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MULTITYPE BRANCHING LIMIT BEHAVIOR

BY HARRY COHN AND QIAO WANG

University of Melbourne

For a multitype branching process in varying environment convergent
in probability, a certain sequence of linear combinations of the type sizes is
shown to possess some convergence properties. This sequence turns out to be
instrumental in deriving a condition for continuity of the limiting distribution
function. An application to an L1 convergent process whose offspring mean
matrices are weakly ergodic is also given.

1. Introduction and summary. Define a multitype (p-type) branching proc-
ess in a varying environment, which will be the object of our study. We restrict our
attention to a process initiated at times in the index set {0,1,2, . . .} and as labels
for the types we choose 1, . . . , p.

We shall assume that our population is initiated by a single ancestor of type 1
at time 0. The individuals will be labeled such that (n, i, l) denote the lth
individual of type i in generation n. The p-type branching process in varying
environment considered here is a vector-valued, nonnegative random process
{Zn} = {(Z(1)

n , . . . ,Z
(p)
n )}, where Z

(j)
n stands for the nth generation size of type j

particles with j = 1, . . . , p.
Denote

Zn(r, i, l) = (
Z(1)

n (r, i, l), . . . ,Z(p)
n (r, i, l)

)
(1)

the sizes of the nth generation populations of various types stemming from (r, i, l).
The basic decomposition of Zn with respect to the ancestry of the nth generation

of individuals, that is, the previous r th generation, is given by

Zn =
p∑

i=1

Z
(i)
r∑

l=1

Zn(r, i, l), r ≤ n,(2)

where, conditionally on Z0, . . . ,Zr , the random vectors {Zn(r, i, l), l = 1, . . .} are
independent and identically distributed but with r, i and n-dependent distributions.

Write Fn for the σ -field generated by Z0, . . . ,Zn. The branching process {Zn}
is a time-inhomogeneous Markov process, that is, P (Zn+1 = i|Zn) = P (Zn+1 =
i|Fn) holds for any n and i = (i1, . . . , ip).

In the classical Galton–Watson setting, convergence properties are proven for
suitably normed variables derived from {Z(i)

n } for an arbitrary type i. In the varying
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environment setting, the natural object of study appears to be linear combinations
of the type sizes of successive generations, the so-called c-counted process to be
defined next.

Let c = (c(n, j), j = 1, . . . , p,n = 0,1, . . .) stand for an arbitrary array of
nonnegative constants and define a c-counted process to be

Zc
n =

p∑
j=1

c(n, j)Z(j)
n , n = 0,1, . . . .(3)

Similarly, a c-counted daughter process is defined by

Zc
n(r, i, l) =

p∑
j=1

c(n, j)Z(j)
n (r, i, l),(4)

where {Z(j)
n (r, i, l), l = 1, . . . , i = 1, . . . , p} are independent given Zr . Further-

more, we get, for t > n,

Zc
t =

p∑
i=1

Z
(i)
n∑

l=1

Zc
t (n, i, l),(5)

where {Zc
t (n, i, l), l = 1, . . . , i = 1, . . .} are independent given Zn.

In this paper we shall assume that {Zc
n} converges in probability to a limit W .

Convergence to a limit W includes the case when the limit is defective. That is,
P (W = ∞) > 0 is allowed. In general, W may depend on c.

Using (5) and then taking the limits as t → ∞ yields

W =
p∑

i=1

Z
(i)
n∑

l=1

W(n, i, l) a.s.,(6)

where W(n, i, l) is the contribution to W of the line of descent of the lth individual
of type i of the nth generation.

Let {Xn(i, j)} be the offspring variables of {Zn}, where Xn(i, j) is the number
of offspring of type j of an individual of type i of the nth generation. By
Xn(i, j, l) we denote the offspring variables of the lth individual of type i of the nth
generation. It is assumed that {Xn(i, j, l); l = 1,2, . . .} are i.i.d copies of Xn(i, j).
By (5) we can write Zc

n+1 in terms of the offspring variables of the nth generation
as

Zc
n+1 =

p∑
i=1

Z
(i)
n∑

l=1

p∑
j=1

c(n + 1, j)Xn(i, j, l) =
p∑

i=1

Z
(i)
n∑

l=1

Zc
n+1(n, i, l),(7)

where {Zc
n+1(n, i, l), l = 1,2, . . . , i = 1, . . . , p} are independent given Zn.

In what follows 1A will denote the indicator function of a set A. We shall say
that limn→∞ An = A a.s. if limn→∞ 1An = 1A a.s.
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We shall need to consider the notion of concentration function due to Paul Levy.
For an updated account of its use see Petrov [12]. Define the concentration function
of a random variable X by Q(X;λ) = supx P (x ≤ X ≤ x + λ). In particular when
λ = 0 we write Q(X) = supx P (X = x). Denote

Yn(i) =
p∑

j=1

γ (n + 1, j)Xn(i, j)

and Yn = (Yn(1), . . . , Yn(p)), where {γ (n, i)} are some constants.
In the one type case, a.s. convergence is equivalent to weak convergence,

which always holds for some suitably chosen norming constants. It was shown
in Cohn [4] that the continuity of the limiting distribution for suitably normed
processes holds barring a very restrictive case when the offspring variables
converge fastly to constants. Recently, a number of papers (Biggins, Cohn and
Nerman [2], Cohn [3, 5], Hattori [8] and Jones [10]) have dealt with convergence
of multitype processes in varying environment. An extension of some continuity
results of Cohn [4] to the multitype case was given by Jones [11].

Unlike the one type case, a.s. convergence is no longer equivalent to weak
convergence for multitype processes as shown in the example of Nerman (see [2])
for a two type process convergent in distribution but not in probability.

A certain linear combination of the type sizes will turn out to play a key role
in our study. It will help to describe the case when {Zc

n} has a discrete limit
distribution and will thereby provide a sufficient condition for such a limit to be
continuous. The result is then applied to multitype processes with weakly ergodic
offspring mean matrices.

Interestingly, it appears that the case when only convergence in distribution
holds may allow for a discrete limit under considerably less restrictive assumptions
than for processes convergent in probability.

2. Convergence in probability and almost sure

THEOREM 1. Suppose that {Zc
n} converges in probability to a limit W , and

that P (W = α) > 0 for some α > 0. Then there exists an array of nonnegative
constants γ = (γ (n, j), n = 0,1, . . . , j = 1, . . . , p) such that

lim
n→∞{Zγ

n = α} = {W = α} a.s.

PROOF. Notice that in view of the Markov property of {Zn}, the sequence of
random variables {P (W = α|Zn)} is a martingale that converges a.s. to 1{W=α} as
n → ∞. Thus, by (6) we conclude that

P

( p∑
i=1

Z
(i)
n∑

l=1

W(n, i, l) = α
∣∣∣Zn

)
→ 1{W=α} a.s.(8)
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as n → ∞. It follows from (8) that there must exist a sequence of vectors
{zn = (z

(n)
1 , . . . , z

(p)
n )} such that

P

( p∑
j=1

z
(j)
n∑

l=1

W(n, j, l) = α

)
→ 1(9)

as n → ∞, where {W(n, j, l)} are independent random variables.
By a property that goes back to Paul Levy (see, e.g., Petrov [12]) the

concentration function of a sum of independent random variables is exceeded by
the sum of the concentration functions of its summands. Therefore, for any type i,
there are some constants {α(i)

n } such that

P

(
z
(j)
n∑

l=1

W(n, j, l) = α(j)
n

)
→ 1,(10)

where
∑p

i=1 α
(i)
n = α. Now by (10) and by Lemma 7 of Cohn [4] there exists an

array of nonnegative constants γ = (γ (n, j), n = 0,1, . . . j = 1, . . . , p) such that

lim
n→∞P

(
W(n, j, l) = γ (n, j)

) = 1.(11)

By (10) and (11) we get that

lim
n→∞P

( p∑
j=1

Z
(j)
n∑

l=1

W(n, j, l) = α
∣∣∣Zn

)
= lim

n→∞P

( p∑
j=1

Z
(j)
n∑

l=1

γ (n, j) = α
∣∣∣Zn

)
a.s.

Thus

lim
n→∞P (W = α

∣∣∣Zn) = lim
n→∞P

( p∑
j=1

γ (n, j)Z(j)
n = α

∣∣∣Zn

)
a.s.(12)

Since {∑p
j=1 γ (n, j)Z

(j)
n = α} is measurable with respect to Zn, we get

P

( p∑
j=1

γ (n, j)Z(j)
n = α

∣∣∣Zn

)
= 1{∑p

j=1 γ (n,j)Z
(j)
n =α} a.s.(13)

which together with (12) and (8) yields

1{∑p
j=1 γ (n,j)Z

(j)
n =α} → 1{W=α} a.s.(14)

as n → ∞. Thus

lim
n→∞{Zγ

n = α} = {W = α} a.s.,

where Z
γ
n = ∑p

j=1 γ (n, j)Z
(j)
n , which completes the proof. �
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THEOREM 2. Suppose that {Zc
n} converges in probability to a limit W with

P (0 < W < ∞) > 0. Then there exists a γ -counted process, {Zγ
n }, that converges

a.s. to W .

PROOF. Consider first the case when P (W = α) > 0 for some α > 0. Using
that {P (W ≤ x|Zn)} is a martingale, and taking (11) into account, we can argue as
in the proof of Theorem 1 by replacing “= α” by “≤ x” in (12)–(14) to conclude
that for any real x,

lim
n→∞

{ p∑
j=1

γ (n, j)Z(j)
n ≤ x

}
= {W ≤ x} a.s.

as n → ∞. We are now in a position to apply Proposition 2 of Cohn [5] and
conclude the proof in this case.

It remains to consider the case when P (W ≤ x) is continuous at all x > 0.
Notice that by (6) we get

P (W ≤ x|Zn) = P

( p∑
i=1

Z
(i)
n∑

l=1

W(n, i, l) ≤ x
∣∣∣Zn

)
a.s.(15)

Some of {W(n, i, l)} may be 0. Applying the martingale convergence theorem
to (15) yields

lim
n→∞P

( p∑
i=1

Z
(i)
n∑

l=1

W(n, i, l) ≤ x
∣∣∣Zn

)
= 1{W≤x} a.s.

Thus there exists a sequence of p-dimensional vectors {xn} such that

lim
n→∞P

( p∑
i=1

x
(i)
n∑

l=1

W(n, i, l) ≤ x

)
= 1.

Notice that we may choose x
(i)
n → ∞ for any type i as otherwise by an argument

already employed above some of W(n, i, l) would be discrete, contradicting
that P (W ≤ x) is continuous at x > 0. Since {W(n, i, l), l = 1,2, . . .} are
independent and identically distributed, we get that the limiting distribution

of any weakly convergent subsequence of {∑x
(i)
n

l=1 W(n, i, l)} as n → ∞ must
be infinitely divisible. However, infinitely divisible distributions with bounded
support are degenerate. Thus, we deduce that any weakly convergent subsequence

of {∑x
(i)
n

l=1 W(n, i, l)} converges in probability to a constant, say ci , that may depend
on type and subsequence. Assume first that all ci are positive. Then we may choose

some numbers {γ (n, i)} such that 1 is the q-quantile of
∑(γ (n,i))−1

l=1 W(n, i, l) for
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i ∈ {1, . . . , p}, where q is some number in (0,1). In this way we get

(γ (n,i))−1∑
l=1

W(n, i, l)
p→ 1.(16)

Now we can use the reasoning of Theorem 15 of [5] to deduce that
∑Z

(i)
n

l=1 W(n, i, l)

and γ (n, i)Z
(i)
n are a.s. conditional on {Zn} asymptotically equivalent (that is,

limn→∞ P (|∑Z
(i)
n

l=1 W(n, i, l) − γ (n, i)Z
(i)
n | > ε|Zn) = 0 a.s.). This entails that

{Zγ
n } converges a.s. to W .

It remains to consider the case when
∑Z

(i)
n

l=1 W(n, i, l), or a subsequence thereof,
converges in probability to 0 for some type i. In such a case it is easy to see that i

has no contribution to W , and therefore we may take γ (n, i) = 0 and complete the
proof. �

3. Continuity of the limiting distribution function

LEMMA 3. There exists a sequence of p-dimensional nonnegative vectors,
{zk} with

∑p
i=1 γ (k, i)z

(i)
k = α such that

P

( n⋂
k=r

{Zγ
k+1 = α}

)
≤

n∏
k=r

P

( p∑
i=1

z
(i)
k∑

l=1

Z
γ
k+1(k, i, l) = α

)
P (Zγ

r = α).(17)

PROOF. Assume that for some r and n > r ,

P (Z
γ
n+1 = α,Zγ

n = α, . . . ,Zγ
r = α) > 0.(18)

The Markov property of {Zn} yields

P (Z
γ
n+1 = α|Zγ

n = α, . . . ,Zγ
r = α)

(19)

= ∑
x∈An

P (Z
γ
n+1 = α|Zn = x)P (Zn = x,Z

γ
n−1 = α, . . . ,Z

γ
r = α)

P (Z
γ
n = α, . . . ,Z

γ
r = α)

,

where An = {x = (x1, . . . , xp) : γ (n,1)x1 +· · ·+γ (n,p)xp = α}. Notice now that

∑
x∈An

P (Zn = x,Z
γ
n−1 = α, . . . ,Z

γ
r = α)

P (Z
γ
n = α, . . . ,Z

γ
r = α)

= 1.(20)

Thus in view of (19) and (20) there must be some δn+1 with

δn+1 ≤ max
x∈An

P (Z
γ
n+1 = α|Zn = x)(21)

such that

P (Z
γ
n+1 = α|Zγ

n = α, . . . ,Zγ
r = α) = δn+1.(22)
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From (21) and (22) we deduce by induction that there exist some vectors {zm =
(z

(m)
1 , . . . , z

(m)
p ) ∈ Am,m = r, . . . , n} such that

P (Z
γ
n+1 = α,Zγ

n = α, . . . ,Zγ
r = α)

(23)
≤ P (Z

γ
n+1 = α|Zn = zn) · · ·P (Z

γ
r+1 = α|Zr = zr )P (Zr = zr)

and an appeal to (17) completes the proof. �

For the next result we shall need a result on independent random variables that
was derived in [4], Lemma 9.

LEMMA 4. Suppose that {ξ (n)
i , i = 1, . . . ,mn} is, for each n, a sequence

of nonnegative, independent and identically distributed random variables. The
following conditions are equivalent:

∞∑
n=1

(
1 − P (ξ

(n)
1 + · · · + ξ (n)

mn
= mnkn)

)
< ∞;(i)

∞∑
n=1

mn

(
1 − P (ξ

(n)
1 = kn)

)
< ∞.(ii)

THEOREM 5. Suppose that {Zc
n} converges in probability to W with P (0 <

W < ∞) > 0. If

∞∑
n=1

min
i∈{1,...,p}

(
γ (n, i)

)−1(
1 − Q

(
Yn(i)

)) = ∞,(24)

then W assumes a distribution function which is continuous at x > 0.

PROOF. By Theorem 1 and Lemma 3, it will be sufficient to prove that

∞∏
n=r

P

( p∑
i=1

z
(i)
n∑

l=1

Z
γ
n+1(n, i, l) = α

)
= 0,(25)

where Z
γ
k+1(k, i, l) = ∑p

j=1 γ (n + 1, j)Xn(i, j, l).
By an elementary property, (25) is equivalent to

∞∑
n=1

(
1 − P

( p∑
i=1

z
(i)
n∑

l=1

Z
γ
n+1(n, i, l) = α

))
= ∞.(26)

Recall now that for fixed n, the variables {Zγ
n+1(n, i, l)} are independent, and

for fixed n and i {Zγ
n+1(n, i, l), l = 1,2, . . .} are identically distributed. Since the
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concentration function of a sum of independent random variables does not exceed
the sum of the concentration functions of its summands, we get

P

( p∑
i=1

z
(i)
n∑

l=1

Z
γ
n+1(n, i, l) = α

)
≤ Q

( p∑
i=1

z
(i)
n∑

l=1

Z
γ
n+1(n, i, l)

)

(27)

≤
p∑

i=1

Q

(
z
(i)
n∑

l=1

Z
γ
n+1(n, i, l)

)
.

In view of (26), (27) and Lemma 4, we need to show that
p∑

i=1

∞∑
n=1

z(i)
n

(
1 − Q

(
Yn(i)

)) = ∞.(28)

Recall now that
∑p

i=1 γ (n, i)z
(i)
n = α, which entails γ (n, in)z

(in)
n ≥ α/p for at least

one in and all n = 1,2, . . . . This boils down to
p∑

i=1

∞∑
n=1

z(i)
n

(
1 − Q

(
Yn(i)

)) ≥ α

p

∞∑
n=1

min
i∈{1,...,p}

(
γ (n, i)

)−1(
1 − Q

(
Yn(i)

))
,

and now (28) follows from (24). �

REMARK. It is possible to have more than one rate of growth for {Zn} as in the
one type case (see MacPhee and Schuh [13]). This happens if P (Wc = ∞) > 0,
and there is another c-sequence, say c′, such that {Zc′

n } converges a.s. to a limit Wc′

as n → ∞ with P (Wc′
> 0) = P ({Wc′

> 0} ∩ {Wc = ∞}).
4. Martingales and space–time harmonic functions. Consider the case

when the multitype process {Zn} has finite expectations. Let {Mn} = {(Mn(i, j))}
be the mean matrices, where Mn(i, j) is the expected number of offspring of type j

produced by one particle of type i of the nth generation. Define kMk−1 = I , where
I is the identity matrix. For n ≥ 1 it will be seen that if 1Mn = (1Mn(i, j)) =
M1 · · ·Mn−1, then 1Mn(i, j) = E(Z

(j)
n |Z0 = ei), where ei is the p-dimensional

vector with 1 in the ith place and 0 elsewhere. We shall assume that mMn(i, j) > 0
for each m, i and j , for n large enough (which may depend on m).

The Markov property of Zn makes {Xn} with

Xn = lim
m→∞E(Zc

m|Zn) a.s.(29)

a martingale provided that such limits exist. Since {Xn} is nonnegative, the a.s.
convergent limit, say X, always exists but it may be null. If {Zc

n} converges in L1,
the limit X is not identically null, and

E(W |Zn) = lim
m→∞E(Zc

m|Zn) = Xn a.s.(30)

By (29) and (30) we get X = W a.s.
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On the other hand, the martingales {Xn} turn out to be associated with the class
of space–time harmonic functions h = {hn} for {Mn} defined by some column
vectors {hn} such that Mnhn+1 = hn. Indeed, write

h(n, i) = E(W |Zn = ei).(31)

After an easy calculation we deduce that h = {hn} defined by (31) is indeed a
space–time harmonic function for {Mn}.

In general there are t extremal space–time harmonic functions h1, . . . , ht with
t ≤ p where h is said to be extremal if for any other space–time harmonic
function h′, h′ ≤ h implies h = Kh′, where K is a constant. It was proven
in [6] that to each extremal space–time harmonic function hk there corresponds
a sequence of sets {E(k)

n } such that for jn ∈ E
(k)
n and fixed k in 1, . . . , t,

lim
n→∞

mMn(i, jn)

mMn(l, jn)
= hk(m, i)

hk(m, l)
.

The harmonic functions attached to a sequence {Mn} belong to the convex hull of
the extremal harmonic functions (see the discussion in Cohn and Nerman [6]).

An important instance of space–time harmonic function is the so called weakly
ergodic case, defined for a sequence of matrices {Mn}, when for arbitrary m, i, l

there exist γm(i, l) such that 0 < γm(i, l) < ∞, and

lim
n→∞

mMn(i, j)

mMn(l, j)
=: γm(i, l)(32)

for any j .
There are a number of criteria for weak ergodicity (see Cohn and Nerman [6]

and the references therein). A simple rule due to Hajnal [7] requires

∞∑
n=1

√
min
i,j,k,l

Mn(i, k)Mn(j, l)

Mn(i, l)Mn(j, k)
= ∞.(33)

If weak ergodicity holds, there exists only one harmonic function—up to a
multiplicative constant (see [6]):

h(m, i) = lim
n→∞

mMn(i, k)

1Mn(1, k)
(34)

for any type k.

THEOREM 6. Suppose that {Zn} is a p-type weakly ergodic multitype
branching process in varying environment and that {Z(i)

n /1Mn(1, i)} converges in
L1 as n → ∞. Then the {Z(i)

n /1Mn(1, i)} have the same limit variable W for any
i = 1, . . . , p. In addition, {Xn}, defined by

Xn = h(n,1)Z(1)
n + · · · + h(n,p)Z(p)

n ,(35)
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where

h(n, i) =
[ p∑

j=1

γn(i, j)1Mn(1, j)

]−1

(36)

is a martingale that converges a.s. to W . If
∞∑

n=1

(1Mn(1,1)
)−1

(1 − Qn) = ∞,

where Qn = maxi∈{1,...,p} Q(Yn(i)), then the distribution function of W is
continuous outside 0.

For necessary and sufficient conditions ensuring the convergence assumption of
this result see the criteria of [2] and [5].

PROOF. Using (29)–(31) and simple manipulations yield (35).
On the other hand, (32) and (34) yield

h(m, i) = lim
n→∞

mMn(i, k)

1Mn(1, k)
= lim

n→∞
mMn(i, k)∑p

j=1
1Mm(1, j)mMn(j, k)

=
[ p∑

j=1

γn(i, j)1Mn(1, j)

]−1

which proves (36). Since there exists—up to an equivalence—only one space–
time harmonic function, the limit of {Xn} is uniquely determined. Applying the
martingale convergence theorem to (30) we get that limn→∞ Xn = W . Thus, all
convergent {Zc

n} are asymptotically equivalent. In particular, {Z(i)
n /E(Z

(i)
n )} have

the same limit, W , for all i, a case that parallels the classical convergence result
for the supercritical multitype Galton–Watson process (see Athreya and Ney [1]).

It is easy to see that in view of (35), the conditions of Theorem 5 are satisfied.
This completes the proof. �
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