0 ⊂ Gx ,
1 ⊂ T \ Ḡy , ̃1 ⊂ T \ Gx ; see Figure 3(b).

(c) If E2 > 0, E1 − E2 < 0, then ̃0 ∩ 1 = (1,1), 0 ⊂ Gt , ̃0 ⊂ Ḡx ,
1 ⊂ T \ Gt , ̃1 ⊂ T \ Ḡx ; see Figure 3(c).

(d) If E2 = 0, E1 − E2 < 0, then ̃0 ∩ 1 ∩ 0 = (1,1), 0 ⊂ Ḡy , ̃0 ⊂ Ḡx ,
1 ⊂ T \ Gt , ̃1 ⊂ T \ Ḡx ; see Figure 3(d).

(e) If E2 < 0, E1 − E2 = 0, then ̃0 ∩ ̃1 ∩ 0 = (1,1), 0 ⊂ Ḡt , ̃0 ⊂ Ḡx ,
1 ⊂ T \ Ḡy , ̃1 ⊂ T \ Gx ; see Figure 3(e).

For the proof, simply combine the arguments from [5], pages 30–32, with the
argument from paragraph in this section.

H. Lifting functions from S on T. To begin with, we lift functions B , D, A by
setting

B(s) := B
(
x(s), t (s)

)
, D(s) := D

(
x(s), t (s)

)
, A(s) := A(x(s)), s ∈ T.

Thus we have β and δ defined in closures Ḡx and Ḡt ,

β(s) := β(x(s)), s ∈ Ḡx, δ(s) := δ(t (s)), s ∈ Ḡt .(2.10)

Since Q(x(s), t (s)) ≡ 0 on T, (2.1) implies

B(s)β(s) + D(s)δ(s) + A(s)ρ00 = 0, s ∈ Ḡx ∩ Ḡt .(2.11)

As β (resp. δ) is analytic in Gx (resp. Gt ) and bounded and continuous in Ḡx

(resp. Ḡt ), (2.11) allows us to extend it meromorphically to Gt (resp. Gx ). Namely,

β(s) := −D(s)δ(s) + A(s)ρ00

B(s)
, δ(s) := −B(s)β(s) + A(s)ρ00

D(s)
.(2.12)

Then (2.11) holds in Ḡx ∪ Ḡt ⊂ T. Functions β and δ are meromorphic inside
this domain and continuous on its boundary 1 ∪ ̃1. They may have poles only at
zeros of B in Gt and of D in Gx , respectively.

2.2. Meromorphic continuation of β and δ. The cut cycles 	1,2
x ,	3,4

x ,	
1,2
t ,

	
3,4
t are homotopic to 0, ̃0,1, ̃1. The pair 	34

x , 	34
t partitions T into two

open domains. One of them, which does not contain Gx ∪ Gt , is denoted by D; it
contains the interval of 
0 where X(t3) < x(s) < x3 and T (x3) < t(s) < t3. We
also make an agreement that D lies in the incised spheres Ŝ2

t and Ŝ2
x (which is

merely a matter of notation). See Figure 4.
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FIG. 4.

THEOREM 2.2. Functions β and δ can be meromorphically continued on the
whole of T, except for cycle 	34

x for β and 	34
t for δ. Furthermore,

β(s) = β(ξs), δ(s) = δ(ηs), s ∈ T(2.13)

and

B(s)β(s) + D(s)δ(s) + A(s)ρ00 = 0, s ∈ S \ D.(2.14)

PROOF. We give the detailed proof in the case E2 < 0 and E1 − E2 < 0 [see
Proposition 2.1a]. Other cases are treated similarly. Denote by D1 (resp. D2) the
open domain of T bordered by 	34

x and ̃1 (resp. 	34
t and 1). Then T is a disjoint

union (Ḡx ∪ Ḡt ) ∪ D1 ∪ 	34
x ∪ D ∪ 	34

t ∪ D2; see Figure 4.
In Section 2.1, paragraph H the functions β and δ have been continued

meromorphically to Gx ∪ Gt . We shall extend them as meromorphic functions
to Ḡx ∪ Ḡt ∪ D1 ∪ D2, preserving (2.13) and (2.14). Then their continuation to D̄
is obvious:

β(s) := β(ξs), δ(s) := δ(ηs), s ∈ D̄.(2.15)

In fact, β (resp. δ) is already meromorphic in ξD (resp. ηD) and in a neighborhood
of ξ	34

t (resp. η	34
x ). Due to the fact that ξD, ξ	34

t , ηD, η	34
x are subsets of Ḡx ∪

Ḡt ∪ D1 ∪ D2, equations (2.15) allow us to continue β (resp. δ) meromorphically
on D through 	34

t (resp. 	34
x ).

The continuation of β and δ on Ḡx ∪ Ḡt ∪ D1 ∪ D2 will be performed according
to the following recursive procedure.
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Step 1. Set G(0) := Gx \ Ḡt . This domain is bordered by ̃0 and 1. Apply the
automorphism η to G(0). Then ηG(0) ⊂ S2

t and ηG(0) is bordered by η̃0 = ̃1
(this border is common with Gt ) and a closed curve 2 := η1 homotopic to 1
which crosses cycle 
0 at a point s with t (s) = p0−1/p01 > 1. Observe that
ηG(0) ∩ Gt = ηG(0) ∩ ηGt = η(G(0) ∩ Gt ) = η∅ = ∅ and that 2 ∩ Ḡt =
η(1 ∩ Ḡt ) = ∅. Hence ηG(0) ∩ D1 �= ∅. Put

δ(s) := δ(ηs) for s ∈ ηG(0) ∩ D1;
β(s) := −D(s)δ(s) + A(s)ρ00

B(s)
for s ∈ ηG(0) ∩ D1.

(2.16)

Since η(ηG(0)) = G(0), β and δ are well defined in ηG(0) ∩ D1 by (2.16).
Furthermore, δ can be meromorphically continued on this domain through ̃1, as
it is already meromorphic in G(0) and in a neighborhood of its border η̃1 = ̃0.
Also, β can be meromorphically continued through ̃1, as (2.14) holds in
Gx ∪ Gt . Finally the invariance of these functions w.r.t. the automorphisms (2.13)
is preserved.

Set G(1) := ηG(0) ∪ ̃1 ∪ (Gt \ Ḡx). Domain G(1) is bordered by 0 and
2 = η1.

Step 2. The domain G(2) := ξG(1) is bordered by 1 = ξ0 (this border is
common with Gx ) and a cycle 3 := ξ2 = ξη1 homotopic to 1. (The exact
location of 3 depends of course on 2; 3 crosses 34

x or lies in Ŝ1
x or Ŝ2

x .) Note
that G(2) ∩ G(0) = ∅ and 3 ∩ Ḡx = ∅. Thus G(2) ∩ D2 �= ∅ and we put

β(s) := β(ξs) for s ∈ ξG(1) ∩ D2;
δ(s) := −B(s)β(s) + A(s)ρ00

D(s)
for s ∈ ξG(1) ∩ D2.

(2.17)

Equations (2.17) yield the meromorphic continuation of β and δ on ξG(1) ∩ D2
through 1. This follows from the fact that (a) ξ(ξG(1) ∩ D2) ⊂ G(1) ∩ S1

x =
(ηG(0) ∩ D1) ∪ ̃1 ∪ (Gt \ Ḡx), (b) β is meromorphic in the domain (ηG(0) ∩
D1) ∪ ̃1 ∪ (Gt \ Ḡx) and in a neighborhood of its border ξ1 = 0 and (c) (2.11)
is valid in Gx ∪Gt . Also note that (2.13) and (2.14) continue to hold. See Figure 4.

If after Steps 1 and 2 β and δ are extended to the whole of Ḡx ∪ Ḡt ∪ D1 ∪ D2,
we stop the procedure. Otherwise, we continue with Step 3.

Step 3. Consider the domain G(3) = ηG(2) bordered by 2 = η1 (this border
is common with G(1)) and a cycle 4 := η3 homotopic to 2. We have G(3) ∩
G(1) = ∅, because η(G(3) ∩ G(1)) = G(2) ∩ G(0) = ∅. As the procedure has not
been stopped after Step 2, the domain D1 has not been covered by G(1) after
Step 1. (Otherwise 2 ⊂ S2

x , consequently ξ2 ⊂ S1
x , domain D2 would have been

covered after Step 2, and the whole procedure would have been stopped.) Thus
G(3) ∩ D1 �= ∅. Taking into account the fact that η(G(3) ∩ D1) ⊂ G(2) ∩ S1

t =
G(2) ∩ D2, we continue β and δ to G(3) ∩ D1 through 2 meromorphically,
by (2.16).
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Next, we construct the domain G(4) = ξG(3) bordered by 3 = ξ2 and 5 :=
ξ4, and define β and δ on G(4) ∩ D2 by (2.17); see the diagram below:

G(0)

1
→ G(1)

2
→ ·· · → G(2n−2)

2n−1
→ G(2n−1)

2n
→ G(2n)

2n+1
→ G(2n+1)

2n+2

After 2n steps we successively construct 2n domains G(1), . . . ,G(2n), where
G(2n) = ξG(2n−1) = ξ(ηG(2n−2)) = · · · = ξ(ηξ)n−1G(1). Each of domains G(2k),
1 ≤ k ≤ n, (resp. G(2k+1),0 ≤ k < n) is bordered by cycles 2k−1 = (ξη)k−11
and 2k+1 = (ξη)k1 [resp. 2k = η(ξη)k−11 and 2k+2 = η(ξη)k1] homo-
topic to 1. Domains G(0), G(2), . . . ,G(2n) (resp. G(1),G(3), . . . ,G(2n−1)) are
pairwise disjoint, but share borders; cycle l is the common border of G(l−1)

and G(l+1). Functions β and δ are meromorphically continued by recursion to⋃2n
l=0 G(l) ∩ (Ḡt ∪ Ḡx ∪ D1 ∪ D2) and (2.13) and (2.14) hold. Suppose that after 2n

steps the domains D1 and D2 are not yet completely covered.
Step 2n + 1. Define the domain G(2n+1) = ηG(2n) = (ηξ)nG(1) bordered by

2n = η(ξη)n−11 and 2n+2 = η(ξη)n1. The domain G(2n+1) ∩ D1 is not
empty; otherwise 2n would have lain in Ŝ2

x and D1 would have been covered
after Step 2n − 1. Moreover, 2n+1 = ξ2n would have lain in Ŝ1

x and D2 would
have been covered after Step 2n. Thus the procedure would have been stopped.
Note that η(G(2n+1) ∩ D1) ⊂ G(2n) ∩ Ŝ1

t = G(2n) ∩ D2. In domain G(2n) ∩ D2,
functions β and δ are already defined by recursion. Then β and δ are continued
by (2.16) to G(2n+1) ∩ D1. The continuation of δ through 2n to this domain is
again meromorphic because δ is meromorphic in a neighborhood of η(2n ∩D1) ⊂
2n−1 ∩ D2 and in G(2n) ∩ D2 by induction. Also function β continued by (2.14)
is meromorphic, and equations (2.13) are preserved.

Step 2n + 2. At this step we construct the domain G(2n) = ξG(2n+1) and extend
β and δ to G(2n+2) ∩ D2 by using (2.17).

The procedure stops whenever
⋃n

k=1 G(k) covers D1 ∪ D2. It stops after finitely
many steps, because for some ε > 0 the distance between the points s and ξηs

is ≥ ε ∀ s ∈ T. In fact, assume the opposite. Then there would be a sequence of
points sn ∈ T such that x(sn) − x(ξηsn) → 0 and t (sn) − t (ξηsn) → 0. Then, by
the definition of ξ, x(sn) − x(ηsn) → 0. But x(sn) and x(ηsn) are values of X

at t = t (sn). Then t (sn) must tend to one of branching points t1, t2, t3, t4. Then
t (ξηsn) tends to the value of T at x = X(ti ), i = 1,2,3,4, which is different
from ti . But X(ti ) are not branching points for T (x). Thus t (sn) − t (ξηsn) �→ 0.

�

COROLLARY 2.3. β (resp. δ) can be meromorphically continued to sphere S
cut along [x3, x4] (resp. [t3, t4]).

For the proof, define β(x) := β(s) for s with x(s) = x, and δ(t) := δ(s)

for s with t (s) = t . Owing to (2.13), these formulas provide the meromorphic
continuation.
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3. Analytic aspects of the theory.

3.1. Contour integrals on T. From now on we will concentrate on the case
E2 < 0,E1 −E2 < 0 [see Proposition 2.1(a)]. The analysis of other cases is carried
out in a similar fashion.

We represent the stationary probabilities ρm+n,m as sums of contour integrals
along cycles 1 and ̃1. This part of the argument is close to [12]. We orient
cycles 1 and ̃1 in such a way that moving along 1 (resp. ̃1) implies
negative rotation along {x : |x| = 1} [resp. positive rotation along {t : |t| = 1}] in
the corresponding complex plane. We also introduce a differential form on T,
dω = (2U(x)t + V (x))−1 dx = −(2Ũ (t)x + Ṽ (t))−1 dt ; see (2.3).

LEMMA 3.1. For all sufficiently large m,n,

ρm+n,m = 1

2πi

(∫
1

B(s)β(s)

xn(s)tm(s)
dω(s)

+
∫
̃1

D(s)δ(s) + A(s)ρ00

xn(s)tm(s)
dω(s)

)
.

(3.1)

The proof of Lemma 3.1 is a straightforward exercise based on Cauchy’s for-
mula. We only observe that the residues of the integrand, the zeros T1(x) and T2(x)

of function t → Q(x, t) and the zeros of X1(t), X2(t) of function x → Q(x, t),
can be separated by the circles |t| = 1 + ε and |x| = 1 + ε, respectively, which is
true according to Proposition 2.1(a).

3.2. Asymptotics of stationary probabilities. Our objective is now to eval-
uate the asymptotics of ρm+n,m as m,n → ∞ with (m + n)/m ∼ ctg γ ,
0 ≤ γ ≤ π/4. The denominator of integrands in (3.1) behaves as (xctg γ−1(s)t (s))m

for 0 < γ ≤ π/4 and (x(s))n for γ = 0. Set

χ0(s) = |x(s)|, χγ (s) = ∣∣xctg γ−1(s)t (s)
∣∣, 0 < γ ≤ π/4.(3.2)

The asymptotics of ρm+n,m for 0 < γ < π/4 is established by using the
saddlepoint approximation. It is convenient to introduce a new covering map
y : T → S with y(s) = t (s)/x(s). After the substitution t = xy in Q(x, t),
coordinates x(s) and y(s) on T are connected by

Q
(
x(s), y(s)

) = p10x
2(s)y(s) + p−10y(s)

+ p01x(s)y2(s) + p0−1x(s) − x(s)y(s) ≡ 0.
(3.3)

Now Lemma 2.4 from [12] asserts that for 0 < γ < π/4 χγ has on T four critical
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points s(γ, i), i = 1,2,3,4, of Morse index 1, with

χγ (s(γ,1)) < χγ (s(γ,2)) < χγ (s(γ,3)) < χγ (s(γ,4)),

where s(γ,2), s(γ,3) ∈ 
0 and s(γ,1), s(γ,4) ∈ 
1. For 0 < γ < π/4 the
saddlepoint S(γ ) coincides with s(γ,3). As γ → 0, S(γ ) → (x3, T (x3)) and as
γ → π/4, s(γ ) → (X(t3), t3). Furthermore, the function γ �→ S(γ ) determines
a homeomorphism between the segment [0, π/4] and a segment J of 
0 lying
inside D. Coordinates x(S(γ )) and t (S(γ )) can be found as a unique solution to
the system

tg γ = p01t/x − p0−1x/t

p10x − p−10/x
, Q(x, t) = 0,

X(t3) < x(γ ) < x3, T (x3) < t(γ ) < t3.

(3.4)

We set x(γ ) := x(S(γ )), t (γ ) := t (S(γ )) and

H(γ ) := χγ (S(γ )) = ∣∣x(γ )ctgγ−1t (γ )
∣∣.(3.5)

Observe that X(t3), T (x3) > 1 and hence x(γ ), t (γ ) > 1 for γ ∈ [0, π/4].
It should be said that the homeomorphism γ → S(γ ) can be continued to the

whole segment [−π,π ]; for any point s = (x, t) ∈ 
0 ∩ Ŝ1
x there corresponds an

angle γ ∈ [−π,0] and for any point (x, t) ∈ 
0 ∩ Ŝ2
x there corresponds an angle

γ ∈ [0, π ] with the tangent defined by (3.4). Thus, whenever γ runs [−π,π ],
S(γ ) runs 
0 from (x2, T (x2)), passing through (X(t2), t2) for γ = −3π/4,
(x3, T (x3)) for γ = 0, (t3,X(t3)) for γ = π/4 and coming back to (x2, T (x2))

for γ = π .

DEFINITION 3.1. In what follows, we call a point s′ ∈ T inferior to s′′ ∈ T
(and s′′ superior to s′) for a given γ if χγ (s′) and χγ (s′′) are real and χγ (s′′) <

χγ (s′′); we use the same terminology when comparing a point and a line.

DEFINITION 3.2. The most inferior of a (finite) collection of points of T is
called lowest, as opposite to highest.

The locus{
s : Im lnxctg γ−1(s)t (s) = Im ln xctgγ−1(S(γ ))t (S(γ )) = 0

}
represents two curves of steepest descent of χγ through S(γ ). These curves are
orthogonal at S(γ ), and in a neighborhood U of S(γ ) one of them is a part of 
0.
Technically it is convenient to fix two closed contours �γ and �̃γ so that in U they
both coincide with the curve of steepest descent orthogonal to 
0 and outside U
are superior to S(γ ). See Figure 5.
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FIG. 5.

Denote by Eγ (resp. Ẽγ ) the domain in U bordered by 1 (resp. ̃1) and �γ

(resp. �̃γ ) and disjoint from Gx ∪ Gt ; see Figure 5. We are now prepared to
specify the asymptotics of ρm+n,m as m,n → ∞, with (m + n)/m ∼ ctg γ , where
0 < γ < π/4.

LEMMA 3.2. Assume that m,n → ∞, with (m + n)/m ∼ ctgγ , where
0 < γ < π/4. Suppose that β(s) have k poles s1, . . . , sk in Eγ and δ(s) have l poles
s̃1, . . . , s̃l in Ẽγ . Then, ∀ integer K ≥ 1,

ρm+n,m −
( ∑

1≤i≤k

B(si) resx(si)β

xn(si)t
m(si)[2U(x(si))t (si) + V (x(si))]

+ ∑
1≤i≤l

D(̃si) rest (̃si )δ

xn(̃si)tm(̃si)[2Ũ (t (̃si))x(̃si) + Ṽ (t (̃si))]
)

≈ 1

xn(γ )tm(γ )

∑
0≤j≤K

cj (γ )m−j−1/2,

(3.6)

where cj (γ ) are constants.

The symbol ≈ indicates a standard asymptotic expansion (see, e.g., [7]):
G(m,n)≈GK(m,n) if the difference G(m,n)−GK(m,n) decreases as m,n→∞
faster than any term from GK(m,n).

To prove Lemma 3.2, one simply moves the integration contours in (3.1) to
�γ and �̃γ and uses Cauchy’s theorem, together with the standard saddle-point
approximation of the integrals along shifted contours. (See, e.g., Theorem 1.7
in [7], Chapter 4.)
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Explicit formulas for coefficients cj (γ ) are rather cumbersome. For example,

c0(γ ) = [
B(S(γ ))β(S(γ )) + D(S(γ ))δ(S(γ )) + A(S(γ ))ρ00

]
× H(γ )1/2[2U(x(γ ))t (γ ) + V (x(γ ))

]−1

×
∣∣∣∣d2xctg γ−1(γ )T (x(γ ))

dx2

∣∣∣∣−1/2

,

(3.7)

with c0(0) = limγ→0 c0(γ ) = 0, c0(π/4) = limγ→π/4 c0(γ ) = 0. We also have

c1(0) = lim
γ→0

c1(γ )

= δ(x3)[b01D(x3, T (x3)) − (2d01x3 − 1)B(x3, T (x3))] + A(x3)b01ρ00

(B(x3, T (x3)))2

×
√

x3(x3 − x1)(x3 − x2)(x4 − x3)

2p01x
2
3 + p−10 − x3

,

(3.8)

c1(π/4) = lim
γ→π/4

c1(γ )

=
[
β(t3)[(d01t3 + d0−1)B(X(t3), t3) − (2b01X(t3) − 1)D(X(t3), t3)]

D2(X(t3), t3)

+ [(d01t3 + d0−1)A(X(t3)) − D(X(t3), t3)/2]ρ00

(D(X(t3), t3))2

]

×
√

t3(t1 − t3)(t2 − t3)(t4 − t3)

2(p0−1 + p01t3)
.

(3.9)

Lemma 3.2 implies that, for 0 < γ < π/4, the asymptotics of ρm+n,m are
determined either by the saddle point or by the lowest (see Definition 3.2) among
the poles from functions β and δ in Eγ and Ẽγ , respectively. To compare the
contributions of these points we need a more detailed analysis. This is done in the
remaining parts of Section 3.

3.3. Poles of β and δ on T. Consider a selection of reference points on 
0,

σ1 := (1,1), σ2 := (
X(t2), t2

)
,

σ3 :=
(

p01 + p−10

p0−1 + p10
,1

)
, σ4 := (

x3, T (x3)
)
,

σ5 := (
X(t3), t3

)
, σ6 :=

(
1,

p0−1

p01

)
, σ7 := (

x2, T (x2)
)
.

(3.10)

(Points σ2 and σ7 are not essential for the forthcoming argument and are only
included for definiteness.) We also choose on 
0 the orientation agreeing with
the order of the σi’s and treat connected closed (resp. open or semiopen) pieces
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FIG. 6.

of this curve as “segments” [s′, s′′] ⊂ 
0 (resp. “intervals” or “semiintervals”
(s′, s′′), [s′, s′′), (s′, s′′] ⊂ 
0) directed according to this orientation. See Figure 6.
Then S(γ ) ∈ (σ4, σ5), with limγ→0 S(γ ) = σ4, limγ→π/4(γ ) = σ5 and Eγ ∩
0 =
(S(γ ), σ6) and Ẽγ ∩ 
0 = (σ3, S(γ )).

Dealing with the level curves of χγ , we will use the property of structural
stability. See Lemma 3.3 from [12] and Lemma 4 from [15]. As in these papers, the
structural stability in the context of this work means that the topological picture of
the level curves of χγ for 0 < γ < π/4 is the same as that for γ = 0. [The latter can
be established in a straightforward fashion. See Figures 7(a) and (b).] Formally,
there exists a conformal homeomorphism of T transforming the foliation by the
level curves for γ ∈ (0, π/4) to that for γ = 0 and preserving the order of the level
curves (so that for any pair of level curves, if one of them is inferior to another then
their images are ordered in the same way). Observe that the structural stability is
not extended to γ = π/4; see Figure 7(c).

Note that the level curves of χγ through S(γ ) are orthogonal to each other and
partition the neighborhood of S(γ ) into four connected domains. Each of these
curves is homotopic to 1 and the two intersect only at S(γ ). The same is true of
the level curves of χγ through point s(γ ; 2). (The above facts are straightforward
for γ = 0 and hold for 0 < γ < π/4, owing to the structural stability.)

On the other hand, for any point s∗ ∈ 
0 different from s(γ ; 2) and S(γ ), the
level set {s :χγ (s) = χγ (s∗)} has two disjoint connected components (one passing
through s∗ and the other not). Both these components are homotopic to 1. (Again,
these facts are straightforward for γ = 0 and hold for 0 < γ < π/4, owing to the
structural stability.)

In Lemmas 3.3 and 3.4 we assume that 0 < γ < π/4.
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FIG. 7.

LEMMA 3.3. Assume that function β (resp. δ) has poles in Eγ (resp. Ẽγ ).
Then the lowest among them lies on 
0. Moreover, on the level curve of the
function χγ through this pole, there are no other poles of β (resp. δ).

PROOF. Consider first function δ in domain Ẽγ . Given s∗ ∈ [σ3, S(γ )), denote
by �γ (s∗) the connected component of the level set {s :χγ (s) = χγ (s∗)} passing
through s∗. As s∗ tends to S(γ ), cycle �γ (s∗) approaches one of the level curves
through S(γ ); we denote this limiting curve again by �γ (S(γ )). Thus, �γ (s∗) is
defined for s∗ ∈ [σ3, S(γ )]. See Figure 8.

FIG. 8.
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FIG. 9.

We will prove that the image ht�γ (s∗) of �γ (s∗) on S lies inside the circle
�(s∗) = {z : |z| = t (s∗)}, apart from the point z = t (s∗) where ht�γ (s∗) and
�(s∗) touch each other. See Figure 9.

Clearly, the real point t (s∗) is a common point for �(s∗) and ht�γ (s∗). We
want to show that (a) t (s∗) is a unique common point, and (b) all other points of
ht�γ (s∗) lie strictly inside circle �(s∗).

To prove (a), we simply check that ∀ s∗ from [σ3, S(γ )], curve ht�γ (s∗) and
circle �(s∗) intersect only at t (s∗). Assume the opposite. Then there would exist
a nonreal pair (x, t) with |xctgγ−1t| = xctg γ−1(s∗)t (s∗) and |t| = t (s∗). Then
|x| = x(s∗). But (x, t) and (x(s∗), t (s∗)) must both satisfy equation Q(x, t) = 0.
Then the point of the unit circle, (x̃, t̃ ) = (x/x(s∗), t/t (s∗)), satisfies p̃01t̃ /x̃ +
p̃10x̃ + p̃−10/x̃ + p̃0−1x̃/̃t = 1, where p̃i,j = pi,j x

i−j (s∗)tj (s∗) are real positive
coefficients with

∑
i,j p̃ij = 1. By a simple argument about sums of complex

numbers, this is impossible if (x̃, t̃ ) �= (1,1).
To prove (b), it suffices to check that for some γ ∈ (0, π/4) close to π/4,

there is a point s̄(γ ) ∈ �γ (s∗) such that the projected point ht s̄(γ ) lies inside
circle �(s∗). We choose s̄(γ ) = �γ (s∗) ∩ 
1. But from the construction of T
and 
1, it is easy to see that s̄(γ ) always has t (s̄(γ )) < 0 (i.e., is projected on
the negative part of the real line by map ht ) and that limγ→π/4− x(s̄(γ )) > x4.
Set ϑ := ctgγ − 1 and (x̄(ϑ), t̄(ϑ)) := (x(s̄(γ )),−t (s̄(γ ))), ϑ ∈ (0,∞). Then
x̄ϑ (ϑ)t̄(ϑ) = xϑ(s∗)t (s∗). Take the derivative of t̄ (ϑ) at ϑ = 0+,

dt̄(ϑ)

dϑ

∣∣∣
ϑ=0+ = t (s∗) ln x(s∗) − t̄ (0+) ln x̄(0+).

This derivative is less than 0, as t (s∗) = −t (s̄(π/4−)) = t̄ (0+) and x2 ≤ x(s∗) ≤
x3 < x4 ≤ x(s̄(π/4−)) = x̄(0+). Thus for γ sufficiently close to π/4, the
projection ht s̄(γ ) ∈ �(s∗). As point s̄(γ ) depends continuously on γ ∈ (0, π/4),
the same is true for all 0 < γ < π/4.

We now can complete the proof of the assertion of Lemma 3.3 concerning
function δ by quoting the Viventi–Pringsheim theorem (see, e.g., [1], Section 17E,
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pages 143 and 144). This theorem says that, for a function analytic in a
neighborhood of zero and with nonnegative Taylor coefficients, the so-called
nearest singularity (i.e., the singular point with the smallest absolute value) occurs
on the real axis. A similar argument is used for function β . �

LEMMA 3.4. (a) Let s0 be the lowest among the poles of β in Eγ and of δ

in Ẽγ . If s0 is a pole of function β then B(ξs0) = 0. In this case its multiplicity
equals that of the corresponding zero ξs0 of B , provided that δ(ξs0)D(ξs0) +
A(ξs0)ρ00 �= 0. If s0 is a pole of δ then B(ηs0) = 0. In this case its multiplicity
equals that of the corresponding zero ηs0 of D, provided that β(ηs0)B(ηs0) +
A(ηs0)ρ00 �= 0.

(b) Let s ∈ (σ1, σ4) ∈ 
0,B(s) = 0 and δ(s)D(s) + A(s)ρ00 �= 0. Then ξs ∈
(σ4, σ6) is a pole of β and B(ξs) �= 0. Similarly, let s ∈ (σ5, σ1) ∈ 
0, D(s) = 0
and B(s)β(s) + A(s)ρ00 �= 0. Then ηs ∈ (σ3, σ5) is a pole of δ and B(ηs) �= 0.

PROOF. (a) Let s0 be the lowest pole. Suppose, for example, that s0 is the
pole of β in Eγ . Then by Lemma 3.4, s0 ∈ Eγ ∩ 
0 = (S(γ ), σ6). We have
β(s0) = β(ξs0), where ξs0 ∈ (σ1, ξS(γ )). Then ξs0 is also a pole of β . Note that
(2.14) is valid at ξs0. It implies that either B(ξs0) = 0 or ξs0 is a pole of δ. We
will show that the last case is impossible.

In fact, in this case ξs0 ∈ (σ3, ξS(γ )), as δ is analytic on [σ1, σ3]. Note that
t (ξs0) < t(s0); this fact holds also for s close to σ4 and then, by continuity, for
all s ∈ (σ4, σ6) [as t (ξs) �= t (s) for any s ∈ T, except for x(s) = x1, x2, x3 or x4].
Thus xctgγ−1(ξs0)t (ξs0) < xctg γ−1(s0)t (s0). It then follows that ξs0 is a pole
of δ in Ẽγ inferior to s0, which is impossible. Hence, B(ξs0) = 0. By (2.14) the
multiplicity of ξs0 equals that of the corresponding zero of B . Analogously, if s0

is the pole of δ in Ẽγ then D(ηs0) = 0.
(b) Let s ∈ (σ1, σ4) ∈ 
0. As B(s) = 0; δ(s)D(s) + A(s)ρ00 �= 0. From (2.14)

it follows that s is the pole for β . Then ξs is also the pole of β , as β(s) = β(ξs).
It is easy to check that B(s) − B(ξs) = p′

01(t (s) − t (ξs)) �= 0 for all s ∈ T, except

FIG. 10.
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for x(s) = x1, x2, x3 or x4. The case of s ∈ (σ5, σ1) is similar. This completes the
proof. �

LEMMA 3.5. For any s ∈ (σ1, σ4] (resp. s ∈ [σ5, σ1)) function B (resp. D)
has a zero on the interval (σ1, s) [resp. (s, σ1)] iff B(s) > 0 [resp. D(s) > 0].
Moreover, this zero, whenever it exists, is unique and of the first order.

PROOF. The proof follows the same argument as Lemma 9 in [15] or
Lemma 2.5 in [12] and we only sketch it briefly. The ergodicity condition
(1.3) plays the crucial role; observe that B(σ1) = 0 and the derivative B ′

x(x,

T1(x))|x=1,T1(1)=1 = B ′
x(σ1) = E−1

2 (E2E
b
1 − E1E

b
2 ) < 0. Hence, by continuity

there is an odd number of zeros of B on the interval in question if B(s) > 0 and
even (may be zero) if B(s) < 0. We can show in the same way as in Lemma 2.5
of [12] that B(s) does not have zeros of order more than 1 for any jumps pb

ij .
Then the number of zeros of B(s) should be the same for all parameters from
the set {pb

ij ≥ 0 :
∑

i,j pb
ij = 1,B(s) > 0} and for all parameters from the set

{pb
ij ≥ 0 :

∑
i,j pb

ij = 1,B(s) < 0}. Thus, it suffices to check explicitly a special

simple case from these sets where, say, for example, at most two values pb
ij are

not zeros. The reasoning is the same for D(s); note only that D(σ1) = 0 and the
derivative D′

t (σ1) = E2/(E2 −E1)−2d0−1 = 2(d01E2 +d0−1E1)/(E2 −E1) < 0.
�

4. Results for random walk L.

4.1. Analysis for a fixed γ . We are now in a position to offer our results for
RW L. We consider four cases, depending on what singularity is “dominant” in
terms of the contribution into the right-hand side of (3.6). In Case 1 we have a
saddlepoint domination, in Case 2 the domination of a pole of β , in Case 3 of
a pole of δ, and in Case 4 a competition between two poles.

Case 1.

B

(
x(γ ),

p0−1x
2(γ )

p01t (γ )

)
< 0, D

(
p01t

2(γ ) + p−10t (γ )

(p10t (γ ) + p0−1)x(γ )
, t (γ )

)
< 0.

In this case we rely on the information about the solution (x(γ ), t (γ )) to (3.4).
Case 2.

B

(
x(γ ),

p0−1x
2(γ )

p01t (γ )

)
> 0, D

(
p01t

2(γ ) + p−10t (γ )

(p10t (γ ) + p0−1)x(γ )
, t (γ )

)
< 0.

In this case, the system of equations

B(x, t) = 0, Q(x, t) = 0(4.1)

has a unique solution (x0, t0) satisfying the inequalities 1 < x0 < x(γ ) and
t0 = T1(x0) < T2(x0) [recall Q(x,T1(x)) ≡ Q(x,T2(x)) ≡ 0]. [Under E2 < 0,
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E1 − E2 < 0 this means that s0 = (x0, t0) is a unique zero of B(s) on (σ1, ξs(γ ))

according to Lemma 3.5; see Figure 6.] Furthermore, owing to Lemma 3.4, β has
a pole of the first order at x0.

Case 3.

B

(
x(γ ),

p0−1x
2(γ )

p01t (γ )

)
< 0, D

(
p01t

2(γ ) + p−10t (γ )

(p10t (γ ) + p0−1)x(γ )
, t (γ )

)
> 0.

In this case the system of equations

D(x, t) = 0, Q(x, t) = 0(4.2)

has a unique solution (x̃0, t̃0) satisfying the inequalities 1 < t̃0 < t(γ ) and x̃0 =
X1(̃t0) < X2 (̃t0) (Q(X1(t), t) ≡ Q(X2(t), t) ≡ 0). [Under E2 < 0, E1 − E2 < 0
this means that s̃0 = (x̃0, t̃0) is the unique zero of D(s) on (ηs(γ ), σ1) according
to Lemma 3.5.] Furthermore, according to Lemma 3.4, δ has a pole of the first
order at t̃0.

Case 4.

B

(
x(γ ),

p0−1x
2(γ )

p01t (γ )

)
> 0, D

(
p01t

2(γ ) + p−10t (γ )

(p10t (γ ) + p0−1)x(γ )
, t (γ )

)
> 0.

Here (4.1) have a unique solution (x0, t0) satisfying the inequalities of the Case 2,
and (4.2) have a unique solution (x̃0, t̃0) satisfying the inequalities of Case 3. Thus,
either x0 is a pole of the first order for β or t̃0 a pole of the first order for δ.

However, we also have to avoid certain additional equalities. More precisely,
in Case 1 we assume that for 0 < γ < π/4 constant c0(γ ) �= 0 in (3.7), which is
equivalent to

β(S(γ ))B(S(γ )) + δ(S(γ ))D(S(γ )) + ρ00A(S(γ )) �= 0,(4.3)

while for γ = 0 or π/4 constant c1(γ ) �= 0 in (3.8) or (3.9). In Case 2 we assume
that

δ(s0)D(s0) + A(s0)ρ00 �= 0,(4.4)

in Case 3,

β(̃s0)B(̃s0) + A(̃s0)ρ00 �= 0,(4.5)

and in Case 4 that one of (4.4) and (4.5) holds true.
Under these assumptions we are able to specify the behavior of ρm+n,m as

m,n → ∞, (m + n)/n → ctg γ .

THEOREM 4.1. (i) Suppose that 0 < γ < π/4 and Case 1 holds. Then

ρm+n,m ∼ c0(γ )√
m

x−n(γ )t−m(γ ),(4.6)

where c0 is determined in (3.7).
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(ii) Suppose that γ = 0 or γ = π/4 and Case 1 holds. Then

ρn,0 ∼ c1(0)

n
√

n
x−n

3 or ρm,m ∼ c1(π/4)

m
√

m
t−m
3 ,(4.7)

respectively, where c1(0), c1(π/4) are constants from (3.8) and (3.9) (which
therefore are positive).

THEOREM 4.2. (i) Suppose that 0 < γ < π/4 and Case 2 holds. Then

ρm+n,m ∼
[
B

(
x0,

p0−1x
2
0

p01t0

)
resx0 β

]
x−n

0

(
p0−1x

2
0

p01t0

)−m

.(4.8)

(ii) Suppose that γ = 0 or γ = π/4 and Case 2 holds. Then

ρn,0 ∼ [
resx0 β

]
x−n+1

0 or ρm,m ∼ [
resξ t0 δ

](p0−1x
2
0

p01t0

)−m+1

,(4.9)

respectively. Furthermore, if D(s0) and A(s0) have the same sign then (4.4) holds
true and can be omitted from the assumptions.

THEOREM 4.3. (i) Suppose that 0 < γ < π/4 and Case 3 holds. Then

ρm+n,m ∼
[
D

(
p01t̃

2
0 + p−10 t̃0

(p10 t̃0 + p0−1)x̃0
, t̃0

)
res̃t0 δ

]

×
(

p01t̃
2

0 + p−10 t̃0

(p10 t̃0 + p0−1)x̃0

)−n

t̃−m
0 .

(4.10)

(ii) Suppose that γ = 0 or γ = π/4 and Case 3 holds. Then

ρn,0 ∼ [
resηx̃0 β

]( p01 t̃
2

0 + p−10t̃0

(p10t̃0 + p0−1)x̃0

)−n+1

or

ρm,m ∼ [
res̃t0 δ

]̃
t−n+1
0 ,

(4.11)

respectively. Furthermore if B(̃s0) and A(̃s0) have the same sign then (4.5) holds
true and can be omitted from the assumptions.

THEOREM 4.4. (i) Suppose that 0 < γ < π/4 and Case 4 holds. Then

ρn+m,m ∼
[
B

(
x0,

p0−1x
2
0

p01t0

)
resx0 β

]
x−n

0

(
p0−1x

2
0

p01t0

)−m

+
[
D

(
p01t̃

2
0 + p−10 t̃0

(p10 t̃0 + p0−1)x̃0
, t̃0

)
res̃t0 δ

]

×
(

p01 t̃
2

0 + p−10 t̃0

(p10 t̃0 + p0−1)x̃0

)−n

t̃−m
0 .

(4.12)
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(ii) Suppose that γ = 0 or γ = π/4 and Case 4 holds. Then

ρn,0 ∼ [
resx0 β

]
x−n+1

0 + [
resηx̃0 β

]( p01 t̃
2

0 + p−10 t̃0

(p10t̃0 + p0−1)x̃0

)−n+1

,(4.13)

ρm,m ∼ [resξ t0 δ]
(

p0−1x
2
0

p01t0

)−m+1

+ [res̃t0 δ]̃t−m+1
0 ,(4.14)

respectively. Furthermore, if D(s0) and A(s0) have the same sign or B(̃s0) and
A(̃s0) have the same sign then one of (4.4) or (4.5) holds true and can be omitted
from the assumptions.

In the remaining part of Section 4.1 we discuss the proof of Theorems 4.1–4.4 in
the situation where E2 < 0,E1 −E2 < 0; see Proposition 2.1(a). The proof in other
situations is similar and based on Figures 3(b)–(e). Recall, S(γ ) = (x(γ ), t (γ )) is
the saddlepoint of χγ on T.

PROOF OF THEOREMS 4.1–4.4. Suppose first that 0 < γ < π/4.
Case 1. Here B(ξS(γ )) < 0 and D(ηS(γ )) < 0. By Lemma 3.5, there are no

zeros of B on (σ1, ξS(γ )) and of D on (ηS(γ ), σ1). By Lemmas 3.3 and 3.4,
there are no poles of β and δ in Eγ and Ẽγ , respectively. Then by Lemma 3.2, the
asymptotics of ρm+n,n is determined by the saddle point S(γ ). Hence, we get (4.6),
provided that (4.3) holds true.

Case 2. In this case B(ξS(γ )) > 0 and D(ηS(γ )) < 0. By Lemma 3.5, there is a
unique zero s0 = (x0, t0) of B on (σ1, ξS(γ )), which is of the first order, and there
are no zeros of D on (ηS(γ ), σ1). Then by Lemma 3.4(b), ξs0 is the pole of β

provided that (4.4) holds true. By Lemma 3.4(a), this pole is the lowest among the
poles of β in Eγ and of δ in Ẽγ , and its multiplicity equals 1. Then the asymptotics
of ρm+n,n is determined by the pole ξs0, and (4.8) follows.

Assume now that D(s0) and A(s0) have the same sign but (4.4) is not true. Then
δ(s0) < 0. Since δ(s) = ∑∞

m=1 ρm,mt (s)m−1 in [σ1, σ3], then s0 ∈ (σ3, ξS(γ )) and
there exists a pole s′ of δ(s) on (σ3, s0). Then the set of poles of β(s) in Eγ or
of δ(s) in Ẽγ is not empty and by Lemma 3.4(a), the lowest of them, s′′, should
satisfy B(ξs′′) = 0 or D(ξs′′) = 0. Then by Lemma 3.5 it is a pole of β(s) and
s′′ = ξs0. But then ξs′′ = s0 is a pole of β(s) as well. The last case is impossible, as
β(s) = (−D(s)δ(s) − A(s)ρ00)/B(s), where the numerator is analytic and equals
zero at s = s0 and the denominator has zero of the first order at s0 by Lemma 3.5.
Hence, (4.4) is satisfied.

Case 3. Here B(ξS(γ )) < 0 and D(ηS(γ )) > 0. The analysis is completely
similar to Case 2 provided that (4.5) holds true.

Case 4. In this case B(ξS(γ )) > 0 and D(ηS(γ )) > 0. By Lemma 3.5, there is
a unique zero of the first order of B on (σ1, ξS(γ )) and a unique zero of the first
order of D on (ηS(γ ), σ1). Then by Lemma 3.4(b), at least one of the points ξs

or ηs is the pole of β or δ in Eγ or Ẽγ , respectively, provided that at least one of
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(4.4) or (4.5) hold. By Lemma 3.4(a), the lowest pole is either ξs or ηs, and it is
of the first order. Thus by Lemma 3.2, we have the asymptotics (4.12).

Now assume that D(s0) and A(s0) have the same sign or B(̃s0) and A(̃s0) have
the same sign but none of (4.4) or (4.5) holds true. Then by the same reasoning as
in Case 1 there exists the lowest pole s′′ and by Lemma 3.4(a) either ξs′′ = s0 is
a pole of β(s) or ηs′′ = s̃0 is a pole of δ(s). Neither case is possible, as these are
zeros of B(s) and D(s) of the first order. Thus one of (4.4) or (4.5) is satisfied.

For γ = 0 or γ = π/4, the proof is different. We have to find the asymptotics of
Taylor’s coefficients of functions β and δ at zero. Our proof relies on Theorem A.1
from the Appendix. We will give a detailed argument for γ = 0 only, as the changes
for γ = π/4 are purely technical.

Case 1. By Lemma 3.5, there are no zeros of B and D in (σ1, σ4) and (ησ4, σ1),
respectively. Then there are no poles of β in [σ4, σ6]. In fact, assume the contrary.
Let s be the lowest pole for γ = 0. As β(s) = β(ξs), ξs ∈ (σ1, σ4) is also a pole
of β . From (2.3) at ξs it follows that either B(ξs) = 0, which is impossible by
Lemma 3.5, or ξs is a pole of δ. In the latter case ξs ∈ (σ3, σ4), and ηξs is a
pole for δ. Note that ηξs ∈ (ησ4, σ1) ⊂ (σ5, σ1). Moreover, ηξs ∈ (s, σ1), as a
consequence of the fact that t (ηξs) = t (ξs) < t(s). [For s close to σ4, obviously
t (ξs) < t(s). Then, since t (ξs) �= t (s) for no one s ∈ (σ4, σ6), this remains true
for all s ∈ (σ4, σ6).] From (2.3) at ηξs it follows that either D(ηξs) = 0, which is
impossible by Lemma 3.5, or ηξs is a pole of β . But ηξs ∈ (s, σ1) is inferior to s.
So, the first singularity of β on Cx is the point x(σ4) = x3. In a neighborhood of
this point,

β(x) = −D(x,T (x))δ(x) + A(x)ρ00

B(x,T (x))
.

Then the main term in the expansion of β(x) at x3 is of order (x − x3)
1/2. By

Theorem 6.1 we get (4.7), provided that c1(0) �= 0.
Case 2. In this case there is a unique zero s0 = (x0, t0) of B on (σ1, σ4), which

is of the first order, and there are no zeros of D on (ησ4, σ1). Then the lowest pole
of β is ξs0. To show this, note first that it is indeed a pole because β(s) = β and
by (2.14) at ξs0, provided that (4.4) holds true. Assume that a point s is the lowest
pole. Then as in Case 1, by (2.14), either B(ξs) = 0 or δ has a pole at ξs. The last
fact is again impossible: otherwise either D(ηξs) = 0, contradicting Lemma 3.5,
or ηξs is a pole of β inferior to s. Thus ξs = s0, and by (2.14) and Lemma 3.5, ξs0
is a pole of the first order. By Theorem 6.1, the asymptotics of the coefficients of
β(x) is determined by x(s0).

Case 3. In Case 3, Lemma 3.5 implies that there are no zeros of B in (σ4, σ1),
and there is a unique zero of the first order, s̃0 = (x̃0, t̃0) of D on (ησ4, σ1). Then
ξηs̃0 is the pole of β on (σ1, σ4), provided (4.5) holds true. In fact, δ has a pole at
s̃0 by (2.14). Then it has a pole at ηs̃0 ∈ (σ1, σ4). Then by (2.14), ηs̃0 is a pole of β ,
and so is ξηs̃0. Moreover, by the same arguments as in Case 2 , ξηs̃0 is the lowest



1340 I. A. KURKOVA AND Y. M. SUHOV

pole and is of the first order. By Theorem 6.1, the asymptotics of the coefficients
of function β is determined by x(ξηs̃0) = x(ηs̃0).

Case 4. In this case the lowest pole of β is one of ξs0 and ξηs̃0, provided that at
least one of (4.3) or (4.4) hold. Therefore, the asymptotics of β(x) is determined
by one of these poles. �

REMARK 4.1. We managed to eliminate assumptions (4.4) and (4.5) for a
certain subclass of RWs. It includes JS-queues considered above. Note also that
even if (4.3) is not true, we know the next term of the asymptotics from the
saddlepoint approximation as in (3.6).

However, we believe that (4.3)–(4.5) always hold. The reason is the beautiful
argument suggested in [15], which, however, we cannot complete in our situation.
Suppose that one of these assumptions fails. Then the correspondng asymptotics
of stationary probabilities is of smaller order. More precisely, if (4.3) fails, then
the factor 1/(n

√
n) is added according to (3.6) and if (4.4) or (4.5) fails,

then the asymptotics is determined by the saddle point, which is inferior to ξs0
or ηs̃0, respectively. Consider a slightly more general RW L̃, where jumps from
the origin can be performed to a finite number of points (k, l) ∈ Z2+, k ≥ l,
with probabilities p0

k,l and to symmetric points (l, k) with equal probabilities
p0

l,k = p0
k,l . Then only the function A(x, t) = (

∑
k,l p

0
k,lx

k−l t l − 1)/2 is modified
while the rest of the analysis remains the same. Suppose that one could find the
collection of p0

k,l such that the corresponding inequality among (4.3)–(4.5) is valid.
Then the asymptotics of stationary probabilities ρ̃m+n,m for L̃ is determined by
Theorems 4.1–4.4. Thus ρm+n,m/ρ̃m+n,m → 0. But the stationary probability of
state (m + n,m) for a Markov chain is equal to the stationary probability of (0,0)

times the mean number of visits to (m + n,m), starting from (0,0) and prior
coming back to (0,0). As the jumps of L and L̃ are the same from all points of Z+

2
except for (0,0), then ρm+n,m/ρ̃m+n,m ≥ C > 0 for some C, which contradicts
ρm+n,m/ρ̃m+n,m → 0.

The open question is: Could one find probabilities p0
k,l such that, say, (4.4) holds

true? Since at least one of x(s0) or t (s0) is > 1, one could take, for example,
p0

k,0 = 1/2 or p0
k,k = 1 for k large enough, to make A(s0) large. Then it would

suffice to show that δ(s0)/ρ00 remains bounded when k grows. In [15] an integral
representation established in [13] is used; unfortunately, we do not have such a
representation in the general SHC case.

4.2. Analysis for fixed jump probabilities. Theorems 4.1–4.4 analyze the
situation for a given γ depending on which among Cases 1–4 occurs. If we fix
vectors p, b and d and vary γ then the asymptotics of ρm+n,m is determined by
the signs of B(x3, T (x3)) and D(X(t3), t3). Let us now specify angles γ0 and γ̃0
announced in the Introduction.

If B(x3, T (x3)) < 0 [or B(x3, T (x3)) = 0,B ′
x(x, T1(x))|x=x3− > 0], then by

Lemmas 3.4 and 3.5 , ∀γ ∈ [0, π/4] there is no pole of β(s) in Eγ ∩ 
0. Then
we set γ0 = 0.
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Now assume that B(x3, T (x3)) > 0 [or B(x3, T (x3)) = 0, B ′
x(x,

T1(x))|x=x3− < 0]. Then take the unique solution (x0, t0) of the system of equa-
tions Q(x, t) = B(x, t) = 0 satisfying the inequalities 1 < x0 < x3 and t0 =
T1(x0) < T2(x0). In other words, s0 = (x0, t0) is the unique zero of B(s) on (σ1, σ4)

(it exists by Lemma 3.5). Then ξs0 ∈ (σ4, σ6) is the pole of β(s). Let γ +
0 ∈ (0, π)

be the angle corresponding to the pole ξs0 by the homeomorphism γ → S(γ ). In
view of (3.4), it suffices to specify tg γ +

0 ,

tgγ +
0 = p0−1x0/t0 − p01t0/x0

p10x0 − p−10/x0
.

If γ +
0 happens to be greater than π/4, then ξs0 ∈ (σ5, σ6), in which case ξs0 for

all γ ∈ [0, π/4] lies in Eγ ∩ 
0 and contributes to the asymptotics of ρm+n,m.
Otherwise, that is, if γ0 ≤ π/4, this is true only for γ ∈ [0, γ +

0 ]. Hence, in this case
we set γ0 = min{π/4, γ +

0 }.
Similarly, if D(X(t3), t3) < 0 [or D(X(t3), t3) = 0, D′

t (X1(t), t)|t=t3− > 0]
then ∀γ ∈ [0, π/4], there is no pole of δ(s) in Ẽγ ∩ 
0. Then we set γ̃0 = π/4.

On the other hand, if D(X(t3), t3) > 0 [or D(X(t3), t3) = 0,D′
t (X1(t),

t)|t=t3− < 0] then we take the unique solution (x̃0, t̃0) of the system of equations
Q(x, t) = B(x, t) = 0 satisfying the inequalities 1 < t̃0 < t3 and t̃0 = T1(x̃0) <

T2(x̃0). In other words, s̃0 = (x̃0, t̃0) is the unique zero of D(s) on (σ5, σ1) (it
exists by Lemma 3.5). Let γ̃ −

0 ∈ (−3π/4, π/4) be the angle corresponding to the
pole ηs̃0 = (ηx̃0, t̃0) ∈ (σ3, σ5) of δ(s) by the homeomorphism γ → S(γ ). Again,
in view of (3.4) it suffices to specify tg γ̃ −

0 ,

tg γ̃ −
0 = t̃0(p01(p10 t̃0 + p0−1)

2x̃2
0 − p0−1(p01 t̃0 + p−10)

2)

p10(p01 t̃
2

0 + p−10 t̃0)2 − p−10(p10 t̃0 + p0−1)2x̃2
0

.

If γ̃ −
0 happens to be < 0 then ηs̃0 ∈ (σ3, σ4), in which case ηs̃0 for all γ ∈ [0, π/4]

lies in Ẽγ ∩
0 and contributes to the asymptotics of ρm+n,m. Otherwise, that is, if
γ̃ −

0 ≥ 0, this is true only for γ > γ̃ −
0 . Hence, in this case we set γ̃0 = max{0, γ̃ −

0 }.
We are now able to formulate the following consequence of Theorems 4.1–4.4.

COROLLARY 4.5. (i) For γ ∈ [0,min{γ0, γ̃0}), the asymptotics of ρm+n,m is
determined by the pole of β; see (4.8) and (4.9). Furthermore, if γ0 = γ̃0 = π/4
and γ +

0 > π/4, then (4.9) holds true for γ = γ0 = γ̃0.
(ii) For γ ∈ (max{γ0, γ̃0}, π/4] the asymptotics of ρm+n,m is determined by

the pole of δ, see (4.10) and (4.11). Furthermore, if γ0 = γ̃0 = 0 and γ̃ −
0 < 0,

then (4.11) holds true for γ = γ0 = γ̃0.
(iiia) If γ̃0 < γ0, then for γ ∈ (γ̃0, γ0) the asymptotics of ρm+n,m is determined

by the lowest of two poles of β and δ; see (4.12). Furthermore, if γ̃0 = 0 and
γ̃ −

0 < 0 or γ0 = π/4 and γ +
0 > π/4, then (4.13) holds true for γ = γ̃0 or γ = γ0,

respectively.
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(iiib) If γ0 < γ̃0, then for γ ∈ (γ0, γ̃0) the asymptotics of ρm+n,m is determined
by the saddlepoint; see (4.6). Furthermore, if γ0 = 0 or γ̃0 = π/4, then (4.7) holds
true for γ = γ0 or γ = γ̃0, respectively.

5. The Fayolle–Iasnogorodski argument. In this section we give a recipe
for specifying constants c0(γ ) in (4.6), c1(0), c1(π/4) in (4.7) and the coefficients
resx0 β , resξ t0 δ, res̃t0 δ, resηx̃0 β in (4.8)–(4.14) in terms of the probabilities pij ,
bij , dij of random walk L. More precisely, in (3.8) determining value c0(γ ), we
specify β(S(γ )), δ(S(γ )) and ρ00.

In fact, as was mentioned in the Introduction, the ratios β(s)/ρ00 and δ(s)/ρ00
are first specified for s within an explicitly described domain O on torus T. Next,
one uses the meromorphic continuation of β/ρ00 and δ/ρ00 to the whole of T. To
find ρ00, one then uses an additional normalizing equation [see (5.12)], combined
again with the meromorphic continuation. As a result, β(s) and δ(s) become
determined on the whole of T.

To find β(s)/ρ00 and δ(s)/ρ00 in O, one uses a Riemann–Carleman (R–C) type
boundary problem in a domain M of a standard complex plane and then lifts its
unique solution from M ⊂ C to O ⊂ T: β(s) := β(x(s)), δ(s) = δ(t (s)).

The analysis below of a R–C problem in a standard complex plane C belongs
to Iasnogorodski and Fayolle. Define the closed contour ∂M in a complex x-plane
C (= Cx ),

∂M = X1[t1, t2] ∪ X2[t1, t2](5.1)

and let M be in its interior. The boundary problem arises from an equation,

β(z)

ρ00
V (z) − β(z̄)

ρ00
V (z̄) = U(z), z ∈ ∂M,(5.2)

or a similar equation for δ(z)
ρ00

. The functions V and U are determined on the whole
of C by

V (x) = B(x,T1(x))

D(x,T1(x))
, U(x) = A(X2(T1(x)), T1(x))

D(X2(T1(x)), T1(x))
− A(x,T1(x))

D(x,T1(x))
.(5.3)

One wants a solution β/ρ00 to (5.1) meromorphic in M.
Equation (5.1) is derived as in [5], page 95; in fact it is a direct consequence

of (2.1).
It is convenient to work with analytic, rather than meromorphic, functions in M;

to this end consider the (complex) polynomial

Z(x) = ∏
r∈M∩{|x|>1}:B(r,T1(r))=0

(x − r), x ∈ C(5.4)

[cf. [5], equation (5.4.9)]. Multiply β and divide V by Z; you get an equation
similar to (5.1) and look for a solution (βZ)/ρ00 that is analytic in M. One uses
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here the fact that the poles of β(x) in M coincide with the zeros of function
x → B(x,T1(x)) in M ∩ {|x| > 1}.

A particular feature of problem (5.1) is that its index �argMV (z)/Z(z) equals

2π − 2π
∑

uj ∈{|u|<1}∩M

1
(
B(uj , T1(uj ) = 0

) − 2π
∑

vj ∈{|v|<1}
1
(
D(X1(vj ), vj = 0

)
.

In order to apply standard methods of solution, the index should be reduced to 2π .
This is achieved by introducing the function

ψ(x) =
k∑

i=1

β(x) − β(X1(uk))

(x − X1(uk))ρ00
ai +

m∑
j=1

β(x) − β(X1(T1(vj )))

x − X1(T1(vj ))ρ00
bj .(5.5)

Here, u1, . . . , uk are the zeros of function t �→ D(X1(t), t) in the complex t-plane
C (= Ct ) inside the unit disc and v1, . . . , vm the zeros of function x �→ B(x,T1(x))

in the x-plane C (= Cx) inside the intersection of the unit disc and Mc, the
complement of M (cf. equation (5.4.16) from [5] where a similar function is
written without coefficients ai , bj ). As in (5.4.13) and (5.4.14) from [5], values
β(X1(uk)) and β(X1(T )1(vj )) can be found explicitly:

β(X1(ui))

ρ00
= −A(X1(ui), ui)

B(X1(ui), ui)
,

β(X1(T1(vj )))

ρ00
= U(vk)D(X1(Y1(vj )), T1[X1(T1(vj ))])

B(X1(T1(vj )), T1[X1(T1(vj ))]) .

(5.6)

Coefficients ai , bj are now treated as unknowns: they are found from a system
of linear equations which arises from the condition

k∑
i=1

ai

x − X1(ui)
+

m∑
j=1

bj

x − X1(T1(vj ))

=
(

k∏
i=1

(
x − X1(ui)

) m∏
j=1

(
x − X1(T1(vj ))

))−1

.

(5.7)

Any solution to this linear system (and there always exists one) determines ψ(x)

from (5.5). Then one writes for β/ρ00 the representation

β(x)

ρ00
= ψ(x)R0(x) + R1(x).(5.8)

Here,

R0(x) =
k∏

i=1

(x − X1(ui))

m∏
j=1

(
x − X1(T1(vj ))

)
(5.9)
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and

R1(x) = −
k∑

i=1

ai

A(X1(ui), ui)

B(X1(ui), ui)

R0(x)

x − X1(ui)

+
m∑

j=1

bj

U(vk)D(X1(Y1(vj )), T1[X1(T1(vj ))])
B(X1(T1(vj )), T1[X1(T1(vj ))])

R0(x)

x − X1(T1(vj ))
.

(5.10)

The product ψZ [see (5.4)] is a function analytic in M and satisfying the equation

ψ(z)Z(z)
V (z)R0(z)

Z(z)
− ψ(z̄)Z(z̄)

V (z̄)R0(z̄)

Z(z̄)

= U(z) − R1(z)V (z) + R1(z̄)V (z̄), z ∈ ∂M.

(5.11)

Equation (5.11) has a unique solution which allows us to determine the original
ratio β/ρ00 in M. The recipe for producing an explicit formula for the solution
to (5.11) can be found in [5], pages 125–127 and (5.2.44).

Similarly, one finds the ratio δ/ρ00 in M. Then we lift β/ρ00 and δ/ρ00 on a
domain O ⊂ T bounded by 	1,2

x and 	
1,2
t and make the meromorphic continuation

to the whole torus T described in Theorem 2.2. (After that we can go back to the
complex plane and consider the meromorphic continuation of β/ρ00 and δ/ρ00 to
the whole of C cut along [x3, x4] or [t3, t4], respectively.) Observe that in both
cases the point 1 is reached by an analytic continuation.

The final task is to specify ρ00. This is now easy; from (2.1) we find �(x, t)/ρ00
and then use the straightforward normalization relation

�(1,1)/ρ00 + β(1)/ρ00 + δ(1)/ρ00 + 1 = 1/ρ00.(5.12)

6. Applications to JS-queues. In the case of JS-queues we always have
E1 < E2. Thus we have to consider only two cases, E2 > 0 and E2 < 0,
corresponding to Figures 10(a) and 10(b). Functions B and D have the form

B(x, t) = λ + λ′

2λ + λ′ + 1
t + λ

2λ + λ′ + 1
x2 + 1

2λ + λ′ + 1
− x,(6.1)

D(x, t) = 2λ + λ′

2λ + λ′ + 2
xt + 2

2λ + λ′ + 2
x − t,(6.2)

and the points of branching are

x1,2,3,4 = [
2 + 2λ + λ′ ± 2

√
λ + λ′

± (
(2 + 2λ + λ′)2 ± 4

√
λ + λ′(2 + 2λ + λ′) + 4λ′)1/2]

/(2λ),
(6.3)

t1 = 0,

t2,3 =
[
(2 + 2λ + λ′)2/4 − (2λ + λ′)(6.4)
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±
((

(2 + 2λ + λ′)2/4 − (2λ + λ′)
)2

− 4λ(λ + λ′)
)1/2]/(

2λ(λ + λ′)
)
,

t4 = ∞
with

T (xi) = (2λ + λ′ + 2)xi − λx2
3 − 1

2(λ + λ′)
,(6.5)

X(ti ) = (2λ + λ′ + 2)ti

2(1 + λti)
, i = 1,2,3,4.(6.6)

Recall that X(t3), T (x3) > 1 and X(t3) < x3, T (x3) < t3. For 0 < γ < π/4 the
saddlepoint S(γ ) = (x(γ ), t (γ )) is the unique solution to

(λx − 1/x) tg γ = (λ + λ′)t/x − x/t,

(2λ + λ′ + 2)xt − (λ + λ′)t2 − λx2t − t − x2 = 0,

X(t3) < x(γ ) < x3, T (x3) < t(γ ) < t3.

(6.7)

Recall that x(γ ) strictly decreases and t (γ ) strictly increases with γ , with
x(0+) = x3, t (0+) = T (x3), x(π/4−) = X(t3), t (π/4−) = t3. Unfortunately, we
know no explicit formulas available for x(γ ), t (γ ).

The solutions to (4.1) are

σ1 = (1,1), s0 =
(

1

λ
,

1

λ

)
,(6.8)

and to (4.2),

σ1 = (1,1), s̃0 =
(

2

2λ + λ′ ,
(

2

2λ + λ′
)2)

,(6.9)

and zeros s0 and s̃0 are of the first order.
The lowest of all poles of β and γ can be either ξs0 or ηs̃0 and it must be of the

first order. More precisely, it is a pole of β , if it occurs at ξs0 and of δ, if it occurs
at ηs̃0. We can also calculate ξs0 and ηs̃0:

ξs0 = (
x(s0), t (ξs0)

) =
(

1

λ
,

1

(λ + λ′)λ

)
,

ηs̃0 = (
x(ηs̃0), t (̃s0)

)
=

(
2(4(λ + λ′) + (2λ + λ′)2)

(2λ + λ′)(4λ + (2λ + λ′)2)
,

(
2

2λ + λ′
)2)

.

(6.10)

The point ξs0 corresponds to the angle γ with tgγ = E2/E1 = (λ + λ′ −
1)/(λ − 1) by the homeomorphism γ → S(γ ); see (6.7). If E2 < 0, that is,
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λ + λ′ − 1 < 0, then 0 < tg γ = E2/E1 < 1 and (since both coordiantes of ξs0 are
greater than 1) ξs0 ∈ (σ4, σ5). Thus, if tgγ < E2/E1, ξs0 ∈ Eγ and ξs0 dominates
the contribution of the saddlepoint to the asymptotics of ρm+n,m. If tgγ > E2/E1,
ξs0 /∈ Eγ and ξs0 does not influence these asymptotics. See Figure 10(a). If
E2 > 0, the ergodicity condition (1.1) gives E1 < 0 and tg γ = E2/E1 < 0.
Note that the angles corresponding to the points (1,1) and ξs0 are different by
plus or minus π , as they have the same tangent by (6.7). Thus these two points
should belong to different spheres Ŝi

x , i = 1,2, on T. Therefore, as (1,1) ∈ 1,
then ξs0 /∈ Eγ for any 0 ≤ γ ≤ π/4, and ξs0 has no impact on the asymptotics
of ρm+n,m. See Figure 10(b). This argument allows us to replace the inequalities

B

(
x(γ ),

p0−1x(γ )2

p01t (γ )

)
≷ 0

figuring Cases 1–4 in Section 4 by the more transparent condition λ + λ′ ≷ 1.
However, we cannot get rid of similar inequalities involving function D.

Theorems 4.1–4.4 for the JS-queues take the form of Theorems 6.1 and 6.2
below. Here, we use definitions (6.1)–(6.7), assuming condition (1.1). As before,
we consider the limit m,n → ∞, (m + n)/m → ctgγ , where 0 ≤ γ ≤ π/4.
We then analyze the cases γ = 0, 0 < γ < π/4 and γ = π/4. More precisely,
when λ + λ′ < 1, we distinguish the cases 0 < tg γ < (λ + λ′ − 1)/(λ − 1) and
(λ + λ′ − 1)/(λ − 1) < tgγ < 1. Constants c0(γ ), c1(0) and c1(π/4) from (3.7)–
(3.9) can be specified in terms of λ,λ′ and meromorphic continuations of functions
β and δ. A straightforward calculation gives that A(s0) > 0, A(̃s0) > 0, D(s0) > 0
and B(̃s0) > 0, owing to the ergodicity condition (1.3). Therefore, for the
JS-queues nondegeneracy assumptions (4.4) and (4.5) can be omitted.

THEOREM 6.1. Assume that

D

(
(λ + λ′)(t (γ ))2 + t (γ )

(λt (γ ) + 1)x(γ )
, t (γ )

)
< 0.

(i) Suppose that λ + λ′ < 1.
If γ = 0 then

ρm+n,m ∼ [
resx(s0) β

]
λn+1.(6.11)

If 0 < tgγ < (λ + λ′ − 1)/(λ − 1) then

ρm+n,m ∼
[
B

(
1

λ
,

1

(λ + λ′)λ

)
resx(s0) β

]
λn(

(λ + λ′)λ
)m

.(6.12)

If (λ + λ′ − 1)/(λ − 1) < tg γ < π/4 and the constant c0(γ ) �= 0 in (3.7), that is,

β
(
x(γ ), t (γ )

)
B

(
x(γ ), t (γ )

)
+ δ

(
x(γ ), t (γ )

)
D

(
x(γ ), t (γ )

) + ρ00A(x(γ )) �= 0,
(6.13)
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then

ρm+n,m ∼ c0(γ )√
m

(x(γ ))−n(t (γ ))−m.(6.14)

Finally, if γ = π/4 and c1(π/4) �= 0 in (3.9) then

ρm+n,m ∼ c1(π/4)

m
√

m
t−m
3 .(6.15)

(ii) Suppose that λ + λ′ > 1. If for a given γ ∈ (0, π/4), (6.13) holds then the
asymptotics of ρm+n,m is determined by (6.14). Finally, if γ = 0 (resp. γ = π/4)
and the constant c1(0) �= 0 in (3.8) [resp. c1(π/4) �= 0 in (3.9)] then

ρm+n,m ∼ c1(0)

n
√

n
x−n

3

[
resp.ρm+n,m ∼ c1(π/4)

m
√

m
t−m
3

]
.(6.16)

THEOREM 6.2. Assume that

D

(
(λ + λ′)(t (γ ))2 + t (γ )

(λt (γ ) + 1)x(γ )
, t (γ )

)
> 0.

(i) Suppose that λ + λ′ < 1.
If γ = 0 then

ρm+n,m ∼ [
resx(s0) β

]
λn−1

+ [
resx(ηs̃0) β

]( (2λ + λ′)(4λ + (2λ + λ′)2)

2(4(λ + λ′) + (2λ + λ′)2)

)n−1

.
(6.17)

If 0 < tg γ ≤ (λ + λ′ − 1)/(λ − 1) then

ρm+n,m ∼
[
B

(
1

λ
,

1

(λ + λ′)λ

)
resx(s0) β

]
λn(

(λ + λ′)λ
)m

+
[
D

(
2(4(λ + λ′) + (2λ + λ′)2)

(2λ + λ′)(4λ + (2λ + λ′)2)
,

(
2

2λ + λ′
)2)

rest (̃s0) δ

]

×
(

(2λ + λ′)(4λ + (2λ + λ′)2)

2(4(λ + λ′) + (2λ + λ′)2)

)n(
2λ + λ′

2

)2m

.

(6.18)

If (λ + λ′ − 1)/(λ − 1) ≤ tg γ < 1 then

ρm+n,m ∼
[
D

(
2(4(λ + λ′) + (2λ + λ′)2)

(2λ + λ′)(4λ + (2λ + λ′)2)
,

(
2

2λ + λ′
)2)

rest (̃s0) δ

]

×
(

(2λ + λ′)(4λ + (2λ + λ′)2)

2(4(λ + λ′) + (2λ + λ′)2)

)n(
2λ + λ′

2

)2m

.

(6.19)
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Finally if γ = π/4 then

ρm+n,m ∼ [
rest (̃s0) δ

](2λ + λ′

2

)2(m−1)

.(6.20)

(ii) Suppose that λ + λ′ > 1. If γ = 0 then

ρm+n,m ∼ [
resx(ηs̃0) β

]((2λ + λ′)(4λ + (2λ + λ′)2)

2(4(λ + λ′) + (2λ + λ′)2)

)n−1

.(6.21)

If 0 < γ < π/4 then the asymptotics of ρm+n,n is determined by (6.19) and if
γ = π/4 by (6.20).

It is not difficult to find the angles γ0 and γ̃0. Namely, we have γ0 = arctg (λ +
λ′ − 1)/(λ − 1) if λ + λ′ < 1 and γ0 = 0 if λ + λ′ > 1.

Furthermore, if D(X(t3), t3) < 0 [or D(X(t3), t3) = 0, D′
t (X1(t), t)|t=t3− > 0]

then ηs̃0 /∈ Ẽγ for all γ ∈ [0, π/4] and we put γ̃0 = π/4. Otherwise, that is, if
D(X(t3), t3) > 0 (or D(X(t3), t3) = 0, D′

t (X1(t), t)|t=t3− < 0), ηs̃0 ∈ Ẽγ for some
γ ∈ [0, π/4]. To find the angle γ̃ −

0 ∈ (−3π/4, π/4) corresponding to this pole, we
use (6.7),

tg γ̃ −
0 = 4(λ + λ′)(4λ + (2λ + λ′)2)2 − (2λ + λ′)2(4(λ + λ′) + (2λ + λ′)2)2

4λ(4(λ + λ′) + (2λ + λ′)2)2 − (2λ + λ′)2(4λ + (2λ + λ′)2)2
.

If γ̃ −
0 < 0 then ηs̃0 lies in Ẽγ ∩ 
0 and contributes to the asymptotics of ρm+n,m

for all γ ∈ [0, π/4]. Otherwise, this is true only for γ ≥ γ̃ −
0 . Hence, we have

γ̃0 = max{0, γ̃ −
0 }.

COROLLARY 6.1. (i) For γ ∈ [0,min{γ0, γ̃0}), the asymptotics of ρm+n,m is
determined by the pole of β; see (6.11) and (6.12).

(ii) For γ ∈ (max{γ0, γ̃0}, π/4], the asymptotics of ρm+n,m is determined
by the pole δ; see (6.19) and (6.20). Furthermore, if γ0 = γ̃0 = 0 and γ̃ −

0 < 0,
then (6.21) holds true for γ = γ0 = γ̃0.

(iiia) If γ̃0 < γ0 then for γ ∈ (γ̃0, γ0) the asymptotics of ρm+n,m is determined
by the lowest of two poles of β and δ; see (6.18). Furthermore, if γ̃0 = 0 and
γ̃ −

0 < 0, then (6.17) holds true for γ = γ̃0.
(iiib) If γ0 < γ̃ then for γ ∈ (γ0, γ̃0) the asymptotics of ρm+n,m is determined

by the saddlepoint; see (6.14). Furthermore, if γ0 = 0 or γ̃0 = π/4, then (6.15) and
(6.16) hold true for γ = γ0 or γ = γ̃0, respectively.

REMARK 6.1 (Discussion of border cases λ′ = 0 and λ = 0). If λ′ = 0,
then E1 = E2. This is the case of Figure 3(e) [see Proposition 2.1(e)], which can be
studied similarly to the cases of Figures 3(a)–(c). Then the queuing system consists
of two independent M/M/1 servers and the stationary probabilities ρm+n,m are
known explicitly. The formal substitution λ′ = 0 into Theorems 6.1 and 6.2
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gives the correct result: ρm+n,m ∼ constλ2m+n [in fact ρm+n,m = (1 − λ2)λ2m+n].
Furthermore, in this case γ0 = arctg 1 = π/4 and since ξs0 = ηs̃0, we have that
γ̃0 = π/4. So we are in case (i) of Corollary 6.1: the asymptotics here is determined
by the pole ξs0 of β for all γ ∈ [0, π/4] and λ ∈ (0,1).

On the other hand, if λ = 0, functions Xi(t) and Ti(x), i = 1,2, have only
two branching points, x2 = (λ′ + 2 − 2

√
λ′ )−1, x3 = (λ′ + 2 + 2

√
λ′ )−1, t2 = 0,

t3 = 4(λ′2 + 4)−1. The Riemannian surface is homeomorphic to a sphere, not a
torus. Thus, our analysis has to be modified. This case was studied in detail in [8]
where the functions β(s) and δ(s) were found explicitly. In turn, this leads to
explicit asymptotics of stationary probabilities ρm+n,m.

If we substitute λ = 0 directly into Theorems 6.1 and 6.2 and Corollary 6.1,
we again obtain correct asymptotics. Namely, we have γ0 = 0 if λ′ > 1 and
γ0 = arctg (1−λ′) if λ′ ≤ 1. One can readily check that for λ = 0, D(X(t3), t3) > 0
and tg γ̃ −

0 = ((4 + λ′)2 − 4λ′)/λ′2 > 1. Therefore, γ̃ −
0 ∈ (−3π/4,−π/2) and

γ̃0 = 0. This means that we are in case (ii) or (iiia) of Corollary 6.1. Thus, owing to
Lemma 3.5, the assumptions of Theorem 6.2 hold ∀γ ∈ [0, π/4] and λ′ ∈ (0,2).
By Corollary 6.1, the asymptotics of ρm+n,m is determined by the pole ηs̃0 of δ(s),

ρm+n,m ∼ const
(

λ′2

2(4 + λ′)

)n(
λ′

2

)2m

(6.22)

∀γ ∈ [0, π/4] and λ′ ∈ (0,2). This is precisely the answer given in Section 3
of [8], if one takes i = m, j = m + n and α = 1/λ′. (As was noted before, the
formulas from [8] in addition specify the constant in (6.22).)

We conclude this section by showing how to specify, in the case where
λ, λ′ > 0, the constants in front of geometrically decreasing terms in Theo-
rems 6.1 and 6.2. In this discussion we will repeat, for the case of JS-queues,
some parts of the argument given in Section 5 for a general SHC random walk.
Observe that when λ + λ′ > 1, the function B(x,T1(x)) does not have zeros
with |x| > 1. Otherwise, its unique zero is x = 1/λ where T1(x) = 1/λ. It is a
trivial computation then to check that 1/λ /∈ M as 1/λ /∈ [X(t1),X(t2)]. In fact,
X(t1) = 0, X(t2) = (2λ+λ′ + 2)t2/(2(1 +λt2) > 1/λ due to the ergodicity condi-
tion (1.1) and the fact that t2 ≤ 1. It follows that β is analytic in M and Z(x) ≡ 1,
x ∈ C. Furthermore, the zeros of functions B and D on S are at (1,1), (1/λ,1/λ),
(2/(2λ + λ′),4/(2λ + λ′)2). All these points are outside the open unit disc again
by (1.1). Hence, the index of problem (5.1) equals 2π and function β/ρ00 can be
determined directly from (5.1) without introducing function ψ and performing the
index reduction.

The situation with function δ/ρ00 is only slightly different. Function D(X1(t), t)

has a unique zero outisde the unit disc, at t = 4/(2λ + λ′)2. Under the condition
T (x1) < 4/(2λ+λ′)2 < T (x2) [see (6.5) and (6.6)], this zero belongs to M; other-
wise it doesnot. In the first case, Z(x) = x −4/(2λ+λ′)2, in the second Z(x) ≡ 1,
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x ∈ C. In the first case, the original equation for δ/ρ00 should be multiplied by Z

and solved for δZ/ρ00. As before, the index of problem (5.1) equals 2π and we do
not need function ψ .

So, the explicit formulas for β/ρ00 and δ/ρ00 (or δZ/ρ00) can be obtained
from the solution to general problem (5.2) by substituting the concrete form
of functions A(X2(T1(x)), T1(x)), A(x,T1(x)), B(x,T1(x)), D(x,T1(x)) and
D(X2(T1(x)), T1(x)) [see (6.1), (6.2) and (2.4)], with jump probabilities specified
in Section 1.2 in terms of λ, λ′. The resulting expressions are still cumbersome,
but simpler than in a general SHC case as function ψ is not needed. It means that
the recipe provided in [5], equations (5.2.44) and arguments on pages 125–127, is
applicable without a change.

Summarizing, the algorithm of finding constants c0(γ ) in (6.14), c1(0) and
c1(π/4) in (6.15), (6.16), resx(s0)β in (6.11), (6.12), (6.17) and (6.18), resx(ηs̃0)β

in (6.17), (6.21) and rest (̃s0)δ in (6.18), (6.19), (6.20) is as follows. (i) Calculate
functions V and U in (5.3) by using formulas (6.1), (6.2) and (2.5), with the jump
probabilities specified in terms of λ, λ′. (ii) Solve problem (5.2) in the interior
domain M of the contour ∂M [see (5.1)], taking into account simplifications in-
dicated in the previous paragraph. (iii) “Lift” domain M ⊂ C to the Riemannian
surface T. Obtain the domain O ⊂ T bounded by cycles 	12

x and 	12
t . Substitute

β(s) := β(x(s)), δ(s) = δ(η(s)) for s ∈ O. (iv) By using Galois automorphisms
ξ and η (2.8), prolong β/ρ00, δ/ρ00 meromophically to the whole of T; it will
require finitely many steps. (This procedure is described in detail in Theorem 2.2.)
(v) Calculate ρ00 from (5.12). (vi) Calculate residues resx(s0)β resx(ηs̃0)β rest (̃s0)δ

from the meromorphic continuations constructed in (iv). (vii) Calculate con-
stants c0(γ ) by substituting values of β(S(γ )) and δ(S(γ )) with x(γ ), t (γ )) found
from (6.7), (3.5), (2.3b) into (3.7). (viii) Calculate constants c1(0), c1(π/4) by
substituting values δ(x3, T (x3)) and β(X(t3), t3) into (3.8) and (3.9).

7. The ergodicity criterion.

PROOF OF THEOREM 1.1. To prove the positive recurrency, we use Foster’s
criterion (Theorem 2.2.3 from [6]). Accordingly, L is positive recurrent iff there
exists a positive function f (x, y) on Z2+, a number ε0 > 0 and a finite set A ⊂ Z2+
such that

Ef (x + θx, y + θy) − f (x, y) ≤ −ε0 for all (x, y) ∈ Z2+ \ A,(7.1)

where (θx, θy) is a random vector distributed as the jump of the RW from the state
(x, y) and E stands for the corresponding expectation.

To start with, consider the first pair of inequalities in (1.3) with E2 < 0. Set
f (x, y) :=

√
ux2 + vy2 + wxy for x ≥ y and f (x, y) := f (y, x) for x ≤ y. The

coefficients u, v,w are chosen in the following way. First, we choose u > 0 and w

such that

2uE1 + wE2 < 0, 2uEb
1 + wEb

2 < 0.
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(Note that this is possible under condition E1E
b
2 − E2E

b
1 < 0.) Then we fix

v > w2/(4u) such that (2u + w)E1 + (2v + w)E2 < 0 and (2u + w)d01 −
(2v + w)d0−1 < 0. By Lemma 3.3.3 from [6], because f (x, y) is defined as the
square root of a positive quadratic form in a neighborhood of (x, y), we have

Ef (x + θx, y + θy) − f (x, y)

= (2uEθx + wEθy)x + (2vEθy + wEθx)y

2f (x, y)
+ o(1)

(7.2)

for x �= y, as x2 + y2 → ∞. Furthermore, it is elementary to show that for x = y,

Ef (x + θx, x + θy) − f (x, x)

= (2ud01 − wd0−1)x + (−2vd0−1 + wd01)x

2f (x, x)
+ o(1)

(7.3)

as x → ∞. So property (7.1) is directly verified. The level curves of f look as in
Figure 11(a).

The construction is more involved in the case of the second pair of inequal-
ities (1.3) with E2 ≥ 0. Here we first fix numbers u, v,w where u > 0, −2u <

w < 0, v > w2/(4u), so that

(2u + w)E1 + (2v + w)E2 < 0, (2u + w)d01 − (2v + w)d0−1 < 0.

(Such a choice is possible under the condition E1d0−1 + E2d01 < 0.) Next,
we draw a level curve L1 defined by ux2 + vy2 + wxy ≡ 1 in the domain
{(x, y) ∈ R2+ :y ≤ x ≤ −2uy/w}. At the end point x/y = −2u/w, the tangent
to this curve is parallel to the y-axis. Let us continue L1 smoothly to the domain
{(x, y) ∈ R2+ :x/y > −2u/w}, until the x-axis, by a convex curve L2, which will
be tangent to the x-axis at the end. (L2 may be chosen, e.g., as a quarter of a circle.)

FIG. 11. Level curves of Lyapunov functions: positive recurrence.
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See Figure 11(b) . Set L1 ∪ L2 = L. Then ∀ r > 0 define

f (rx, ry) = r if x ≥ y,

f (rx, ry) = r if x ≤ y, (y, x) ∈ L.
(7.4)

Hence, for some ε > 0 and any (x, y) ∈ Z2+ with x2 +y2 large enough, if x �= y,
then

f (x + Eθx, y + Eθy) − f (x, y) < −5ε.(7.5)

Had f (x, y) been linear, the proof would have been complete. Although this is not
the case, f (x, y) satisfies the so-called principle of local linearity (cf. [6], page 46):
for any (x, y) ∈ R2+ with |x − y| > 1 and x2 + y2 large enough,

inf
φ

sup
‖(x̃,ỹ)−(x,y)‖≤1

|f (x̃, ỹ) − φ(x̃, ỹ)| < ε.(7.6)

Here the infimum is taken over all linear functions φ on R2. [Obviously, the
optimal φ has at (x, y) the level curves tangent to those of f and φ(x, y) =
f (x, y).] Then by (7.5) and Lemmas 3.3.4, 3.3.5 from [6] Foster’s criterion applies
for all sufficiently large (x, y), except for |x − y| ≤ 1. But if |x − y| ≤ 1, (7.2) and
(7.3) are valid and Foster’s criterion holds by the choice of the coefficients u, v,w.

To show that the Markov chain is not positive recurrent, we apply Theorem 2.2.6
from [6]. Namely, for L to be not positive recurrent, it suffices to find a function
f (x, y) on Z2+ and a constant C > 0 such that

Ef (x + θx, y + θy) − f (x, y) ≥ 0

for all (x, y) ∈ {(x, y) :f (x, y) > C}(7.7)

and the sets {(x, y) :f (x, y) > C} and {(x, y) :f (x, y) ≤ C} are both not empty.
If E2 < 0, E1E

b
2 − E2E

b
1 ≥ 0 and E1 < 0, we set f (x, y) = −E2x + E1y for

x ≥ y and f (x, y) = −E2y + E1x for x ≤ y. See Figure 12A(a). In other cases
we use construction (7.4) and the curve L in {(x, y) ∈ R+

2 :x ≥ y} is drawn as
follows. In the case E2 < 0, E1E

b
2 − E2E

b
1 ≥ 0 and E1 ≥ 0, we continue the line

x ≡ 1 from some point (say y = 1/2) down to the x-axis smoothly by a concave
curve which will have the tangent vector between (E1,E2) and (Eb

1 ,Eb
2 ) at the

end. See Figure 12A(b). In the case E2 ≥ 0, d01E2 + d0−1E1 ≥ 0 and E1 < 0, we
continue smoothly the line E2x − E1y ≡ 1 from some point down to the x-axis
by a concave curve tangent to the x-axis at the end. See Figure 12B(a). Finally,
if E2 ≥ 0, d01E2 + d0−1E1 ≥ 0 and E1 ≥ 0, we smooth line x = 1 from some
point down to the x-axis, by a concave curve that is tangent to the x-axis at the
meeting point. See Figure 12B(b). In all these cases we have the inverse inequality
to (7.5) and the principle of local linearity (7.6) for |x − y| > 1 is valid, which
implies (7.7). For |x − y| ≤ 1, (7.7) is verified explicitly. This completes the proof
of Theorem 1.1. �
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FIG. 12A. Level curves of Lyapunov functions: no positive recurrence.

FIG. 12B. Level curves of Lyapunov functions: no positive recurrence.

APPENDIX

The following theorem is straightforward. (It was suggested to one of the
authors by Malyshev.)

THEOREM A.1. Let h be a complex function analytic at z = 0. Suppose that
in a neighborhood of 0, h(z) = ∑∞

n=0 hnz
n, where coefficients hn ≥ 0. Let x0 > 0

be the first singular point of h. Assume that in the neighborhood of x0,

h(z) =
d∑

i=1

gi(z)

(
1 − z

x0

)ϑi

+ g0(z),
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where gi , i = 0,1, . . . , d , are analytic functions not vanishing at z = x0, and
ϑ1 < ϑ2 < · · · < ϑd are rational but ϑi /∈ {0,1,2, . . . }. Then

hn ∼ g1(x0)

(−ϑ1)
n−ϑ1−1x−n

0 .
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