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RESCALED INTERACTING DIFFUSIONS CONVERGE
TO SUPER BROWNIAN MOTION

BY J. THEODORE COX AND ACHIM KLENKE1

Syracuse University and Universität zu Köln

Super Brownian motion is known to occur as the limit of properly
rescaled interacting particle systems such as branching random walk, the
contact process and the voter model.

In this paper we show that certain linearly interacting diffusions converge
to super Brownian motion if suitably rescaled in time and space. The results
comprise nearest neighbor interaction as well as long range interaction.

1. Introduction.

1.1. Motivation. Super Brownian motion was first derived as the high-density,
short-lifetime diffusion limit of branching Brownian motions. See [5] for a survey.
More recently it has also been found that particle systems where particles have
less independence than in branching processes, namely the contact process and the
voter model, have super Brownian motion as diffusion limit. This is particularly
interesting because the local activity in these processes is heavily dependent on the
(local) density of particles. For dimension d = 1 Mueller and Tribe [8] show that
the contact process can be rescaled to a super Brownian motion with a drift that
depends on the local intensity of particles. On the other hand the limit of the one-
dimensional voter model is a super Brownian motion where the local branching
rate is a decreasing function γ (θ) = 1 − θ of the local intensity θ ∈ [0,1] of
particles.

In higher dimensions the dependence on the local density of particles gets
washed out and in the limit the actual intensity of particles has to be replaced
by its expected value. See [6] and [2] for the results on the contact process and the
voter model, respectively.

1.2. Our model. The model that we study in this paper is that of linearly
coupled diffusions indexed by Z

d , d ≥ 3. More precisely, we consider the process
(Xt )t≥0 that takes values in a suitable subspace X of [0,∞)Z

d
and that is the

unique strong solution of the stochastic differential equation

dXt = AXt dt +
√

g(Xt ) dBt,(1.1)
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where A is the q-matrix of a random walk on Z
d , and

g : [0,∞) → [0,∞) is locally Lipschitz continuous,

g−1(
(0,∞)

) = (0, b) for some b ∈ (0,∞],
g(z) ≤ C(1 + z2) for some C < ∞.

(1.2)

Finally, {(Bt(i))t≥0, i ∈ Z
d} is an independent family of standard Brownian

motions. If b < ∞, then X = [0, b]Zd
is the natural choice. If b = ∞, we have

to be a bit more careful. In this case we let X be a Liggett–Spitzer space with
respect to A. (Essentially this is a subset of [0,∞)Z

d
with a polynomial growth

condition. As we do not deal with this case here, we do not describe the Liggett–
Spitzer space in detail but only refer to [7].) It is well known (see [10]) that, under
these conditions, for X0 ∈ X there exists a unique strong solution of (1.1) that
assumes values in X.

Since we want to rescale this process to super Brownian motion we have to
assume that A has finite variance. For simplicity of notation we will assume that
the random walk generated by A is driftless and the coordinates are uncorrelated
with the same variance:∑

i∈Zd

A(0, i)iαiβ = σ 21α=β, α,β ∈ {1, . . . , d}.(1.3)

We now rescale the space and the diffusion speed as well as the mass of the
particles. To this end define for N ∈ N and t ≥ 0 the random measure

XN
t = 1

N

∑
i∈Zd

XtN (i)δ
i/

√
N

,(1.4)

where δ denotes the Dirac measure. Further let Mf (Rd) denote the space of finite
Borel measures on R

d equipped with the vague topology. The idea is that if the
initial state converges to a finite measure

XN
0 → µ ∈ Mf (Rd) as N → ∞,(1.5)

then XN also converges as N → ∞ to super Brownian motion with some
branching rate γ . The next step is to define this branching rate γ in terms of the
ingredients for X. To this end we have to make the additional assumption that
b < ∞ and that g is of the Wright–Fisher form

g(x) = κx

(
1 − x

b

)+
, x ≥ 0,(1.6)

for some κ > 0.
Note that the assumptions we have made imply that for every θ ≥ 0 there exists

a unique stationary ergodic invariant measure ν
b,κ
θ for X with intensity θ , that is,∫

ν
b,κ
θ (dx)x(i) = θ, i ∈ Z

d.(1.7)
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See [4]. Denote by q the probability that a random walk with symmetrized
q-matrix

Â := 1
2 (A + AT )(1.8)

does not return to the origin after first leaving it. This probability is positive
since A is transient, and it can be expressed as q = (−Ĝ(0,0)Â(0,0))−1, where
(exp(tÂ))t≥0 is the semigroup of an Â-random walk and Ĝ is its Green function

Ĝ(i, j) =
∫ ∞

0
exp(tÂ)(i, j) dt, i, j ∈ Z

d .

This can easily be seen using the following argument: Let Z be random walk with
q-matrix Â starting in Z0 = 0 and define τ0 := inf{t > 0 : Zt �= 0}, τ1 := inf{t >

τ0 : Zt = 0}. Hence a simple renewal argument shows

Ĝ(0,0) = E
[∫ ∞

0
1Zt=0 dt

]
= E[τ0] + P[τ1 < ∞]E

[∫ ∞
0

1Zt=0 dt

]
= (−Â(0,0)

)−1 + (1 − q)Ĝ(0,0).

LEMMA 1.1. The limit

γ := γ b,κ := lim
θ↓0

θ−1
∫

νθ (dx)g
(
x(0)

)
(1.9)

exists and is equal to

γ b,κ = 2bqκ

2bq + κ
.(1.10)

We prove this lemma in Section 2 by a straightforward computation using the
duality of interacting Wright–Fisher diffusions to coalescing random walks. The
main point about the assumption that g is of the Wright–Fisher type is that we
could not establish (1.9) by other means [though for g(x) = γ x it is trivial]. In
other cases, as for example g(x) = x2((b − x)+)2, one can show that γ = 0.

To formulate our first theorem let Y γ,σ 2
denote super Brownian motion in R

d

with branching rate γ and (spatial) diffusion constant σ 2 > 0. That is, for

Y
γ,σ 2

0 = µ ∈ Mf (Rd), Y γ,σ 2
is the unique solution of the martingale problem:

for ϕ ∈ C2
0(Rd),

M
ϕ
t := Y

γ,σ 2

t (ϕ) −
∫ t

0
Y γ,σ 2

s

(
σ 2

2
�ϕ

)
ds(1.11)

is a continuous square-integrable martingale with square variation process

〈Mϕ〉t =
∫ t

0
Y γ,σ 2

s (γ ϕ2) ds(1.12)

(see [5]). We suspect that the statement of the following theorem is true for all g

fulfilling (1.2). However, we could show it only for g of the Wright–Fisher form.
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THEOREM 1. Under the assumptions (1.3), (1.5) and (1.6), and with γ

from (1.10), the rescaled process XN converges as N → ∞ in distribution on
the Skorohod space D([0,∞) : Mf (Rd)) to Y γ,σ 2

.

Note that the voter model is the limit of interacting Wright–Fisher diffusions
with b = 1 and κ → ∞. Letting κ → ∞ in (1.10) leads in fact to the same
branching rate for the limiting super Brownian motion as established for the voter
model in [2]. On the other hand, letting b → ∞ with fixed κ one might expect
to end up with the same branching rate that one gets from rescaling interacting
Feller’s branching diffusions (b = ∞, g(x) = κx), namely with κ . This is in fact
true since γ b,κ → κ as b → ∞.

REMARK 1.2. Without the spatial rescaling one might wonder whether there
is convergence to super-random walk Ȳ γ with some branching rate γ and jump
matrix AT . This is in fact true if one defines X̄N

t = ∑
i∈Zd NXt(i)δi . If g fulfills

(1.2) and in addition is differentiable in 0 with g′(0) = γ , then X̄N → Ȳ γ as
N → ∞. This statement can easily be shown using the comparison technique
of [3] and a truncation argument. In fact, using the fact that supz>0

g(z)
z

< ∞ we
can bound the variance of the total mass ‖XN

T ‖ for every fixed T . Using Doob’s
inequality we get that for every ε > 0 there is a K < ∞ such that

P
[

sup
N≥1

sup
t∈[0,T ]

‖XN
t ‖ > K

]
< ε.

Hence we can change g to

g̃(z) :=


g(z), z ≤ K

N
,

N

K
g

(
K

N

)
z, z ≥ K

N
,

and with high probability X̄N and the corresponding X̃N coincide up to time T .
Now define γ N,+ = supz∈(0,K/N)

g(y)
y

, γ N,− = infz∈(0,K/N)
g(y)
y

and gN,±(z) =
γ N,±z. Hence gN,− ≤ g̃N ≤ gN,+. The comparison scheme of [3] now yields
that, for a certain distribution determining class of continuous functionals F

of (Xt )t∈[0,T ],

E[F(Ȳ γ N,−
)] = E[F(X̃N,−)] ≤ E[F(X̃N)] ≤ E[F(X̃N,+)] = E[F(Ȳ γ N,+

)]
and γ̃ 
→ E[F(Ȳ γ̃ )] is monotone. As γ N,+ ↓ γ and γ N,− ↑ γ one gets

lim
N→∞ E[F(X̃N)] = E[F(Ȳ γ )].

Thus X̃N → Ȳ γ as N → ∞, and hence also X̄N → Ȳ γ as N → ∞.
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1.3. The long range model. We would have liked to formulate our Theorem 1
for more general functions g; however, we could not establish Lemma 1.1 for the
general case. One way to overcome this problem is to change the scaling of the
model such that the range of interaction gets larger and larger and the limit of the
equilibria νN

θ can be described via the mean field equation.
That is, in the limit N → ∞ under νN

θ (dx) the coordinates of x are independent
and are distributed according to the unique invariant measure ν̄

c,g
θ of the one-

dimensional diffusion

dZt = c(θ − Zt ) dt +
√

g(Zt )dBt .(1.13)

Here c > 0 is a constant that reflects the strength of the interaction. Note that Zt

solves the integral equation

Zt = θ +
∫ t

0
ec(s−t)

√
g(Zs) dBs + e−ct (Z0 − θ).(1.14)

The idea is that any given coordinate interacts with so many other coordinates
that a law of large numbers applies. Note that ν̄

c,g
θ has a density that can be

computed explicitly,

ν̄
c,g
θ (dz)

dz
= C

c,g
θ

1

g(z)
exp

(
−2c

∫ z

θ

r − θ

g(r)
dr

)
.(1.15)

Here C
c,g
θ is a normalizing constant. To see that this is the equilibrium density,

note that Z has generator Gf (z) = c(θ − z)f ′(z) + 1
2g(z)f ′′(z) with adjoint

G∗f (z) = c d
dz

((θ − z)f (z)) + d2

dz2 (g(z)f (z)) and compute

G∗ dν̄
c,g
θ (dz)

dz
= 0.

Using (1.14) we see that Eθ [Zt ] = θ for all t ≥ 0 and thus Eν̄
c,g
θ [Z] = θ . Using

(1.14) again we get

Varν̄
c,g
θ [Z0] = Varν̄

c,g
θ [Zt ] =

∫ t

0
e2c(t−s)Eν̄

c,g
θ [g(Zs)]ds + e−2ctVarν̄

c,g
θ [Z0].

Using stationarity we can let t → ∞ and get

Varν̄
c,g
θ [Z0] =

∫ ∞
0

e−2cs ds Eν̄
c,g
θ [g(Z0)].

Thus ∫
ν̄

c,g
θ (dz)(z − θ)2 = 1

2c

∫
ν̄

c,g
θ (dz)g(z).(1.16)

The explicit form of ν̄
c,g
θ allows us to show that γ can be defined as in

Lemma 1.1. We quote the following lemma from Baillon et al. ([1], Proposition 5,
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the uniformity that we state here is not in [1] but follows very easily from their
argument).

LEMMA 1.3. The limit

γ c,g := lim
θ↓0

θ−1
∫

ν̄
c,g
θ (dz)g(z)(1.17)

exists and γ c,g > 0 if and only if∫ b/2

0

z

g(z)
dz < ∞.(1.18)

In this case the limit in (1.17) is uniform in c on compact subsets of (0,∞) and

γ c,g = 2c

∫ b

0
exp

(
−2c

∫ y

0

z

g(z)
dz

)
dy.(1.19)

In the case where g is of the Wright–Fisher type it is simple to compute γ c,g

explicitly.

COROLLARY 1.4. If g(x) = κx(1 − x/b)+, then γ c,g = 2cbκ/(κ + 2cb).

We will henceforth assume that that (1.18) holds. Note that this is the case, for
example, if g has a positive derivative at 0 or if g(x) ∼ x1+β as x → 0 for some
β ∈ [0,1). On the other hand, for g(x) = x2((b − x)+)2 the condition is violated.

Let us now define the long range models X̄N . Let (MN)N∈N be a sequence in N

that increases to ∞. This sequence is arbitrary but will be kept fixed. Let σ 2 > 0
and define

AN(i, j) = 3σ 2[(2MN + 1)−d1{−MN,...,MN }d (j − i) − 1{0}(j − i)
]
.(1.20)

That is, AN is the q-matrix of a rate 3σ 2 [more precisely, 3σ 2(1 − (2MN +1)−d)]
random walk that jumps to each point in distance at most MN with equal
probability. For ϕ : R

d → R define

ÃNϕ(x) = N
∑

j∈Zd

AN(0, j)ϕ(x + N−1/2M−1
N j).(1.21)

LEMMA 1.5. For ϕ ∈ C2
0 (Rd) and x ∈ R

d ,

lim
N→∞

∥∥∥∥ÃNϕ − σ 2

2
�ϕ

∥∥∥∥∞
= 0.(1.22)

Now define X̄N as the solution of (1.1) but with A replaced by AN and let

XN
t = 1

N

∑
i∈Zd

X̄N
tN (i)δi/(MN

√
N).(1.23)
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Again we could establish the following theorem only when g is of the Wright–
Fisher form where we can exploit the well-known duality of interacting Wright–
Fisher diffusions to coalescing random walks (see [9], Lemma 2.3). We give more
details in the next section. However, here also we suspect that the statement is true
for g fulfilling only (1.2).

THEOREM 2. Under conditions (1.5) and (1.6) with γ = γ 3σ 2,g ,

L[XN ] ⇒ Lµ[Y γ,σ 2] as N → ∞.(1.24)

1.4. Outline. In the next two sections we give the proofs of Theorems 1 and 2,
respectively. The proofs rely on the duality of X to coalescing random walks and
make use of the ideas and statements developed in [2].

2. Proof of Theorem 1. Before we come to the proof of the theorem we prove
the lemma that precedes it.

PROOF OF LEMMA 1.1. If we include for the moment the dependence of X on
the parameters b and κ in the notation we can write the following scaling property:

Lx[Xb,κ ] = Lx/b[bX1,κ/b].(2.1)

The verification is elementary and is omitted here. Note that we can conclude
from (2.1) that γ b,κ = bγ 1,κ/b. Hence it suffices to show the lemma for b = 1.

Let us recall that the nth moments of interacting Wright–Fisher diffusions can
be computed via a duality relation with a system of n coalescing random walks.
See [9], Lemma 2.3, for a full account of this. We need here only the first and
second moments. Let Z1 and Z2 be random walks with q-matrix AT that coalesce
at rate κ when they occupy the same site. Then the duality yields

E[Xt(z
1)] = Ez1[X0(Z

1
t )] = E[etAT

X0(z
1)],(2.2)

E[Xt(z
1)Xt (z

2)] = E(z1,z2)[X0(Z
1
t )X0(Z

2
t )].(2.3)

In particular, for X0 ≡ θ

Varθ [Xt(0)] = θ(1 − θ)P(0,0)[Z1
t �= Z2

t ].
Letting t → ∞ we get

Varνθ [X0(0)] = θ(1 − θ)P[Z1 and Z2 do not coalesce].
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This latter probability can be computed in terms of the escape probability of q of
the difference walk (which has q-matrix 2Â) as 2q

2q+κ
. Hence we have

θ−1
∫

νθ (dx)g(x0) = κ

θ

∫
νθ (dx)x(0)

(
1 − x(0)

)
= κ

(
1 − 1

θ

∫
νθ (dx)x(0)2

)
(2.4)

= κ

(
1 − θ − 1

θ
Varνθ [X0(0)]

)
= 2qκ

2q + κ
(1 − θ).

This clearly implies the assertion of the lemma. �

PROOF OF THEOREM 1. The strategy of the proof is to describe the process
XN via a martingale problem and to show that the quadratic variation process
converges to that of super Brownian motion. Here we make use of the duality of
interacting Wright–Fisher diffusions to coalescing random walks. In fact, the proof
is quite similar to the one given in [2] for the voter model and we carry out in detail
only the part that differs.

For ease of notation write

ANϕ(x) = N
∑
i∈Zd

ϕ(x + i/
√

N)A(0, i)

and note that, for ϕ ∈ C2
0 (Rd),

ANϕ(x) → σ 2

2
�ϕ(x) as N → ∞.(2.5)

To meet the technical requirements of [2] we will assume that ϕ ∈ C3
0(Rd), in

which case the convergence in (2.5) is uniform if the second and third derivatives
of ϕ are bounded (see [2], Lemma 2.6): if we let

‖ϕ‖2,3 := sup
{

d2

dxi dxj

ϕ(x), i, j = 1, . . . , d, x ∈ R
d

}

+ sup
{

d3

dxi dxj dxk

ϕ(x), i, j, k = 1, . . . , d, x ∈ R
d

}
,

then

lim
N→∞ sup

‖ϕ‖2,3<K

∥∥∥∥ANϕ − σ 2

2
�ϕ

∥∥∥∥∞
= 0, K < ∞.
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We abbreviate


N
s := ∑

x∈Zd/
√

N

N−1g
(
NXN

s ({x}))δx

= ∑
i∈Zd

N−1g
(
NXsN(i)

)
δ
i/

√
N

.

It is an exercise in stochastic calculus to check that

M
ϕ,N
t := XN

t (ϕ) − XN
0 (ϕ) −

∫ t

0
XN

s (ANϕ)ds(2.6)

is a continuous square-integrable martingale with quadratic variation process

〈Mϕ,N 〉t =
∫ t

0

N

s (ϕ2) ds.(2.7)

With a view to (1.11), (1.12) and (2.4) it is clear that the main point is to show that

〈Mϕ,N 〉t −
∫ t

0
γXN

s (ϕ2) ds → 0 as N → ∞.(2.8)

More precisely, the convergence has to be shown to take place in L2.
In fact, the martingale problem has exactly the form of Theorem 2.1 of [2]

with their error term εN
s being zero and with their V ′

N,s(x) replaced by
1
2N−1g(NXN

s ({x})). We proceed as in Section 4 of [2] and define, for K > 0,

ε
N,γ
K,ϕ (t) := sup

{|E[(
N
t − γXN

t )(ϕ2)]| : XN
0 (1) ≤ K

}
.(2.9)

We have to show the following lemma.

LEMMA 2.1 (Convergence of the mean).

lim
N→∞ ε

N,γ
K,ϕ (t) = 0.(2.10)

For the proof of our Theorem 1, convergence of the means of the quadratic
variation process is not enough but L2-convergence is needed. Together with the
following moment bounds Theorem 4.1 of [2] improves (2.10) to L2-convergence
and in fact yields the conclusion of the proof of Theorem 1.

LEMMA 2.2 (Moment bounds). Fix T > 0. There exists a constant CT < ∞
such that, for all s ∈ [0, T ],

E[
N
s (1)] ≤ CT XN

0 (1),(2.11)

E[XN
s (1)3] ≤ CT

(
XN

0 (1)3 + 1
)
,(2.12)

E[XN
s (1)2
N

s (1)] ≤ CT

(
XN

0 (1)3 + 1
)
.(2.13)
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PROOF. Let L denote the Lipschitz constant of g. Then


N
s (1) ≤ LXN

s (1).

Hence (2.11) holds with CT = L. Also (2.13) holds with CT replaced by LCT .
Now note that Itô’s formula yields

d

ds
E[XN

s (1)3] ≤ 3LE[XN
s (1)2]

and
d

ds
E[XN

s (1)2] ≤ LE[XN
s (1)] = LXN

0 (1).

Thus

E[XN
s (1)3] ≤ XN

0 (1)3 + 3LT XN
0 (1)2 + 3

2L2T 2XN
0 (1).

Of course, CT can be chosen such that (2.12) holds. �

PROOF OF LEMMA 2.1. Note that so far we could adopt the arguments of [2]
without using the fact that g is of the Wright–Fisher form. We will need it only here
(and in Lemma 1.1) to exploit the duality to coalescing random walks in order to
show (2.10).

Recall that

g(x) = κx(1 − x/b)+ and γ = 2bqκ

2bq + κ
,

where q is the escape probability of an Â-random walk [recall (1.8)]. Recall also
from the proof of Lemma 1.1 that we can use a scaling argument so that without
loss of generality we may assume b = 1. Hence we have

ε
N,γ
K,ϕ (t) = κ sup

{∣∣∣∣∣E
[ ∑

x∈Zd/
√

N

((
1 − γ

κ

)
XN

t ({x})

(2.14)

− NXN
t ({x})2

)
ϕ2(x)

]∣∣∣∣∣ : XN
0 (1) ≤ K

}
.

Now let Z1 and Z2 be random walks with q-matrix AT that coalesce at rate κ when
they are at the same site. Denote by pt = etAT

the transition probability of Z1.
Let At be the event that Z1 and Z2 have coalesced by time t and A := ⋃

t≥0 At .
The duality yields [see (2.3) (with Z1 = Z2 = i)]

NE[XN
t ({i/√N})2] = N−1E[XtN (i)2]

= N−1Ei[X0(Z
1
tN );AtN ](2.15)

+ N−1Ei[X0(Z
1
tN )X0(Z

2
tN );Ac

tN ].
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Using the central limit theorem, there exists a constant C < ∞ such that

pt(0, j) ≤ (t−d/2 ∧ 1) · C, j ∈ Z
d, t > 0.(2.16)

Thus, since XN
0 (1) ≤ K , the second term on the right-hand side is smaller than

N−1Ei[X0(Z
1
tN )]2 ≤ NK2 sup

j∈Zd

ptN (0, j)2 ≤ Ct−dK2 · N1−d.(2.17)

Hence we have∑
i∈Zd

N−1Ei[X0(Z
1
tN )]2ϕ(i/

√
N)2 ≤ C Cϕ K2t−dN1−d/2,(2.18)

where the constant Cϕ depends on ϕ only. Hence by dominated convergence it
suffices to show that, for all i ∈ Z

d ,

ε̃
N,γ,i
K (t) := Nd/2−1 sup

{∣∣∣∣Ei[X0(Z
1
tN );Ac

tN ]

− γ

κ
Ei[X0(Z

1
tN )]

∣∣∣∣ : X0(1) ≤ KN

}
→ 0(2.19)

as N → ∞.

However, this is true since (see the proof of Lemma 1.1)

lim
T →∞ P[Ac

T ] = 1 − P[A] = γ

κ
(2.20)

and the distribution of Z1
tN and the conditional distribution of Z1

tN given Ac
tN are

close. To make this precise, let δ > 0 be arbitrary. Fix T0 > 0 such that [with C as
in (2.16)] ∣∣∣∣P[Ac

T ] − γ

κ

∣∣∣∣ ≤ (t/2)d/2

C
δ for all T ≥ T0.(2.21)

Estimating the total amount of time two independent random walks spend together
gives a bound on the probability that Z1 and Z2 coalesce between times T and tN

and end in a particular point j ,

Pi[AtN ∩ Ac
T ∩ {Z1

tN = j}]

≤ κ

∫ tN

T
dr

∑
k∈Zd

pr(i, k)pr (i, k)ptN−r (k, j)

≤ κptN (i, j)

∫ tN

T
dr sup

k

pr(0, k)(2.22)

≤ κC2t−d/2N−d/2
∫ tN

T
r−d/2 dr

≤ 2κC2t−d/2

d − 2
T 1−d/2N−d/2.
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Hence, by choosing T0 large enough, in addition to (2.21) we may assume

sup
j∈Zd

Pi[AtN ∩ Ac
T ∩ {Z1

tN = j}] ≤ δN−d/2, T ≥ T0.(2.23)

Let R > 0 be such that

Pi[|Z1
T0

| > R] <
δ

(1 + (γ /κ))(1 + (2/t)d/2C)
.(2.24)

Using (2.16) and the Markov property at time T0 we get, for N ≥ 2T0/t ,(
1 + γ

κ

)
Pi[|Z1

T0
| > R;Z1

tN = j ] ≤ δN−d/2.(2.25)

Using the central limit theorem again we get that there exists an N0 ≥ 2T0/t such
that, for all N ≥ N0 and |k| < R,

|ptN−T0 (k, j) − ptN−T0(0, j)| < δ

1 + (γ /κ)
N−d/2.(2.26)

Combining (2.23), (2.25), (2.26), (2.16), (2.24) and (2.21) and using the Markov
property we get, for N ≥ N0,∣∣∣∣Pi[Z1

tN = j;Ac
tN ] − γ

κ
Pi[Z1

tN = j ]
∣∣∣∣

≤
∣∣∣∣Pi[Z1

tN = j;Ac
T0

] − γ

κ
Pi[Z1

tN = j ]
∣∣∣∣ + δN−d/2

≤
∣∣∣∣∣ ∑
|k|<R

Pi[Z1
tN = j;Z1

T0
= k;Ac

T0
] − γ

κ
Pi[Z1

tN = j;Z1
T0

= k]
∣∣∣∣∣

+ 2δN−d/2

=
∣∣∣∣∣ ∑
|k|<R

ptN−T0(k, j)

(
Pi[Z1

T0
= k;Ac

T0
] − γ

κ
Pi[Z1

T0
= k]

)∣∣∣∣∣(2.27)

+ 2δN−d/2

≤
∣∣∣∣Pi[|Z1

T0
| < R;Ac

T0
] − γ

κ
Pi[|Z1

T0
| < R]

∣∣∣∣ · ptN−T0 (0, j)

+ 3δN−d/2

≤
∣∣∣∣Pi[Ac

T0
] − γ

κ

∣∣∣∣ · C(
2

t

)d/2

N−d/2 + 4δN−d/2

≤ 5δN−d/2.

Since the estimate holds for all j , we get by Hölder’s inequality

lim sup
N→∞

ε̃
N,γ,i
K (t) ≤ 5Kδ.
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Since δ > 0 was arbitrary, (2.19) follows and the proof of Lemma 2.1 is com-
plete. �

3. Proof of Theorem 2. As in the proof of Theorem 1 we may assume
without loss of generality that b = 1. The proof here is analogous to the proof
of Theorem 1. First we formulate the martingale problem. For ϕ ∈ C2

0 (Rd),

M
ϕ,N
t := XN

t (ϕ) − XN
0 (ϕ) −

∫ t

0
XN

s (ANϕ)(3.1)

is a continuous square-integrable martingale with quadratic variation process

〈Mϕ,N 〉t =
∫ t

0

N

s (ϕ2) ds,(3.2)

where


N
s := ∑

x∈Zd/
√

NMN

N−1g
(
NXN

s ({x}))δx.

By Lemma 1.5, ÃNϕ → σ 2

2 �ϕ and hence again it is enough to show that, in L2,

〈Mϕ,N 〉t −
∫ t

0
γXN

s (ϕ2) ds → 0 as N → ∞.(3.3)

Using Theorem 4.1 of [2] it is enough to establish convergence of the means
instead or, more precisely, Lemmas 2.1 and 2.2 in this setting. The proof of
Lemma 2.1 works here without changes. In the proof of Lemma 2.2 we only
need the central limit theorem (which is in force here, too) and the fact that
the probability that two random walks do not coalesce is γ

κ
. Here we work

with two random walks ZN,1 and ZN,2 that run independently according to the
q-matrix AN and coalesce at rate κ when they are at the same site. By pN

t = etAN

we denote the transition probability of any of these random walks. Hence if
Z

N,1
0 = i, Z

N,2
0 = j and i �= j , then [recall that the walks have rate 3σ 2(1 −

(2MN + 1)−d)]

Pi,j [ZN,1 and ZN,2 never coalesce] ≥ Pi,j [ZN,1
t �= Z

N,2
t for all t > 0]

= 1 − P0[ZN,1
t = j − i for some t > 0]

≥ 1 − 3σ 2
∫ ∞

0
pN

t (0, j − i) dt.

By the central limit theorem there exists a constant C such that

pN
t (0, j − i) ≤ CM−d

N (t−d/2 ∧ 1), t > 0,N ∈ N.

Thus, for i �= j ,

lim
N→∞ inf

i �=j
Pi,j [ZN,1 and ZN,2 never coalesce] = 1.(3.4)
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On the other hand, for i = j , the probability of coalescence before either ZN,1

or ZN,2 makes a first jump is κ
6σ 2+κ

. After the first jump, the probability of
coalescence is negligible by (3.4). Thus, for t > 0,

lim
N→∞ Pi,i [ZN,1 and ZN,2 are not coalesced by time tN ] = 6σ 2

6σ 2 + κ
= γ

κ
.(3.5)

This yields (2.21) of Lemma 2.2 and hence the statement of Lemma 2.2 holds
also in the situation of long range interactions. Thus the proof of Theorem 2 is
complete. �
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