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SADDLEPOINT APPROXIMATIONS AND NONLINEAR BOUNDARY
CROSSING PROBABILITIES OF MARKOV RANDOM WALKS

BY HOCK PENG CHAN1 AND TZE LEUNG LAI2

National University of Singapore and Stanford University

Saddlepoint approximations are developed for Markov random walks Sn

and are used to evaluate the probability that (j − i)g((Sj − Si)/(j − i)) ex-
ceeds a threshold value for certain sets of (i, j). The special case g(x) = x

reduces to the usual scan statistic in change-point detection problems, and
many generalized likelihood ratio detection schemes are also of this form
with suitably chosen g. We make use of this boundary crossing probability
to derive both the asymptotic Gumbel-type distribution of scan statistics and
the asymptotic exponential distribution of the waiting time to false alarm in
sequential change-point detection. Combining these saddlepoint approxima-
tions with truncation arguments and geometric integration theory also yields
asymptotic formulas for other nonlinear boundary crossing probabilities of
Markov random walks satisfying certain minorization conditions.

1. Introduction. Let {Sn :n ≥ 1} be a d-dimensional random walk with
Markov-dependent increments. In this paper, we study boundary crossing prob-
abilities and asymptotic distributions of the scan statistics max1≤k≤n ‖Sn − Sk‖.
More generally, for g : Rd → R define

Mn = max
1≤i<j≤n : j−i∈Jn

(j − i)g
(
(Sj − Si)/(j − i)

)
,(1.1)

Tc = inf
{
n : max

k<n : n−k∈J (c)
(n − k)g

(
(Sn − Sk)/(n − k)

)
> c

}
,(1.2)

where Jn and J (c) are subsets of {1,2, . . .}. The special case g(x) = ‖x‖ and
Jn = J (c) = {1,2, . . .} corresponds to the usual scan statistics. Under certain
conditions, we show that there exist q ∈ {0, . . . , d} and r > 0 (depending on g)
such that

e−c/r(c/r)q/2Tc has a limiting exponential distribution as c → ∞,(1.3)

Mn − r{logn + (q/2) log logn} has a limiting Gumbel-type distribution
(1.4)

as n → ∞.
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In the case of a one-dimensional random walk with i.i.d. increments and
g(µ) = µ, (1.4) with q = 0 has been established by Iglehart (1972) in the con-
text of longest waiting times in a GI/G/1 queue and by Karlin, Dembo and
Kawabata (1990) in the context of high-scoring segments in a DNA sequence.
The corresponding result (1.3) in this case follows from Theorem 2 of Siegmund
(1988) in his analysis of the CUSUM charts in quality control. Assuming the i.i.d.
increments of the random walk to be standard normal random variables, Sieg-
mund and Ventrakaman (1995) subsequently also established (1.3) with r = 1
and q = 1 for the case g(µ) = µ2/2, which is associated with the generalized
likelihood ratio control chart. The asymptotic theory concerning (1.1) and (1.2),
which is presented in Sections 4 and 5, unifies these previous results and also
leads to definitive solutions of a variety of change-point detection problem; see
Chan and Lai (2002) for details. Of particular interest in these applications are
(i) the extension of i.i.d. to Markov-dependent increments for the scan statistics
(so that more general stochastic systems can be treated), and (ii) suitable choice
of g and Jn or J (c) in (1.1) or (1.2) to achieve both statistical and computational
efficiency.

A unified approach to derive (1.3) and (1.4) is given in Sections 4 and 5. It
is based on integrating saddlepoint approximations for Markov random walks
with respect to certain measures over tubular neighborhoods of q-dimensional
manifolds in Rd . Saddlepoint approximations for the density function of Sn

with i.i.d. increments were introduced by Daniels (1954) in the case d = 1 and
by Borovkov and Rogozin (1965) for general d ; see Jensen (1995). Höglund
(1974) and Jensen (1991) extended these saddlepoint approximations to Sn =∑n

i=1 f (Xi,Xi−1) for certain uniformly recurrent Markov chains {Xi}. By
integrating the saddlepoint approximations of the density function of Sn over
certain subsets B of Rd , Borovkov and Rogozin (1965) and Iltis (1995) derived
asymptotic approximations of the large deviation probabilities P (n−1Sn ∈ B).
Our derivation of (1.3) and (1.4) involves deeper geometric integration ideas that
incorporate both the critical temporal and spatial components of the problem
in some q-dimensional submanifold of Rd , where q is the same as that in
(1.3) and (1.4). A brief overview of our method is given in Section 4, and the
details of the argument are given in Section 5.

The saddlepoint approximations developed in Sections 2 and 6 for Markov
random walks are much more general than those in the literature. First, the Markov
random walks we consider do not need to be of the form

∑n
i=1 f (Xi,Xi−1).

Secondly, whereas previous results assume the Xi to be uniformly recurrent so
that the “tilted transition kernel” [see (2.5) in Section 2] has nice analytic and
boundedness properties, the uniform recurrence assumption is too restrictive in
applications and Theorem 2 in Section 2 is able to dispense with this restrictive
assumption. Ney and Nummelin (1987) have replaced the uniform recurrence
assumption by certain minorization conditions in establishing the large deviation
principle and characterizing the rate function for Markov additive processes.
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Our saddlepoint approximation in Theorem 2 is based on these minorization
conditions. In the Ney–Nummelin large deviations framework, the events to be
considered require the terminal state Xn to belong to a “sufficiently small” set
(or s-set) and the initial state X0 to belong to a “full set” on which certain
eigenfunctions behave well. Since saddlepoint approximations are much more
precise than large deviation bounds, it is natural to expect that they would at
least require similar restrictions on the initial and terminal states. However, we
are able to remove these restrictions via a truncation argument when we apply
the saddlepoint approximations to analyze boundary crossing probabilities. The
crucial ingredients for truncation argument are provided in Section 3, in which
we show (i) how such truncation can be carried out under finiteness of certain
eigenmeasures and (ii) that the eigenmeasures are indeed finite when certain “drift
conditions” hold, which is the case for many time series and queueing models, as
shown by Meyn and Tweedie (1993).

Because of practical difficulties in requiring the eigenfunctions to behave well
at the initial and terminal states, other approaches to the large deviation principle
for additive functionals of Markov chains have been developed that involve
instead of eigenvalues and eigenfunctions more flexible tools like “convergence
parameter” or “convex conjugate” to characterize the rate function; see, for
example, Dinwoodie (1993) and de Acosta and Ney (1998). On the other hand, this
more flexible approach only gives limits (or more precisely, lim sup and lim inf) of
the logarithms of the probabilities of large deviations of these additive functionals,
but we need the precise order of magnitude of the probabilities to derive the
limiting distributions in (1.3) and (1.4). The methods in Section 3, which enable
us to establish the precise order of magnitude for the large deviation probabilities,
also provide new techniques to analyze the tilted transition kernels and remove
some of the obstacles in applying the eigenvalue–eigenfunction approach of Ney
and Nummelin (1987).

2. Saddlepoint approximations for Markov random walks. Let {(Xn,Sn) :
n = 0,1, . . .} be a Markov additive process, with Xn being a Markov chain defined
on a general state space X and Sn taking values in Rd . The additive component Sn

of the process is called a Markov random walk, and can be written in the form
Sn = S0 + ξ1 + · · · + ξn, where for all s ∈ Rd ,

P {(X1, S1) ∈ A × (B + s)|(X0, S0) = (x, s)}
= P {(X1, S1) ∈ A × B|(X0, S0) = (x,0)},

which we denote by P (x,A × B). The corresponding m-step transition kernel
will be denoted by P m. We shall assume throughout the sequel that S0 = 0 and
that {Xn} is aperiodic and irreducible with respect to a maximal irreducibility
measure ϕ on X. In this section we give saddlepoint approximations for the
distribution of (Xn,Sn). Throughout the sequel we denote the tranpose of a matrix
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by ′ and the elements of Rd by column vectors. We also let |M| denote the
determinant of a square matrix M .

To begin with, suppose ξ1, ξ2, . . . are i.i.d. with Eeθ ′ξ1 < ∞ for some θ �= 0.
Let � = {θ :Eeθ ′ξ1 < ∞} and let ψ(θ) = log(Eeθ ′ξ1) for θ ∈ �. Let � be the
interior of ∇ψ(�). Suppose Sm has an integrable characteristic function for some
m ≥ 1. Then for n ≥ m, n−1Sn has a continuous density function fn for which the
saddlepoint approximation

fn(µ) =
{

1+
k∑

j=1

cj (θµ)n−j +O(n−(k+1))

}
(n/2π)d/2|V (µ)|−1/2e−nI (µ)(2.1)

holds for all µ ∈ � and k ≥ 1, where the cj (θ) are analytic functions of θ ,

θµ = (∇ψ)−1(µ),

I (µ) = sup
θ∈�

{θ ′µ − ψ(θ)} = θ ′
µµ − ψ(θµ),(2.2)

V (µ) = ∇2ψ(θµ).

The function ∇ψ is a diffeomorphism from the interior of � onto �, and θµ is a
saddlepoint of the function h(θ) = θ ′µ − ψ(θ). Such saddlepoint approximations
were introduced by Daniels (1954) in the case d = 1 and extended to general d

by Borovkov and Rogozin (1965). The function I is called the rate function in
large deviations theory. An obvious analogue of (2.1) also holds for P {Sn = s}
when ξ1 has a lattice distribution and s belongs to the minimal lattice; compare
Jensen (1995).

2.1. The uniformly recurrent case. We first generalize the results to Markov
random walks under the uniform recurrence condition of Iscoe, Ney and Nummelin
(1985): There exist κ ≥ 1, b > a > 0 and a probability measure ν on X × Rd such
that

aν(A × B) ≤ P κ(x,A × B) ≤ bν(A × B)(2.3)

for all x ∈ X, measurable subsets A of X and Borel subsets B of Rd .
Let � = {θ :

∫
X×Rd eθ ′s dν(x, s) < ∞} and assume that its interior is nonempty.

For θ ∈ �, define the transform kernels P̂θ , ν̂θ by

P̂θ (x,A) =
∫

Rd
eθ ′sP (x,A × ds), ν̂θ (A) =

∫
Rd

eθ ′sν(A × ds).(2.4)

Under (2.3), for every θ ∈ �, aν̂θ (A) ≤ P̂ κ
θ (x,A) ≤ bν̂θ (A) and P̂θ has a maximal

simple real eigenvalue eψ(θ) with eigenfunction r(x; θ) which is uniformly
positive and bounded. Moreover, ψ(θ) is analytic and strictly convex on Int(�),
the interior of �. Let � be the interior of ∇ψ(�) and define θµ, I (µ) and V (µ)

as in (2.2). We shall use Pδ to denote the probability measure under which X0 has
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distribution δ, and let Px denote the case for which the initial distribution δ is
degenerate at x. For θ ∈ Int(�), define the Markov additive transition kernel

Qθ(x, dy × ds) = e−ψ(θ)+θ ′sP (x, dy × ds)r(y; θ)/r(x; θ).(2.5)

The underlying Markov chain {Xn :n ≥ 0} associated with this tilted transition
kernel has a stationary distribution which is absolutely continuous with respect
to ν̂0, and the density function (with respect to ν̂0) of the stationary distribution
will be denoted by π(y; θ).

THEOREM 1. Assume that (2.3) holds and Int(�) �= ∅.

(i) Suppose ν is absolutely continuous with respect to the product measure
ν̂0 × λ, where λ denotes Lebesgue measure on Rd . Let v = dν/d(ν̂0 × λ), that is,
ν(dx × ds) = v(x, s) dν̂0(x) ds. Assume that there exists 1 < ρ < 2 such that

sup
x∈X,θ∈K

∫
Rd

[
eθ ′sv(x, s)

]ρ
ds < ∞ for every compact subset K of Int(�).(2.6)

Then for all sufficiently large n, (Xn,n
−1Sn) has (under Px) a joint density

function fn,x with respect to ν̂0 × λ and

fn,x(y,µ) =
{

1 +
k∑

j=1

n−j cj (θµ, x, y) + O(n−(k+1))

}
(2.7)

× e−nI (µ)
{
(n/2π)d/2|V (µ)|−1/2r(x; θµ)/r(y; θµ)

}
π(y; θµ)

for every k ≥ 1, uniformly for µ ∈ C and x, y ∈ X, where C is any compact subset
of � and cj (θ, x, y) are analytic functions of θ .

(ii) Suppose ξ1 has a lattice distribution with minimal lattice L (of full rank d)
under Px , for every x ∈ X. Then for every k ≥ 1,

Px{Sn = u,Xn ∈ dy}

=
{

1 +
k∑

j=1

n−j cj (θu/n, x, y) + O(n−(k+1))

}

× e−nI (u/n)
{
(2πn)−d/2hL|V (u/n)|−1/2r(x; θu/n)/r(y; θu/n)

}
× π(y; θu/n) dν̂0(y),

(2.8)

uniformly for x, y ∈ X and u/n ∈ C with u ∈ L, where C is any compact subset
of �, hL is some constant dependent only on the lattice L and cj (θ, x, y) is the
same as in (i).

Theorem 1 can be proved by modifying the arguments in Sections 2–4 of Jensen
(1991) who considers sums of real-valued functions g(Xn)(= ξn) for the case
κ = 1. The proof of Theorem 1(ii) uses similar methods and standard arguments
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for the lattice case [cf. Chapter 5 of Bhattacharya and Ranga Rao (1976)]. The
constant hL in (2.8) is given by the absolute value of the determinant of the matrix
(η1, . . . , ηd), whose column vectors form a basis of L in the sense that linear
combinations of η1, . . . , ηd with integer coefficients span L; see Bhattacharya and
Ranga Rao [(1976), pages 228–231]. Note that in (2.8), the measure on X defined
by Px{Sn = u, Xn ∈ ·} is absolutely continuous with respect to ν̂0, so (2.8) can be
interpreted as an asymptotic approximation to the Radon–Nikodym derivative of
this measure with respect to ν̂0.

2.2. Regeneration under a minorization condition. Instead of the uniform
recurrence condition (2.3), we now assume the considerably weaker minorization
condition of Ney and Nummelin (1987): There exist κ ≥ 1, a probability measure ν

on X and a finite measure h(x, ·) on Rd such that

P κ(x,A × B) ≥ h(x,B)ν(A)(2.9)

for all x ∈ X and all Borel subsets B of Rd and measurable subsets A of X. An
alternative form of minorization is

P κ(x,A × B) ≥ h(x)ν(A × B),(2.10)

where ν is a probability measure on X × Rd and h is a nonnegative function
on X with

∫
hdϕ > 0. Under (2.9) or (2.10), Ney and Nummelin (1987) showed

that (Xn,Sn) admits a regenerative scheme with i.i.d. interregeneration times for
an augmented Markov chain, which is called the “split chain.” Letting w(θ, ζ ) =
Eνe

θ ′Sτ−ζ τ , where τ is the first time (> 0) to reach the atom of the split chain, and
assuming that

W := {(θ, ζ ) :w(θ, ζ ) < ∞} is an open subset of Rd+1,(2.11)

they also showed that � := {θ :w(θ, ζ ) < ∞ for some ζ } is an open set and that for
θ ∈ �, the transform kernel P̂θ defined in (2.4) has a maximal simple real eigen-
value eψ(θ), where ψ(θ) is the unique solution of the equation w(θ,ψ(θ)

)= 1,
with corresponding eigenfunction r(x; θ) = Ex exp{θ ′Sτ − ψ(θ)τ }. Moreover,
ψ(θ) is strictly convex and analytic on � and there exists a full set F

[i.e., ϕ(F c) = 0] such that

wx(θ, ζ ) := Exe
θ ′Sτ−ζ τ < ∞ on W for all x ∈ F ;(2.12)

see the proof of Lemma 4.4 of Ney and Nummelin (1987), where it is shown that
r(x; θ) is finite and analytic on � for all x ∈ F as a consequence of (2.12). Define
θµ, I (µ) and V (µ) by (2.2) for µ ∈ �, and Qθ by (2.5) for θ ∈ �. A minorization
condition also holds for the transition kernel Qθ whose associated Markov chain
{Xn :n ≥ 0} has an invariant measure which will be denoted by πθ . The main result
of this section is the following theorem, in which we define

K(u, ε) = {v ∈ Rd :ui ≤ vi ≤ ui + ε for 1 ≤ i ≤ d}
(2.13)

for u ∈ Rd and ε > 0.
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THEOREM 2. Assume (2.9) or (2.10) and define a probability measure ν̃

on Rd by

ν̃(B) =
∫
X

h(x,B)dν(x)

/∫
X

h(x,Rd) dν(x) [if (2.9) holds]

=
∫
X×B

h(x) dν(x, s)

/∫
X×Rd

h(x) dν(x, s) [if (2.10) holds].
Suppose ν̃ is nonlattice and (2.11) holds. Let x ∈ F , where F is a full set satis-
fying (2.12). Then there exist positive numbers εn with limn→∞ εn = 0 such that
as n → ∞ and ε → 0 with ε ≥ εn,

Px{Sn ∈ K(nµ, ε), Xn ∈ A}
= (ε/

√
n)de−nI (µ){(2π)−d/2|V (µ)|−1/2r(x; θµ)

}
×
{∫

A

(
r(y; θµ)

)−1
dπθµ(y) + o(1)

}
,

uniformly for µ ∈ C, where C is a compact subset of � and A is a measurable
subset of X such that infµ∈C,y∈A r(y; θµ) > 0.

The proof of Theorem 2 is given in Section 6. The minorization condition (2.9)
or (2.10) in Theorem 2 is used not only to invoke the Ney–Nummelin theory
on the eigenvalue eψ(θ) and eigenfunction r(x; θ) that appear in the asymptotic
formula, but also to prove local limit theorems for the tilted transition kernel via
regeneration arguments. On the other hand, assumption (2.11) is used only to
apply the Ney–Nummelin theory and to ensure that the regeneration times have
finite moments of all orders under the tilted measure. In specific applications (see,
e.g., Example 2 below), one derives the eigenvalue and eigenfunction directly and
can establish finiteness of moments of the regeneration times directly without
appealing to (2.11), so one can apply Theorem 2 even when (2.11) fails to hold
or cannot be verified. Moreover, one can also specify the full set F on which
the eigenfunction is finite and analytic in θ . In particular, when Xn is uniformly
recurrent, F = X and we can dispense with condition (2.11). As will be illustrated
in the proofs of Theorems 3, 5 and 6, Theorem 2 enables us to approximate
probabilities in the same way that a true saddlepoint density (2.7) does but without
any density assumption on the additive component.

3. Finiteness of eigenmeasures, large deviation probabilities and the max-
ima of Markov random walks. Suppose the minorization condition (2.9) or
(2.10) holds. For a measurable subset A of X and x ∈ X, define

�(A; θ) = Eν

[
τ−1∑
n=0

eθ ′Sn−nψ(θ)I{Xn∈A}
]
,

(3.1)

�x(A; θ) = Ex

[
τ−1∑
n=0

eθ ′Sn−nψ(θ)I{Xn∈A}
]
.
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Then �(·; θ) is the left eigenmeasure associated with the eigenvalue eψ(θ); see Ney
and Nummelin (1987). The following result gives upper bounds for certain large
deviation probabilities of Markov random walks in terms of �(· ; θ) and �x(· ; θ).

LEMMA 1. Let A be a measurable subset of X, θ ∈ �, µ ∈ � and F be a full
set satisfying (2.12). For x ∈ F , there exists a constant Kθ continuous in θ and
possibly dependent on x but not on A such that for all c > 0 and n ≥ 1,

∞∑
m=0

Px

{
θ ′Sm − mψ(θ) > c, Xm ∈ A

}
(3.2) ≤ e−c{Kθ�(A; θ) + �x(A; θ)},

Px

{
θ ′
µ(Sn/n − µ) > 0, Xn ∈ A

}
(3.3)

≤ e−nI (µ){Kθ�(A; θµ) + �x(A; θµ)}.
PROOF. Let E(θ) denote expectation under the kernel Qθ in (2.5). Let τ1 = τ

and τm be the first (regeneration) time after τm−1 to reach the atom of the split
chain. Consider the renewal measure

Uθ(t) =
∞∑
i=1

Qθ,x

{
θ ′Sτi

− τiψ(θ) ≤ t
}
.(3.4)

Since the regeneration times τi divide the Markov chain into independent blocks,
the random variables θ ′(Sτi

− Sτi−1) − (τi − τi−1)ψ(θ), i ≥ 2, are i.i.d. By
Blackwell’s renewal theorem,

Uθ(t) − Uθ(t − 1) → {E(θ)
νθ

[θ ′Sτ − τψ(θ)]}−1
as t → ∞,

when θ ′Sτ −τψ(θ) is nonlattice under Qθ,νθ
. An analogous result also holds in the

lattice case; see Feller (1971). In either case, aθ := supt∈R{Uθ(t)−Uθ (t −1)} < ∞
and is continuous in θ . Since

∫
r(y; θ)ν(dy) = Eνe

θ ′Sτ −τψ(θ) = 1 [cf. Ney and
Nummelin (1987)], it follows from (2.5) that

∞∑
i=1

Px

{
θ ′Sτi

−τiψ(θ) ∈ ds
}= e−sr(x; θ)

∞∑
i=1

Qx,θ

{
θ ′Sτi

−τiψ(θ) ∈ ds
}
.(3.5)

Decomposing
∑∞

m=0 as
∑τ1−1

m=0 +∑∞
i=1
∑τi+1−1

m=τi , we have
∞∑

m=0

Px

{
θ ′Sm − mψ(θ) > c,Xm ∈ A

}

= Ex

[
τ−1∑
m=0

I{θ ′Sm−mψ(θ)>c,Xm∈A}
]

(3.6)

+
∫ ∞
−∞

∞∑
i=1

Px

{
θ ′Sτi

− τiψ(θ) ∈ ds
}
Eν

[
τ−1∑
m=0

I{θ ′Sm−mψ(θ)>c−s,Xm∈A}
]
,
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Ex

[
τ−1∑
m=0

I{θ ′Sm−mψ(θ)>c,Xm∈A}
]

(3.7)

≤ e−cEx

[
τ−1∑
m=0

eθ ′Sm−mψ(θ)I{Xm∈A}
]

= e−c�x(A; θ),

∫ ∞
−∞

∞∑
i=1

Px

{
θ ′Sτi

− τiψ(θ) ∈ ds
}
Eν

[
τ−1∑
m=0

I{θ ′Sm−mψ(θ)>c−s,Xm∈A}
]

=
∫ ∞
−∞

e−sr(x; θ)Uθ (ds)Eν

[
τ−1∑
m=0

I{θ ′Sm−mψ(θ)>c−s,Xm∈A}
]

[by (3.5) and (3.4)]

≤ ∑
t∈c+Z

e−(t−1)r(x; θ)[Uθ(t) − Uθ(t − 1)]
(3.8)

× Eν

[
τ−1∑
m=0

I{θ ′Sm−mψ(θ)>c−t,Xm∈A}
]

≤ aθe
−c+1r(x; θ)Eν

[
τ−1∑
m=0

( ∑
w∈Z,w<θ ′Sm−mψ(θ)

∫ w

w−1
ey+1 dy

)
I{Xm∈A}

]

(setting w = c − t)

≤ aθe
−c+2r(x; θ)Eν

[
τ−1∑
m=0

eθ ′Sm−mψ(θ)I{Xm∈A}
]

= aθe
−c+2r(x; θ)�(A; θ).

From (3.6)–(3.8), we obtain (3.2) with Kθ = aθe
2r(x; θ). To show (3.3), simply

consider the summand m = n in (3.2) with c = nI (µ). �

Lemma 1 enables us to perform truncation by restricting Xn to sets A on which
the eigenfunction is uniformly positive so that the saddlepoint approximation in
Theorem 2 can be applied, as we can then apply the bound (3.2) or (3.3) to analyze
the case Xn ∈ Ac. We illustrate this idea in the following theorem, which Arndt
(1980) and Höglund (1991) proved for the case of finite X by using other methods
involving Markov renewal theory. Besides using Theorem 2 and Lemma 1, our
proof uses a time-reversal argument, which we generalize from the i.i.d. case [see,
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e.g., Chan and Lai (2000)] to the Markovian setting. This generalization involves
the dual (time-reversed) Markov random walk S̃n(µ) under Qθµ , assuming that
there exists a σ -finite measure ν∗ on X such that

P (x, · × Rd) is absolutely continuous with respect to ν∗ for all x ∈ X.(3.9)

Clearly (3.9) holds when X is finite, since we can take ν∗(A) =∑
x∈X P (x,A × Rd). Further discussion of the dual Markov random walk and

the role of assumption (3.9) is given in Section 4.3. Define ν̃ as in Theorem 2
and

γ (y;µ) =
∫ ∞

0
e−zQθµ,y

{
min
n≥1

[
θ ′
µS̃n(µ) − nψ(θµ)

]
> z

}
dz,(3.10)

γ (A;µ) =
∫
A

(
r(y; θµ)

)−1
γ (y; θµ) dπθµ(y), γ (µ) = γ (X;µ).(3.11)

If �(X; θµ) is finite, then so is γ (µ) because (r(y; θ))−1 dπθ(y) = Lθ�(dy; θ) for
some constant Lθ [cf. Ney and Nummelin (1987), page 581].

THEOREM 3. Let d = 1 and Eπξ1 < 0. Assume (2.9) or (2.10),
(2.11) and (3.9). Then there exists a unique θ∗ > 0 such that ψ(θ∗) = 0.
Let x belongs to a full set F satisfying (2.12). Suppose that ν̃ is nonlattice,
�(X; θ) < ∞ and �x(X; θ) < ∞ for all θ in some neighborhood of θ∗. Let
µ∗ = dψ(θ)/dθ |θ=θ∗ . If α−1 < µ∗ < δ−1, then

Px

{
max
n≥0

Sn > c

}
∼ Px

{
max

δc≤n≤αc
Sn > c

}

∼ r(x; θ∗)
(
I (µ∗)

)−1
γ (µ∗)e−cθ∗

as c → ∞.

PROOF. Since ψ(θ∗) = 0 and �(X; θ∗)+�x(X; θ∗) < ∞, it follows from (3.2)
with A = X that

∞∑
n=0

Px

{
Sn > c + c1/5}= ∞∑

n=0

Px

{
θ∗Sn > θ∗c + θ∗c1/5}= o

(
e−cθ∗)

.(3.12)

Let Aω = {x : r(x; θ∗) > ω}. Since Aω ↑ X as ω ↓ 0, it follows from (3.2) that for
all η > 0, there exists ω > 0 small enough such that

∞∑
n=0

Px

{
θ∗Sn > θ∗c,Xn ∈ Ac

ω

}≤ ηe−cθ∗
.(3.13)
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Let T̃c = min{n ≥ δc :Sn > c}. Then by Theorem 2 and (3.12),

Px

{
T̃c ≤ αc,X

T̃c
∈ Aω

}
= (1 + o(1)

)
× ∑

c/µ∗−c3/5≤n≤c/µ∗+c3/5

∫
Aω

∑
z∈εZ,0≤z≤c1/5

Px{Sn ∈ K(c + z, ε), Xn ∈ dy}

× Py

{
min
m≥1

S̃m

(
(c + z)/n

)
> z

}
+ o
(
e−cθ∗)

,

(3.14)
= (1 + o(1)

)
× ∑

c/µ∗−c3/5≤n≤c/µ∗+c3/5

∫
Aω

∫ c1/5

0
(2πn)−1/2e−nI ((c+z)/n)

× ∣∣V ((c + z)/n
)∣∣−1/2

[
r(x; θ(c+z)/n)

r(y; θ(c+z)/n)

]

× Py

{
min
m≥1

S̃m

(
(c + z)/n

)
> z

}
dzdπθ(c+z)/n

(y)

+ o
(
e−cθ∗)

.

Since I (µ∗) = θ∗µ∗, dI (µ)/dµ|µ=µ∗ = θ∗ and d2I (µ)/dµ2|µ=µ∗ = (V (µ∗))−1,
we have uniformly for |n − c/µ∗| ≤ c3/5 and 0 ≤ z ≤ c1/5,

nI
(
(c + z)/n

)= nI (µ∗) + (c + z − nµ∗)θ∗ + (c + z − nµ∗)2/
(
2nV (µ∗)

)+ o(1)

= (c + z)θ∗ + (c − nµ∗)2/
(
2nV (µ∗)

)+ o(1),

with (c + z)/n → µ∗. Therefore the double integral in the RHS of (3.14) is
asymptotically equivalent to

(µ∗/2πc)1/2e−cθ∗−(c−nµ∗)2/2nV (µ∗)(V (µ∗)
)−1/2

r(x; θ∗)γ (Aω;µ∗)/θ∗,(3.15)

recalling (3.10) and (3.11). Moreover, using a change of variables w = (c −nµ∗)/√
c/µ∗, we obtain ∑

c/µ∗−c3/5≤n≤c/µ∗+c3/5

e−(c−nµ∗)2/2nV (µ∗)

∼ c1/2(µ∗)−3/2
∫ ∞
−∞

e−w2/2V (µ∗) dw,(3.16)

= (2πcV (µ∗)
)1/2

(µ∗)−3/2.

Since I (µ∗) = θ∗µ∗, (3.13)–(3.16) yield the desired conclusion for
Px{maxδc≤n≤αc Sn > c} by letting η → 0 (and therefore ω → 0).
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To prove the desired conclusion for Px{maxn≥0 Sn > c}, it suffices to show that

Px

{
max

n<c/µ∗−c3/5
Sn > c

}
+ Px

{
max

n>c/µ∗+c3/5
Sn > c

}
= o
(
e−cθ∗)

.(3.17)

Let θ1 < θ∗ < θ2 be such that µ1 = (1/µ∗ +c−2/5)−1 and µ2 = (1/µ∗ −c−2/5)−1,
where µi = dψ(θ)/dθ |θ=θi

. Then by Lemma 1,

Px

{
max

n≤c/µ∗−c3/5
Sn > c

}

≤ Px

{
max

n≤c/µ∗−c3/5

(
θ2Sn − nψ(θ2)

)
> c
(
θ2 − ψ(θ2)/µ2

)}
(3.18)

≤ e−c{θ2−ψ(θ2)/µ2}{Kθ2�(X; θ2) + �x(X; θ2)
}
.

As shown by Ney and Nummelin [(1987), pages 579 and 580], if �(A; θ)

[or �x(A; θ)] is finite on an open subset of �, then it is an analytic function
of θ on this open subset. Therefore by continuity, Kθ and �(X, θ), �x(X, θ) are
bounded in some neighborhood of θ∗. Let h(µ) = I (µ)/µ. Then dh(µ)/dµ =
(µθµ − I (µ))/µ2 = ψ(θµ)/µ2, which is negative for 0 < µ < µ∗ and positive
for µ > µ∗, recalling that ψ(θ∗) = 0 = ψ(0) and θµ∗ = θ∗. Hence h(µ) ≥
h(µ∗) + L(µ − µ∗)2 for some L > 0 when µ is close to µ∗. Therefore, for c

large enough,

θ2 − ψ(θ2)/µ2 = I (µ2)/µ2 ≥ I (µ∗)/µ∗ + L(µ2 − µ∗)2 ≥ θ∗ + L̃ck

for some positive constants k and L̃, and therefore Px{maxn≤c/µ∗−c3/5 Sn > c} =
o(e−cθ∗

) by (3.18). A similar argument can be applied with θ2,µ2 replaced by
θ1,µ1 to bound the other probability in (3.17). �

We next establish in Theorem 4 finiteness of �(X; θ) and �y(X; θ) under “drift
conditions” of the type in Meyn and Tweedie (1993). Let C be a measurable subset
of X such that

�(C; θ) < ∞ and �y(C; θ) < ∞ for all y ∈ X.(3.19)

Let w :X → [1,∞) be a measurable function such that for some 0 < β < 1 and
L > 0,

Ex

[
eθ ′ξ1−ψ(θ)w(X1)

] ≤ (1 − β)w(x) for all x /∈ C,(W1)

sup
x∈C

Ex

[
eθ ′ξ1−ψ(θ)w(X1)

]= L < ∞ and
∫

w(x)dν(x) < ∞,(W2)

where dν(x) = dν(x,Rd) when (2.10) holds.
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THEOREM 4. Assume (2.9) or (2.10) and (2.11). Let C be a measurable subset
of X satisfying (3.19), and (W1) and (W2) for some w :X → [1,∞),0 < β < 1
and L > 0. Then �(X; θ) < ∞ and �y(X; θ) < ∞ for all y ∈ X.

PROOF. Let σC = inf{n ≥ 0 :Xn ∈ C}, τC = inf{n ≥ 1 :Xn ∈ C}. We first
show that under (W1),

Ex

[
σC∑
n=0

eθ ′Sn−nψ(θ)w(Xn)

]
≤ w(x)/β for all x ∈ X.(3.20)

If x ∈ C, then σC = 0 and (3.20) clearly holds. For x /∈ C, it suffices to show that

Ex

[
eθ ′Sn−nψ(θ)w(Xn);σC ≥ n

]≤ (1 − β)nw(x) for all n ≥ 0,(3.21)

where Ex[Z;A] denotes Ex(ZIA). We can prove (3.21) by induction since
by (W1),

Ex

[
eθ ′Sn+1−(n+1)ψ(θ)w(Xn+1);σC ≥ n + 1

]
= Ex

[
eθ ′Sn−nψ(θ)EXn

{
eθ ′ξ1−ψ(θ)w(Xn+1)

};σC ≥ n + 1
]
,

≤ Ex

[
eθ ′Sn−nψ(θ)(1 − β)w(Xn);σC ≥ n

]
.

If σC < τ , let T1, . . . , TM denote the times of visits to C before τ . If σC ≥ τ , set
M = 0. Let TM+1 be the time of the first visit to C at or after time τ . Then

�(C; θ) = Eν

[
τ−1∑
n=0

eθ ′Sn−nψ(θ);Xn ∈ C

]
= Eν

(
M∑

m=1

eθ ′STm−Tmψ(θ)

)
,(3.22)

where
∑M

m=1 = 0 if M = 0. Moreover,

�(X; θ) ≤ Eν

(
σC∑
n=0

eθ ′Sn−nψ(θ)

)

+ Eν

[
M∑

m=1

(
eθ ′STm+1−(Tm+1)ψ(θ) + · · · + e

θ ′STm+1−Tm+1ψ(θ))]
(3.23)

= Eν

(
σC∑
n=0

eθ ′Sn−nψ(θ)

)

+ Eν

[
M∑

m=1

eθ ′STm−Tmψ(θ)EXTm

(
τC∑

n=1

eθ ′Sn−nψ(θ)

)]
.
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If z ∈ C, then by (3.20) and (W2),

Ez

[
τC∑

n=1

eθ ′Sn−nψ(θ)w(Xn)

]

= Ez

{
(eθ ′ξ1−ψ(θ)EX1

[
σC∑
n=0

eθ ′Sn−nψ(θ)w(Xn)

]}
(3.24)

≤ Ez

[
eθ ′ξ1−ψ(θ)w(X1)

]
/β ≤ L/β.

Substituting (3.20), (3.22) and (3.24) into (3.23) and noting that w(Xn) ≥ 1 and
XTm ∈ C, it follows that

�(X; θ) ≤ Eν

[
M∑

m=1

eθ ′STm−Tmψ(θ)(L/β)

]
+
∫

w(x)dν(x)
/

β

(3.25)

=
{
L�(C; θ) +

∫
w(x)dν(x)

}/
β.

We can bound �y(X; θ) in a similar way, with �(C; θ) in (3.25) replaced by
�y(C; θ) and

∫
w(x)dν(x) replaced by w(y). �

EXAMPLE 1. If the uniform recurrence condition (2.3) holds and Int(�) �= ∅,
then the eigenfunction r(x; θ) is uniformly positive and bounded on X and
�(X; θ) < ∞ for all θ ∈ �, by Lemma 3.1 of Iscoe, Ney and Nummelin (1985).
Moreover, (W1) and (W2) are satisfied with w ≡ 1 and C = X, L = 1 for every
θ ∈ �.

EXAMPLE 2. Consider the vector autoregressive model,

Xi+1 = HXi + Zi+1, ‖H‖ = sup
‖x‖=1

‖Hx‖ < 1,(3.26)

where Zi are i.i.d. nondegenerate d × 1 random vectors such that �(t) :=
Eet‖Z1‖ < ∞ for all t > 0 and Z1 has an absolutely continuous component (with
respect to Lebsegue measure λ) in the sense that P (Z1 ∈ A) ≥ ∫A g(z) dz for
some positive continuous function g. Suppose the conditional distribution of ξn

given X0, . . . ,Xn has the form FXn−1,Xn such that for every θ ∈ Rd , there exists a
positive constant ρθ for which∫

eθ ′s dFx,y(s) ≤ exp{ρθ(‖x‖ + ‖y‖)} ∀x, y ∈ Rd .(3.27)

Suppose furthurmore that for every compact subset C of Rd , there exists a finite
measure νC with compact support KC such that

inf
x,y∈C

Fx,y(B) ≥ νC(B) for all B ⊂ KC.(3.28)
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Let C = {µ :‖µ‖ ≤ N} and w(x) = eγ ‖x‖ for some γ and N to be specified later.
Since g is positive and continuous, δ := inf{g(z − Hx) : x ∈ C and Hx +

z ∈ C} > 0. Since P {Hx + Z1 ∈ dz} ≥ g(z − Hx)dz, it then follows from (3.28)
that for all x ∈ Rd ,

Px{(X1, ξ1) ∈ A × B} ≥ δI{x∈C}λ(A ∩ C)νC(B ∩ KC),(3.29)

and therefore the minorization condition (2.9) holds with h(x) = δλ(C)νC(KC)×
I{x∈C}. Moreover, by (3.27),

Ex

[
eθ ′ξ1w(X1)

]≤ E exp
{
ρθ(‖x‖ + ‖Hx + Z1‖) + γ ‖Hx + Z1‖}

≤ �(ρθ + γ ) exp
{[ρθ (1 + ‖H‖) + γ ‖H‖]‖x‖}.

Since ‖H‖ < 1, we can choose γ large enough so that 2ρθ + γ ‖H‖ < γ , and then
(W1) is satisfied if N is chosen large enough. Since C is compact and λ(· ∩C) has
support C, (W2) also holds for sufficiently large L.

For the special case ξi = Xi , Fx,y is degenerate at y and (3.27) holds trivially
with ρθ = ‖θ‖. Although (3.28) no longer holds, we still have in place of (3.29)
the minorization condition,

Px{ξ1 = X1 ∈ A} ≥ δI{x∈C}λ(A ∩ C).(3.30)

Let J (θ) = log(Eeθ ′Z1). Then ψ(θ) = J ((I − H ′)−1θ) and r(x; θ) =
exp{θ ′(I − H)−1Hx} satisfy∫

e−ψ(θ)+θ ′sP (x, dy × ds)r(y; θ)/r(x; θ) = E
(
e−ψ(θ)+θ ′(I−H)−1Z1

)= 1,

and it can be shown that eψ(θ) is indeed the maximal eigenvalue and that a scalar
multiple of r(x; θ) is the eigenfunction in the Ney–Nummelin framework. Note
that r(x; θ) is finite and analytic in θ (and x). Moreover, the regeneration time τ

under the minorization condition (3.30) has a finite moment generating function in
some neighborhood of the origin [cf. Meyn and Tweedie (1993), pages 364–370].

4. Nonlinear boundary crossing probabilities for Markov random walks.
In this section, we first generalize Theorem 3 to nonlinear boundary crossing
probabilities. Specifically, instead of the maximum of a one-dimensional Markov
random walk maxδc≤n≤αc Sn, we now consider maxδc≤n≤αc ng(Sn/n), where
Sn is a d-dimensional Markov random walk and g : �̄ → R satisfies certain
regularity conditions described below. Here and in the sequel we use the same
notation and assumptions as those in Section 2.2. We next extend the method to
analyze the boundary crossing probability

Px

{
max

n−αc≤k≤n−δc
(n − k)g

(
(Sn − Sk)/(n − k)

)
> c for some n ≤ βc

}
(4.1)

as c → ∞, which plays a key role in the derivation of the main results (1.3) and
(1.4) in the last part of this section.
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4.1. Generalization of Theorem 3 to nonlinear functions of mean vectors. In
the case of i.i.d. ξn, asymptotic approximations to Px{maxδc≤n≤αc ng(Sn/n) > c}
were recently developed in Chan and Lai (2000). Under certain assumptions,
this probability is shown to be of the order Acq/2e−c/r as c → ∞, where r =
supa−1≤g(µ)≤δ−1 g(µ)/I (µ), q is the dimension of the submanifold of � at which
the preceding supremum is attained and A is a constant that can be expressed
as an integral over the manifold with respect to its volume element measure.
We can extend this result to Markov random walks satisfying the minorization
and nonlattice conditions of Theorem 3, for which we still have the saddlepoint
approximation given in Theorem 2, analogous to the i.i.d. case considered in Chan
and Lai (2000) under the following assumptions on g:

(A1) g is continuous on � and there exists ε0 > 0 such that

sup
α−1<g(µ)<δ−1+ε0

g(µ)/I (µ) = r < ∞.

(A2) infg(µ)>δ−1+ε0
I (µ) > (δr)−1 and lim supµ→∂� g(µ)/I (µ) < r , where

∂� denotes the boundary of �.
(A3) Mε,α,δ := {µ :α−1 < g(µ) < δ−1 + ε and g(µ)/I (µ) = r} is a smooth

q-dimensional manifold for all 0 ≤ ε ≤ ε0, where q ≤ d .
(A4) g is twice continuously differentiable in some neighborhood of Mε0,α,δ

and σ({µ :g(µ) = δ−1 and g(µ)/I (µ) = r}) = 0, where σ is the volume
measure of Mε0,α,δ .

(A5) infµ∈M0,α,δ
|�′

µ∇2ρ(µ)�µ| > 0 with ρ(µ) = I (µ) − g(µ)/r , where

�µ denotes the d × (d − q) matrix whose column vectors form an ortho-
normal basis of the orthogonal complement T M⊥(µ) of the tangent space
T M(µ) of M := M0,α,δ at µ. In the case d = q , we set |�′

µ∇2ρ(µ)�µ| = 1,
and (A5) clearly holds under this convention.

THEOREM 5. Let α > δ > 0. With the same notation and assumptions as
in Theorem 2, suppose that g satisfies (A1)–(A5), with g(Eπξ1) < α−1, and
that �(X; θµ) < ∞, �x(X; θµ) < ∞ for all µ ∈ D, where D is a compact
neighborhood of {µ : I (µ) ≤ (δr)−1}. Then

Px

{
max

δc≤n≤αc
ng(Sn/n) > c

}
∼ (c/2πr)q/2e−c/r

∫
M

r(x; θµ)γ (µ)
(
I (µ)
)−(q/2+1)

× |V (µ)|−1/2|�′
µ∇2ρ(µ)�µ|−1/2 dσ (µ),

where γ (µ) is defined in (3.11).
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In view of (A2), {µ : I (µ) ≤ (δr)−1} is compact and therefore indeed has
a compact neighborhood. Note that Theorem 3 is in fact a special case of
Theorem 5 with g(µ) = µ for which q = 0, r = 1/θ∗, M = {µ∗} and ∇2ρ(µ) =
d2I (µ)/dµ2 = (V (µ))−1. Theorem 5 is a generalization of Theorem 1 of Chan
and Lai (2000) to the Markovian setting. Let T̃c = min{n ≥ δc :ng(Sn/n) > c}. It
follows from Theorem 2 and arguments similar to those in Section 3 of Chan and
Lai (2000) that

Px

{
T̃c ≤ αc,X

T̃c
∈ Aω

}
= (1 + o(1)

)
(c/2πr)q/2e−c/r

∫
M

r(x; θµ)γ (Aω;µ)I (µ)−(q/2+1)

× |V (µ)|−1/2|�′
µ∇2ρ(µ)�µ|−1/2 dσq(µ),

where Aω = {x : r(x; θµ) > ω for all µ ∈ D}. The following lemma, which will be
proved in Section 5 and which is a nonlinear analogue of Lemma 1, then allows us
to prove Theorem 5 by letting A = Ac

ω and ω → 0 in the lemma.

LEMMA 2. Under the same notation and assumptions as in Theorem 5, there
exists a constant L such that for all measurable subsets A of X,

Px

{
max

δc≤n≤αc
ng(Sn/n)I{Xn∈A} > c

}
(4.2)

≤ Lcq/2e−c/r sup
µ∈D

[�(A; θµ) + �x(A; θµ)].

EXAMPLE 3. Let Sn = X1 + · · · + Xn, where Xi is the autoregressive se-
ries (3.26). Assume the Zi to be normally distributed with mean 0 and covariance
matrix �. Then ψ(θ) = θ ′V θ/2 and µ = ∇ψ(θ) = V θ , where V = (I − H)−1 ×
�(I − H ′)−1. Let g(µ) = µ′V −1µ/2. Since g(µ) = I (µ), (A1)–(A5) hold with
r = 1, q = d and M = {µ :α−1 < I (µ) < δ−1}. Hence by Theorem 5,

Px

{
max

δc≤n≤αc
S′

nV
−1Sn/2n > c

}
∼ (c/2π)d/2e−c|V |−1/2

×
∫
α−1<I (µ)<δ−1

eµ′(I−H)′�−1Hxγ (µ)
(
I (µ)
)−(d/2+1)

dµ.

4.2. Overview of the method to analyze the boundary crossing probability (4.1).
We now proceed to analyze the boundary crossing probability (4.1) which, unlike
that in Theorem 5, involves two time indices i and j . To fix the ideas, we first
assume that the ξi are i.i.d. with a common density function (with respect to
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Lebesgue measure) that is continuous and bounded on Rd . Letting Sn,k = Sn − Sk

for n ≥ k, (2.1) gives the saddlepoint approximation

P {Sj,i/(j − i) ∈ dµ}
(4.3)

= (1 + o(1)
)(

(j − i)/2π
)d/2|V (µ)|−1/2e−(j−i)I (µ) dµ

as j − i → ∞, where the o(1) term is uniform over compact subsets of �. Let

Bc = {(i, j) : 0 ≤ i < j ≤ βc, δc ≤ j − i ≤ αc}.(4.4)

Define an ordering ≺ in Bc by

(k, n) ≺ (i, j) ⇔ either (i) n < j or (ii) n = j and k < i.(4.5)

The boundary crossing probability (4.1) can be expressed as∑
(i,j )∈Bc

P
{
(j − i)g

(
Sj,i/(j − i)

)
> c,

(4.6)
(n − k)g

(
Sn,k/(n − k)

)≤ c ∀ (k, n) ≺ (i, j)
}
.

Replacing g by g/r , we shall assume without loss of generality that r = 1. Let
t = [c1/4], Bc,t = {(i, j) : t ≤ i < j ≤ βc, δc + 2t ≤ j − i ≤ αc − t}. Define

fi,j (µ)dµ = P {Sj,i/(j − i) ∈ dµ}I{(j−i)g(µ)>c}

× P

{
(n − k)g

(
Sn,k

n − k

)
≤ c ∀ (k, n) ≺ (i, j) with(4.7)

max(j − n, |i − k|) ≤ t
∣∣∣ Sj,i

j − i
= µ

}
.

Large deviation bounds can be used to express (4.6) as∫
Rd

∑
(i,j )∈Bc,t

fi,j (µ) dµ + o
(
cq/2+1e−c

)
.(4.8)

Simply denote Mε,α,δ by Mε for notational simplicity in this subsection. To
evaluate the integral in (4.8), we use a Laplace-type asymptotic formula∫

Rd

∑
(i,j )∈Bc,t

fi,j (µ) dµ ∼
∫
U

c−1/2 log c,c−1/2

∑
(i,j )∈Bc,t

fi,j (µ) dµ,(4.9)

where Uη,ε is a tubular neighborhood of Mε with radius η. We call

Uη,ε = {u + v :u ∈ Mε, v ∈ T M⊥
ε (u) and ‖v‖ ≤ η

}
(4.10)

a tubular neighborhood of Mε with radius η if the representation of the elements
of Uη,ε in (4.10) is unique. For the existence of tubular neighborhoods when η is
sufficiently small, see Theorem 5.1 in Chapter 4 of Hirsch (1976) and its proof.
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Integrals over tubes can be evaluated by the so-called “infinitesimal change of
volume function” [cf. Gray (1990)]. Note that (4.9) is an extension of Laplace’s
method to approximate an integral whose integrand attains its maximum on a
manifold, instead of at a single point in the classical Laplace approximation
[cf. Jensen (1995), pages 57–62].

From Lemmas 3.13, 3.14 and Theorem 3.15 of Gray (1990), it follows that
as c → ∞,∫

U
c−1/2 log c,c−1/2

∑
(i,j )∈Bc,t

fi,j (µ) dµ

(4.11)

∼
∫
M

{∫
v∈T M⊥(u),‖v‖≤c−1/2 log c

∑
(i,j )∈Bc,t

fi,j (u + v) dv

}
dσ (u).

To analyze the inner integral in (4.11), use (4.7) and note that given Sj,i/

(j − i) = µ, Sn,k = (j − i)µ + (Si − Sk) − Sj,n for (k, n) ≺ (i, j). Since

max
j−n≤t,|i−k|≤t

{(Si − Sk)
2 + S2

j,n}/c P→ 0,

Taylor’s expansion yields

(n − k)g
({(j − i)µ + (Si − Sk) − Sj,n}/(n − k)

)
= (j − i)g(µ)

(4.12)
− {(∇g(µ)

)′
(Sj,n − Si + Sk) − (j − n − i + k)

(
µ′∇g(µ) − g(µ)

)}
+ δi,j,k,n(µ),

where max(i,j )∈Bc,t ,j−n≤t,|i−k|≤t |δi,j,k,n(µ)| P→0 uniformly in µ∈Uc−1/2 log c,c−1/2 .
The uniformity follows from (A4) and the compactness of

M∗ = {µ :α−1 ≤ g(µ) ≤ δ−1 + ε∗, g(µ)/I (µ) = r
}

(4.13)

for sufficiently small ε∗ > 0, which follows from (A2). Note that ∇I (µ) = θµ,
∇2I (µ) = V −1(µ). For µ ∈ M , g(µ) = I (µ) and ∇(I − g) = 0 since I − g at-
tains on M its minimum value 0 over {µ :α−1 < g(µ) < δ−1 + ε0}, and therefore
µ′∇g(µ) − g(µ) = ψ(θµ). Let Sn(µ) =∑n

k=1{θ ′
µξk − ψ(θµ)}. From (4.12) it fol-

lows that uniformly for (i, j) ∈ Bc,t and µ ∈ Uc−1/2 log c,c−1/2 with (j − i)g(µ) > c,
the conditional probability in (4.7) is equal to

P
{
Sj,n(µ) − Si(µ) + Sk(µ) > (j − i)g(µ) − c ∀ (k, n) ≺ (i, j) with

max(j − n, |i − k|) ≤ t|Sj,i/(j − i) = µ
}+ o(1)

= P
{
Sj,n(µ) + Sk,i(µ) > (j − i)g(µ) − c

(4.14)
for all i ≤ k ≤ i + t and j − t ≤ n < j,

and − Si,k(µ) > (j − i)g(µ) − c

for all i − t ≤ k < i|Sj,i/(j − i) = µ
}+ o(1),
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noting that in the quantification “∀ (k, n) ≺ (i, j)” the indices (k, n) with k < i

and j > n are redundant because the required inequality holds for these (k, n) if it
holds for k < i, j = n and for k = i, j ≥ n; see the proof of Lemma 4 of Siegmund
(1988). Let Qθ denote the probability measure under which ξ1, ξ

∗
1 , ξ2, ξ

∗
2 , . . . are

i.i.d. with Qθ {ξi ∈ dx} = eθ ′x−ψ(θ)P {ξi ∈ dx}. By Siegmund’s (1988) Lemma 4,
the second probability in (4.14) is equal to

P

{
max
m≥1

Sm(µ) < −(j − i)g(µ) + c

}
(4.15)

× Qθµ

{
(min
m≥0

Sm(µ) + min
n≥1

S∗
n(µ) > (j − i)g(µ) − c

}
+ o(1),

uniformly for (i, j) ∈ Bc,t and µ ∈ Uc−1/2 log c,c−1/2 with (j −i)g(µ)−c > 0, where
S∗

n(µ) =∑n
k=1{θ ′

µξ∗
k − ψ(θµ)}. Let

p(µ;w) = P

{
max
m≥1

Sm(µ) < −w

}
Qθµ

{
min
m≥0

Sm(µ) + min
n≥1

S∗
n(µ) > w

}
.(4.16)

Note that
∑

(i,j )∈Bc,t
= ∑δc+2t≤m≤αc−t

∑
t≤i<j≤βc,j−i=m and that there are

[βc] − m − t + 1 terms in the inner sum. Putting (4.3), (4.14) and (4.15) into (4.7)
shows that the integral in (4.9) is equal to{

(2π)−d/2 + o(1)
}

×
∫
U

c−1/2 log c,c−1/2

∑
δc+2t≤m≤αc−t,mg(µ)>c

(βc − m)

× md/2|V (µ)|−1/2e−mI (µ)p
(
µ;mg(µ) − c

)
dµ

(4.17)
= {(2π)−d/2 + o(1)

}
e−c

×
∫
U

c−1/2 log c,c−1/2

{∫ ∞
0

(
βc − c

g(µ)

)(
c

g(µ)

)d/2

× |V (µ)|−1/2ec−(w+c)I (µ)/g(µ)p(µ;w)
dw

g(µ)

}
dµ,

using the change of variables w = mg(µ) − c to replace the sum by the integral
and noting that the range of the sum can be restricted to c/g(µ) < m < c/g(µ) +
(log c)2 because of the exponential decay in e−mI (µ) [so m ∼ c/g(µ) in this
range]. Since M∗ defined in (4.13) is a compact subset of � and g = I on
M∗ ⊃ Mε∗ , it follows that uniformly in µ ∈ Uc−1/2 log c,c−1/2 , g(µ) = I (µ) +
o(1) and therefore

∫∞
0 p(µ;w)e−wI (µ)/g(µ) dw = ∫∞0 e−wp(µ;w)dw + o(1).

Moreover, since ∇I = ∇g on M , Taylor’s expansion around u ∈ M yields

{I (u + v) − g(u + v)}/g(u + v) = v′∇2ρ(u)v/2I (u) + o(c−1)(4.18)
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uniformly in µ = u + v ∈ Uc−1/2 log c,c−1/2 [see (4.10)]. Let γ (µ) = ∫∞0 e−w ×
p(µ;w)dw. Using the change of variables v = �uz with z ∈ Rd−q and applying
(4.11) and (4.18), we can express (4.17) as{

(2π)−d/2 + o(1)
}
e−ccd/2

×
∫
M

(
βc − c/I (µ)

)(
I (µ)
)−d/2−1|V (µ)|−1/2γ (µ)

(4.19)

×
∫
z∈Rd−q ,‖z‖≤c−1/2 log c

exp
{−cz′�′

u∇2ρ(u)�uz/2I (u)
}
dzdσ (u)

∼ e−ccq/2(βζ
(1)
α,δ − ζ

(2)
α,δ

)
c,

where for j = 1,2,

ζ
(j)
α,δ = (2π)−q/2

(4.20)
×
∫
M0,α,δ

(
I (u)
)−q/2−j |V (u)|−1/2|�′

u∇2ρ(u)�u|−1/2γ (u) dσ (u).

In view of (4.6), (4.8) and (4.9), this shows that the boundary crossing probabil-
ity (4.1) is asymptotically equivalent to e−ccq/2+1(βζ

(1)
α,δ − ζ

(2)
α,δ ) when r = 1 and

the ξi are i.i.d. with a bounded continuous density.
When {(Xi, ξi), i ≥ 0} is a Markov chain satisfying the assumptions of

Theorem 1(i), we can replace (4.3) by the saddlepoint approximation (2.7) for
PXi

{Sj−i/(j − i) ∈ dµ,Xj−i ∈ dy}. The conditional probability in (4.7) now has
the form

Px

{
(n − k)g

(
Sn,k/(n − k)

)≤ c ∀ (k, n) ≺ (i, j) with
(4.21)

max(j − n, |i − k|) ≤ t|Sj,i/(j − i) = µ, Xi = ỹ, Xj = y
}
.

We still have the Taylor expansion (4.12) which shows that (4.21) is equal to

Px

{
Sj,n(µ) + Sk,i(µ) > (j − i)g(µ) − c

for all i ≤ k ≤ i + t andj − t ≤ n < j,
(4.22)

and − Si,k(µ) > (j − i)g(µ) − c

for all i − t ≤ k < i|Sj,i/(j − i) = µ,Xi = ỹ,Xj = y
}+ o(1),

analogous to (4.14). This conditional probability has a limit (as c → ∞), which
involves two time-reversed (dual) Markov additive processes and another tilted
process so that the three processes are independent, as in (4.15). We can also
replace the assumptions of Theorem 1(i) by the considerably weaker nonlattice
assumption in Theorem 2, by using an analogue of Lemma 2, partitioning � into
cubes and replacing “∈ dµ” in (4.3) and (4.7) by “∈ Cµ,” where Cµ denotes a cube
centered at µ. Letting the common length of the cubes approach 0, summation over
these cubes can be approximated by integration with respect to dµ; see Section 5
for details.
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4.3. Main results on (4.1), (1.3) and (1.4). Let P (A|x) = P (x,A × Rd) and
assume that there exists a σ -finite measure ν∗ on X such that (3.9) holds. Under
(2.9) or (2.10) and (3.9), Qθ(·|x) is absolutely continuous with respect to ν∗,
where Qθ(A|x) = Qθ(x,A × Rd). Let π∗ (or π∗

θ ) denote the density function,
with respect to ν∗, of the stationary distribution of Xn under P (or Qθ ). For fixed
µ ∈ �, define three independent Markov additive processes {(X(j)

n , S
(j)
n ), n ≥ 1}

on X × Rd initialized as follows: S
(1)
0 = S

(2)
0 = S

(3)
0 = 0, X

(1)
0 = X

(2)
0 has density

function π∗ and is independent of X
(3)
0 which has density function π∗

θµ
(with

respect to ν∗). The transition function of (X
(j)
n , S

(j)
n ) is absolutely continuous with

respect to ν∗, with density function p(j) given by time reversal of the density p

of P for j = 1, or qθµ of Qθµ for j = 3; that is,

p(1)(y, x;B) = p(x, y;B)π∗(x)/π∗(y),

p(3)(y, x;B) = qθµ(x, y;B)π∗
θµ

(x)/π∗
θµ

(y).

The transition density p(2) of (X
(2)
n , S

(2)
n ) with respect to ν∗ is qθµ(x, y;B). Define

S
(j)
n (µ) =∑n

k=1{θ ′
µξ

(j)
k − ψ(θµ)} and

p(µ;w)

(4.23)
= E

[
r(X

(1)
0 ; θµ)

r(X
(3)
0 ; θµ)

I{maxm≥1 S
(1)
m (µ)<−w,minm≥0 S

(2)
m (µ)+minm≥1 S

(3)
m (µ)>w}

]
,

which is a generalization of (4.16) from the i.i.d. case to the present Markovian
setting.

THEOREM 6. Let 0 < δ < α < β . With the same notation and assumptions
as in Theorem 2, suppose that g satisfies (A1)–(A5) with g(Eπξ1) < α−1, and
that �(X; θµ) < ∞ and

∫
�x(X; θµ) dπ(x) < ∞ for all µ ∈ D, where D is a

compact neighborhood of {µ : I (µ) ≤ (δr)−1}. Let γ (µ) = ∫∞0 e−wp(µ;w)dw,

where p(µ;w) is defined in (4.23), and define ζ
(1)
α,δ , ζ

(2)
α,δ by (4.20). Then

Pπ

{
max

n−αc≤k≤n−δc
(n − k)g

(
Sn,k/(n − k)

)
> c for some n ≤ βc

}

∼ (c/r)q/2ce−c/r(βζ
(1)
α,δ − ζ

(2)
α,δ/r
)
.

The details of the proof, which follows the steps outlined in Section 4.2, are
given in Section 5, where we also make use of Theorem 6 to prove (1.3) and (1.4)
in the following.
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THEOREM 7. With the same notation and assumptions as in Theorem 6,
define Tc by (1.2) with J (c) = {j : j1 ≤ j ≤ j2} such that j1 ∼ δc and j2 ∼ αc.
Then ζ

(1)
α,δ (c/r)q/2e−c/rTc has a limiting exponential distribution with mean 1 as

c → ∞. Moreover, if Jn = {j :n1 ≤ j ≤ n2} with n1 ∼ δr log n and n2 ∼ αr logn

in (1.1), then

Pπ

{
Mn ≤ r

(
log n + q

2
log log n

)
+ t

}
→ exp

(−ζ
(1)
α,δe

−t/r
)

(4.24)

as n → ∞, uniformly in t ∈ R.

We now show how Theorem 7 follows from Theorem 6 in the case where
the ξi are i.i.d. The proof in the Markovian setting of the theorem is consid-
erably more complicated and is given in the next section. Let x > 0, m =
(ζ

(1)
α,δ )

−1(c/r)−q/2ec/rx, and partition the interval [0,m] into K ∼ m/(βc) disjoint
intervals I1, . . . , IK with equal length βc(1 + o(1)). Then the events

Aj =
{

max
n−αc≤k≤n−δc

(n − k)g
(
Sn,k/(n − k)

)
> c for some n ∈ Ij and n − k ∈ Ij

}
are independent and have the same probability pc . Letting Āj denote the
complement of Aj , it follows from Theorem 6 that

P

(
K⋂

j=1

Āj

)
= (1 − pc)

K ∼ e−Kpc → exp
{−x
[
1 − (βζ

(1)
α,δ)

−1ζ
(2)
α,δ/r
]}

as c → ∞. Hence P (
⋃K

j=1 Aj) → 1 − exp{−x[1 − (βζ
(1)
α,δ)

−1ζ
(2)
α,δ/r]}. Let

Bj =
{

max
n−αc≤k≤n−δc

(n−k)g
(
Sn,k/(n−k)

)
> c for some n ∈ Ij+1 and n−k ∈ Ij

}
.

Then by a similar argument involving a straightforward modification of The-
orem 6, it can be shown that P (

⋃K
j=1 Bj) → 1 − exp[−(βζ

(1)
α,δ )

−1ζ
(2)
α,δx/r]

as c → ∞ for sufficiently large β (with β > α). Taking β arbitrarily large, since

P

(
K⋃

j=1

Aj

)
≤ P {Tc ≤ m} ≤ P

(
K⋃

j=1

Aj

)
+ P

(
K⋃

j=1

Bj

)
,

it then follows that P {Tc ≤ m} → 1 − e−x as c → ∞. The corresponding re-
sult (4.24) for Mn can then be derived from that for Tc since P {Tc ≤ n} =
P {Mn > c}; see the last paragraph of Section 5 for details.
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5. Proof of Lemma 2 and Theorems 6 and 7. In this section we first prove
Lemma 2. The first step of the proof is to show that we can restrict to the event
{Sn/n ∈ D} by showing that

Px

{
max

δc≤n≤αc
ng(Sn/n)I{Sn/n∈Dc} > c

}
= o(e−c/r).(5.1)

When d = 1, this is an easy consequence of (3.3). Since D is a compact
neighborhood of {µ : I (µ) ≤ (δr)−1}, there exist a < b such that [a, b] ⊂ D and
I (a) > (δr)−1, I (b) > (δr)−1. Then∑

δc≤n≤αc

Px{Sn/n ∈ Dc} ≤ ∑
δc≤n≤αc

[
Px{Sn/n < a} + Px{Sn/n > b}]

≤ ∑
n≥δc

(
K1e

−nI (a) + K2e
−nI (b)

)
for some constants K1 and K2, by (3.3). Since I (a) and I (b) exceed (δr)−1,
(5.1) follows.

For d > 1, we can replace a and b by a finite number of hyperplanes, as will be
shown below. The next step is to cover the compact set D with O(cd/2) cubes of
the form K(µ, c−1/2) in (2.13) and to apply (3.3) when Sn/n is restricted to each of
these cubes. The advantage of using these cubes is that g is well approximated by
g(µ) on K(µ, c−1/2). Summing (3.3) over these cubes then completes the proof.
We also use similar cubes to prove Theorem 6, which is then applied to prove
Theorem 7. Indeed the saddlepoint approximation in Theorem 2 is phrased in
term of these cubes. Whereas Theorem 2 considers the saddlepoint approximation
under the initial state x that belongs to a full set F , we can easily extend the result
to general initial distributions σ that are absolutely continuous with respect to ϕ

and such that
∫

r(x; θµ) dσ (x) < ∞. Specifically, for such initial distributions, the
saddlepoint approximation in Theorem 2 has the form

Pσ {Sn ∈ K(nµ, ε),Xn ∈ A}

= (ε/
√

n)de−nI (µ)

{
(2π)−d/2|V (µ)|−1/2

∫
r(x; θµ) dσ (x)

}
(5.2)

×
{∫

A

(
r(y; θµ)

)−1
dπθµ(y) + o(1)

}
.

We shall use these ideas in the proof of Theorem 6.

PROOF OF LEMMA 2. Let � = {µ ∈ D :g(µ) ≥ α−1} and Jc = {µ ∈
c−1/2Zd :K(µ, c−1/2) ∩ � �= ∅}. Since hµ(θ) := θ ′µ − ψ(θ) is maximized at θµ

and hµ(θµ) = I (µ), it follows from the compactness of D that there exist
positive constants L and L̃ such that hµ(θω) ≥ I (µ) − Lc−1 for all µ ∈ Jc and
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ω ∈ K(µ, c−1/2), noting that ‖θµ−θω‖ ≤ L̃c−1/2 for ω ∈ K(µ, c−1/2) and µ ∈ Jc .
Therefore, if Sn/n ∈ K(µ, c−1/2), then θ ′

µSn − nψ(θµ) ≥ n(I (Sn/n) − Lc−1).
Hence

Px

{
max

δc≤n≤αc
ng(Sn/n)I{Xn∈A,Sn/n∈�} > c

}
≤ ∑

µ∈Jc

Px

{
θ ′
µSn − nψ(θµ) >

(
cI (Sn/n) − L

)
/g(Sn/n),

(5.3)
Xn ∈ A,Sn/n ∈ K(µ, c−1/2) for some δc ≤ n ≤ αc

}
,

≤ ∑
µ∈Jc

e−c(I (µ)/g(µ))+M[Kθµ�(A; θµ) + �x(A; θµ)
]

for some constant M independent of µ ∈ Jc. Approximating the sum by an integral
and using the tube integration techniques of Section 4.2, it can be shown that∑

µ∈Jc

e−c(I (µ)/g(µ)) ∼
∫
�c

cd/2e−c(I (µ)/g(µ)) dµ = O(cq/2e−c/r).(5.4)

From (5.1), (5.3) and (5.4), (4.2) follows.
To prove (5.1) for general d , note that by compactness, there exists ε > 0 such

that {µ : I (µ) ≤ (δr)−1 + 3ε} ⊂ D. Let G = {µ : I (µ) = (δr)−1 + ε}. The tangent
space T G(µ) of G at µ is a hyperplane that is orthogonal to ∇I (µ)(= θµ),
and therefore T G(µ) = {y : θ ′

µ(y − µ) = 0}. Let B(µ) = {y : |θ ′
µ(y − µ)| < ε}.

Then {B(µ) :µ ∈ G} is an open cover of the compact set G and therefore there
exists a finite subcover {B(µi) : 1 ≤ i ≤ k}. Let Hi = {y : θ ′

µi
(y − µi) > 0}. Since

θµi
= ∇I (µi), it then follows that if ε is chosen sufficiently small, then Dc

[on which I (·) exceeds (δr)−1 + 3ε] is contained in the union of the half spaces
H1, . . . ,Hk . Therefore∑

δc≤n≤αc

Px{Sn/n ∈ Dc} ≤ ∑
δc≤n≤αc

k∑
i=1

P {Sn/n ∈ Hi}

≤ ∑
n≥δc

k∑
i=1

Px{θ ′
µi

(Sn/n − µi) > 0} = o(e−c/r)

by (3.3), recalling that I (µi) = (δr)−1 + ε. �

PROOF OF THEOREM 6. The basic ideas of the proof have been given in
Section 4.2. Here we provide some of the details, using the same notation as that in
Section 4.2 and still assuming that r = 1. Let Ku = K(u, ε[αc]), where εn is given
in Theorem 2. The analogue of (4.7) for the present Markov case is

f̄i,j ;x,ỹ(y,µ)dν∗(y) dν∗(ỹ)

(5.5)
= Px{Xi ∈ dỹ}Pỹ

{
Sj−i ∈ K(j−i)µ, Xj−i ∈ dy

}× [(4.21)],
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where “Sj,i/(j − i) = µ” in (4.21) is replaced by “Sj,i ∈ K(j−i)µ.” Recall the time-

reversed Markov additive processes (X
(1)
n , S

(1)
n ) and (X

(3)
n , S

(3)
n ) and the (forward)

Markov additive process (X
(2)
n , S

(2)
n ). Analogous to (4.15) for the i.i.d. case, the

conditional probability in (4.22) is equal to

Px

{
min
m≥1

S(3)
m (µ) + min

m≥0
S(2)

m > (j − i)g(µ) − c,

(5.6)

max
m≥1

S(1)
m < −(j − i)g(µ) + c

∣∣∣X(3)
0 = y, X

(1)
0 = X

(2)
0 = ỹ

}
+ o(1),

for y, ỹ ∈ X, δc + t ≤ j − i ≤ αc and µ ∈ Uc−1/2 log c,c−1/2 . Let

pη(µ;w)

= E

[
r(X

(1)
0 ; θµ)

r(X
(3)
0 ; θµ)

I{maxm≥1 S
(1)
m (µ)<−w,minm≥0 S

(2)
m (µ)+minm≥1 S

(3)
m (µ)>w}I{X(3)

0 ∈Aη}
]
,

where Aη = {x ∈ X : r(x; θµ) > η for all µ ∈ D}. Then pη(µ;w) → p(µ;w)

as η → 0, where p(µ;w) is defined as in (4.23).
Letting w = (j − i)g(µ)−c and multiplying the conditional probability in (5.6)

by r(ỹ; θµ)/r(y; θµ), integration with respect to π∗(ỹ )π∗
θµ

(y) dν∗(ỹ ) dν∗(y)

over (y, ỹ ) with y ∈ Aη yields pη(µ;w). The factor r(ỹ; θµ)/r(y; θµ) above
comes from the saddlepoint approximation in Theorem 2 applied to Pỹ{Sj−i ∈
K(j−i)µ,Xj−i ∈ dy} with y ∈ Aη. We can sum up these approximations of (5.5)
over µ ∈ ε[αc]Zd and (i, j) ∈ Bc,t such that infs∈K(j−i)µ

(j − i)g(s/(j − i)) > c

(for a lower bound), or such that sups∈K(j−i)µ
(j − i)g(s/(j − i)) > c (for an upper

bound). Using the fact that

sup
s∈K(j−i)µ

(j − i)
∣∣g(s/(j − i)

)− g(µ)
∣∣= O(ε[αc]),

and replacing the sum εd[αc]
∑

µ∈ε[αc]Zd by
∫

Rd dµ as ε[αc] → 0, we can use
arguments similar to those of Chan and Lai [(2000), page 1652] to show that∑

(i,j )∈Bc

Pπ

{
(j − i)g

(
Si,j /(j − i)

)
> c, Xj ∈ Aη and

(n − k)g
(
Sn,k/(n − k)

)≤ c ∀ (k, n) ≺ (i, j)
}

is of the order cq/2+1e−c(βζ
(1)
α,δ − ζ

(2)
α,δ ) but with pη(µ;w) replacing p(µ;w) in

the definition of γ (µ) that appears in the right-hand side of (4.20) defining ζ
(j)
α,δ .

By Lemma 2,

Pπ

{
max

δc≤n≤αc
ng(Sn/n)I{Xn∈Ac

η} > c

}
≤ δηc

q/2e−c,

where δη → 0 as η → 0. Theorem 6 then follows by letting η → 0. �
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PROOF OF THEOREM 7. By (2.11), there exists κ > 1 such that Eνκ
τ < ∞.

Hence by Proposition 15.1.2 and Theorem 15.1.5 of Meyn and Tweedie (1993),
there exist A > 0, 0 < ρ < 1, a full set F and a measurable function V :X →
[0,∞) such that

∫
V (x) dπ(x) < ∞ and

‖P n(x, ·) − π(·)‖ ≤ AρnV (x) for all x ∈ F and n ≥ 1,(5.7)

where ‖ω‖ denotes the total variation norm of a signed measure ω.
Let h > 2� > 0 and b(n) = r(logn + q

2 log logn). Partition the interval [0, n]
into subintervals with alternating lengths (h−�+ o(1))b(n) and (�+ o(1))b(n),
so that there are K ∼ n/(hb(n)) “long” subintervals labelled as J1, . . . , JK and
K “short” subintervals labelled as I1, . . . , IK . Let c = b(n) + o(1) so that n =
[ec/r(c/r)−q/2]. Let η > 0, Aη = {x :V (x) ≤ η}, and

Ck = {(j − i)g
(
Sj,i/(j − i)

)
I{(Xi,Xj )∈A2

η} ≤ b(n) + t

for all i < j and i, j ∈ Jk

}
, k = 1, . . . ,K.

Making use of (5.7), it will be shown that if �r log(1/ρ) > 1, then∣∣∣∣∣Pπ(C1 ∩ · · · ∩ CK) −
K∏

k=1

Pπ(Ck)

∣∣∣∣∣→ 0 as n → ∞.(5.8)

Moreover, by arguments similar to the proof of Theorem 6 in which β is replaced
by h − �, it can be shown that as n → ∞,

K∏
k=1

Pπ(Ck) → exp
{−[(1 − �/h)ζ

(1)
α,δ,η − h−1ζ

(2)
α,δ,η/r

]
e−t/r
}
,(5.9)

in which ζ
(�)
α,δ,η → ζ

(�)
α,δ as η → ∞ for � = 1,2, and that

max
1≤k≤K

Pπ

{
max

i,j∈Jk,i<j
(j − i)g

(
Sj,i/(j − i)

)
I{(Xi,Xj )/∈A2

η} > b(n) + t

}
(5.10)

≤ (B1 + o(1)
)
hε(η)c(q/2)+1e−(c+t)/r ,

max
1≤k≤K

Pπ

{
(j − i)g

(
Sj,i/(j − i)

)
> b(n) + t for some i ∈ Jk ∪ Ik, j /∈ Jk

}
(5.11)

≤ (B2 + o(1)
)
�c(q/2)+1e−(c+t)/r

uniformly in t ∈ R, where B1 and B2 are constants and ε(η) → 0 as η → ∞. Re-
calling that K ∼ n/(hb(n)) and (c/r)q/2ce−c/r ∼ n−1b(n), the desired conclusion
for Mn follows from (5.8)–(5.11) by taking h,h/� and η arbitrarily large.

To prove (5.8), first note that

Pπ(Ck) = Pπ(Ck|C1 ∩ · · · ∩ Ck−1)Pπ(C1 ∩ · · · ∩ Ck−1)

(5.12)
+ Pπ

(
Ck|(C1 ∩ · · ·Ck−1)

c
)
Pπ

(
(C1 ∩ · · · ∩ Ck−1)

c
)
.
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Since there is a distance of at least (�+o(1))b(n) between Jk and the subintervals
J1, . . . , Jk−1, it follows from (5.7) and supx∈Aη

V (x) ≤ η that∣∣Pπ

(
Ck|(C1 ∩ · · · ∩ Ck−1)

c
)− Pπ(Ck)

∣∣≤ Aηρ(�+o(1))b(n).

Combining this with (5.12) yields∣∣Pπ(Ck|C1 ∩ · · · ∩ Ck−1) − Pπ(Ck)
∣∣Pπ(C1 ∩ · · · ∩ Ck−1)

≤ Aηρ(�+o(1))b(n)Pπ

(
(C1 ∩ · · · ∩ Ck−1)

c
)
.

Therefore |Pπ(C1 ∩ · · · ∩ Ck) − Pπ(Ck)Pπ(C1 ∩ · · · ∩ Ck−1)| ≤ Aηρ(�+o(1))b(n)

for 1 ≤ k ≤ K . This implies by an induction argument that

|Pπ(C1 ∩ · · · ∩ CK) − Pπ(C1) · · ·Pπ(CK)| ≤ AKηρ(�+o(1))b(n) = o(1)

if 1 + r� logρ < 0.
Given c > 0 and t > 0, define n(t, c) = [tec/r(c/r)−q/2/ζ

(1)
α,δ ]. Note that

Pπ {Tc ≤ n(t, c)} = Pπ {Mn(t,c) > c} and that c = b(n(t, c)) − r log(t/ζ
(1)
α,δ ) +

o(1). Since Pπ {Mn(t,c) > c} = Pπ {Mn(t,c) > b(n(t, c)) − r log(t/ζ
(1)
α,δ ) + o(1)} →

1 − exp(−t), it then follows that Pπ {Tc ≤ tec/r (c/r)−q/2/ζ
(1)
α,δ } → 1 − e−t as

c → ∞. �

6. Proof of Theorem 2. As we consider in Theorem 2 Markovian rather than
independent increments of Sn, we cannot express the characteristic function of Sn

as a product of n characteristic functions. We introduce instead an additional
variable v in Lemma 4 to capture the relationship between n and the regeneration
times τm. This leads to an identity (6.5) from which the characteristic function (6.6)
of Sn is derived by Fourier inversion in v. We shall assume the minorization
condition (2.9) in the proof of Theorem 2, as the proof under (2.10) is similar.
The tilted kernel Qθ defined by (2.5) then satisfies a similar minorization
condition,

Qκ
θ (x,A × B) ≥ hθ (x,B)νθ (A),(6.1)

where hθ(x,B) = [∫B eθ ′s−κψ(θ)h(x, ds)]/r(x; θ) and νθ (dy) = r(y; θ)ν(dy).

We preface the proof of Theorem 2 by the following two lemmas, the first of which
is the same as Lemma 3.3 of Ney and Nummelin (1987) but with (6.1) in place of
the original minorization condition (2.9).

LEMMA 3. Let θ = θµ and E(θ) denote expectation under the kernel Qθ

in (2.5). Then

µ = E(θ)
νθ

Sτ /E
(θ)
νθ

τ, ∇2ψ(θµ) = E(θ)
νθ

{
(Sτ −τµ)(Sτ −τµ)′

}
/E(θ)

νθ
τ.(6.2)
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LEMMA 4. Let a(t, v) = E
(θ)
x eit ′Sτ +ivτ , b(t, v) = E

(θ)
νθ eit ′Sτ +ivτ , c(t, v) =

E
(θ)
νθ [∑τ−1

n=0 eit ′Sn+ivng(Xn)] and d(t, v) = E
(θ)
x [∑τ−1

n=0 eit ′Sn+ivng(Xn)], where
g is a bounded measurable function on X. Then:

(i) d(t, v) =∑∞
n=0 E

(θ)
x (eit ′Sng(Xn)I{n<τ1})einv ,

(ii) a(t, v)bm(t, v)c(t, v) =∑∞
n=0 E

(θ)
x (eit ′Sng(Xn)I{τm+1≤n<τm+2})einv for

m ≥ 0,

where τ1 = τ and τm is the first (regeneration) time after τm−1 to reach the atom
of the split chain.

PROOF. (i) follows immediately from the definition of d(t, v). We next show
that

a(t, v)bm(t, v) =
∞∑

n=0

E(θ)
x

(
eit ′SnI{τm+1=n}

)
einv for m ≥ 0.(6.3)

The case m = 0 follows from the definition of a(t, v). Noting that

∞∑
n=0

E(θ)
x

(
eit ′SnI{τm+1=n}

)
einvb(t, v)

=
∞∑

n=1

E(θ)
x

(
eit ′SnI{τm+1=n}

)
einv

∞∑
k=1

E(θ)
νθ

(
eit ′Sk I{τ=k}

)
eikv

=
∞∑

�=0

ei�v
∑

n+k=�

E(θ)
x

(
eit ′SnI{τm+1=n}

)
E(θ)

νθ

(
eit ′Sk I{τ=k}

)

=
∞∑

�=0

ei�vE(θ)
x

(
eit ′S�I{τm+2=�}

)
,

we obtain (6.3) by induction. Part (ii) follows from (6.3) since

a(t, v)bm(t, v)c(t, v)

=
∞∑

n=0

E(θ)
x

(
eit ′SnI{τm+1=n}

)
einv

∞∑
k=0

E(θ)
νθ

(
eit ′Skg(Xk)I{k<τ }

)
eikv

=
∞∑

�=0

ei�v
∑

n+k=�

E(θ)
x

(
eit ′SnI{τm+1=n}

)
E(θ)

νθ

(
eit ′Skg(Xk)I{k<τ }

)
. �

PROOF OF THEOREM 2. Let g :X → [0,∞) be a bounded measurable
function and define

qn,µ(t) = E
(θµ)
x eit ′Sng(Xn) =

∫
eit ′sg(y)Qθµ,x{Xn ∈ dy, Sn ∈ ds}.(6.4)
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By Lemma 4 with θ = θµ,

d(t, v) +
∞∑

m=0

a(t, v)bm(t, v)c(t, v) =
∞∑

n=0

E(θ)
x

[
eit ′Sng(Xn)

]
einv

(6.5)

=
∞∑

n=0

qn,µ(t)einv.

Since
∫ π
−π e−i�v dv = 0 unless � = 0, it follows from (6.5) that

qn,µ(t) = 1

2π

∫ π

−π
e−inv d(t, v) dv

(6.6)

+
∞∑

m=0

1

2π

∫ π

−π
e−inva(t, v)bm(t, v)c(t, v) dv.

Let Zα be a random vector independent of {(Xn,Sn) :n ≥ 0} and having
probability density function α−dK(z/2α) with respect to Lebesgue measure,
where

K(z) = (2π)−d
(
(sin z1)

2/z2
1, . . . , (sin zd)2/z2

d

)
for z = (z1, . . . , zd).

The characteristic function of Zα is k(αt), where k(u) =∏d
j=1(1−|uj |) if ‖u‖ ≤ 1

and k(u) = 0 otherwise; see Stone (1965). By the Fourier inversion formula,∫
g(y)Qθµ,x

{
Xn ∈ dy,Sn + √

nZα ∈ K(nµ + √
ns,ω

√
n)
}

(6.7)

=
(

ω

2π

)d ∫
‖αt‖≤1

e−is′t k(αt)

{
d∏

j=1

1 − e−iωtj

iωtj

}
e−i

√
nµ′t qn,µ

(
t√
n

)
dt

[cf. Stone (1965), page 548]. Let φµ denote the d-variate normal density function
with mean 0 and covariance matrix V (µ) and let φ̂µ(t) = ∫ eit ′sφµ(s) ds. We shall
show that

e−i
√

nµ′t qn,µ(t/
√

n) = (1 + o(1)
)
φ̂µ(t)

∫
g(y) dπθµ(y) + o(n−d)(6.8)

uniformly in ‖t‖ ≤ n1/10 and µ ∈ C, and that for any δ > 0,

sup
n−2/5≤‖t‖≤δ−1,µ∈C

|qn,µ(t)| = o(n−d).(6.9)

Since |1 − e−iu| ≤ min(|u|,2) and (1 − e−iu)/(iu) → 1 as u → 0 and since
φµ(s) = (2π)−d

∫
‖t‖≤n1/10 e−is′t φ̂µ(t) dt + o(1) uniformly in s and in µ ∈ C, it
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follows from (6.7)–(6.9) that as n → ∞, ω → 0 and α → 0 such that α ≥ δn−1/2,∫
g(y)Qθµ,x

{
Xn ∈ dy,Sn + √

nZα ∈ K(nµ + √
ns,ω

√
n)
}

(6.10)

= ωd

{
φµ(s)

∫
g(y) dπθµ(y) + o(1)

}
uniformly in s and in µ ∈ C. Making use of (6.10) and an argument similar to the
proof of Lemma 2 of Stone (1965), it can be shown that for any δ > 0 and η > 0,
there exist n0 and ω0 such that for all n ≥ n0, δn−1/2 ≤ ω ≤ ω0, µ ∈ C and s ∈ Rd ,

ωd

{
φµ(s)

∫
g(y) dπθµ(y) − η

}
≤
∫

g(y)Qθµ,x

{
Xn ∈ dy,Sn ∈ K(nµ + √

ns,ω
√

n)
}

(6.11)

≤ ωd

{
φµ(s)

∫
g(y) dπθµ(y) + η

}
.

Let ηk = 1/k = δk . Then there exist nk and ωk such that (6.11) is satisfied for all
n ≥ nk, δkn

−1/2 ≤ ω ≤ ωk and s ∈ Rd . Without loss of generality, we can assume
that nk is nondecreasing and ωk

√
nk > δk . For nk ≤ n < nk+1, set εn = δk . It then

follows from (6.11) with s = 0 that as n → ∞ and ε → 0 such that ε ≥ εn,∫
g(y)Qθµ,x

{
Xn ∈ dy,Sn ∈ K(nµ, ε)

}
(6.12)

= (ε/
√

n)dφµ(0)

{∫
g(y) dπθµ(y) + o(1)

}
uniformly for µ ∈ C. The desired conclusion then follows from (2.5) and (6.12)
with g(y) = r(x; θµ)I{y∈A}/r(y; θµ).

It remains to prove (6.8) and (6.9). To simplify the notation, we shall write Qθµ,x

simply as Qx , and use E
Q
x to denote expectation under Qx , E to denote E

(θ)
νθ

with θ = θµ and Q to denote the corresponding probability measure. Let k1 =
[(n − n2/3)/Eτ ], k2 = [(n + n2/3)/Eτ ], where [·] denotes the greatest integer
function. Because W is an open set by (2.11), it follows from (2.12) that for every
r ≥ 1, there exists a constant Br for which E

Q
x τ r and Eτr are bounded by Br . In

view of the compactness of C, the bound Br can be chosen independent of µ ∈ C.
Noting that τm − τ1 is a sum of (m − 1) i.i.d. random variables with finite r th
moment Eτr , we can then apply Markov’s inequality to show that

Qx{τ1 ≥ √
n} = o(n−d),

Qx

{
τk1 ≥ n

}= o(n−d),(6.13)

Qx

{
τk2 ≤ n

}= o(n−d)
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uniformly in µ ∈ C. Since
∫ π
−π e−inv d(t, v) dv = 2πE

Q
x

(
eit ′Sn+invg(Xn)I{n<τ1})

by Lemma 4(i), it follows from (6.6) and (6.13) that uniformly for µ ∈ C,

qn,µ(t) = ∑
k1≤m≤k2

1

2π

∫ π

−π
e−inva(t, v)bm(t, v)c(t, v) dv + o(n−d).(6.14)

We shall assume κ = 1. If κ > 1, we can use similar arguments for n = κm + r

with 0 ≤ r ≤ κ − 1 fixed and m → ∞. Note that |b(t, v)| ≤ �∞
n=1|E(eit ′Sn |τ = n)|

Q(τ = n) ≤ |E(eit ′S1 |τ = 1)|Q(τ = 1) + Q(τ > 1), and that for the split chain
under Q, Q(τ = 1) = ∫ hθ (x,Rd) dνθ(x) > 0. Since

E
(
eit ′S1 |τ = 1

)= {∫ ∫ eit ′shθ (x, ds) dνθ(x)

}/∫ ∫
hθ(x, ds) dνθ(x)

=
∫

eit ′s dν̃θ (s),

where ν̃θ (ds) = eθ ′s dν̃(s)/
∫

Rd eθ ′s dν̃(s) has the same support as ν̃ and is
therefore nonlattice, it then follows that |b(t, v)| < 1 if t �= 0. Therefore, for every
0 < δ < 1, max{|b(t, v)| : δ ≤ ‖t‖ ≤ δ−1, |v| ≤ π} < 1.

Using the change of variables m = (n+z
√

n)/Eτ and w = v
√

n in (6.14) yields
the representation qn,µ(t/

√
n) = I + II + o(n−d), where

I = ∑
|z|≤n1/6

1

2π
√

n

∫
|w|≤n1/10

e−iw
√

na

(
t√
n
,

w√
n

)
bm

(
t√
n
,

w√
n

)

× c

(
t√
n
,

w√
n

)
dw,

II = ∑
|z|≤n1/6

1

2π
√

n

∫
n1/10≤|w|≤π

√
n
e−iw

√
na

(
t√
n
,

w√
n

)
bm

(
t√
n
,

w√
n

)

× c

(
t√
n
,

w√
n

)
dw.

First consider the case ‖t‖ ≤ n1/10 and |w| ≤ n1/10. Then as n → ∞,

a(t/
√

n,w/
√

n) → 1,

(6.15)

c(t/
√

n,w/
√

n) → E

[
τ−1∑
n=0

g(Xn)

]
= Eτ

∫
g(y) dπθµ(y),

where the last equality follows from Pitman’s (1975) identity. By Lemma 3,
ESτ/Eτ = µ. Using a Taylor expansion of E exp{i[(t ′/√n)(Sτ − ESτ) +
(w/

√
n)(τ − Eτ)]} and writing m = (n + z

√
n)/Eτ with |z| ≤ n1/6, we obtain
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that

bm

(
t√
n
,

w√
n

)
∼ eit ′µ(

√
n+z)+iw(

√
n+z)

{
1 − 1

2n
Var(t ′Sτ + wτ) + o

(
1

n

)}m
(6.16)

∼ exp
{
it ′µ(

√
n + z) + iw(

√
n + z) − Var(t ′Sτ + wτ)

2Eτ

}
.

Let Cτ = (Cov(Sτ,1, τ ), . . . ,Cov(Sτ,d, τ ))′. By (6.15) and (6.16),

I ∼ 1

2π
√

n

[
Eτ

∫
g(y) dπθµ(y)

]
ei

√
nt ′µ−t ′(CovSτ )t/2Eτ

(6.17)

× ∑
|z|≤n1/6

eit ′µz
∫
|w|≤n1/10

exp
{
iwz − t ′Cτw

Eτ
− w2 Var(τ )

2Eτ

}
dw.

The integral over w in the RHS of (6.17) is asymptotically equivalent to

[
exp
{

(izEτ − t ′Cτ )
2

2 Var(τ )Eτ

}]∫ ∞
−∞

exp
{
−
(
w − izEτ

Var(τ )
+ t ′Cτ

Var(τ )

)2 Var(τ )

2Eτ

}
dw

=
√

2πEτ

Var(τ )
exp
{
(izEτ − t ′Cτ)

2

2(Eτ)Var(τ )

}
,

and therefore the sum in the RHS of (6.17) is asymptotically equivalent (with
�z = Eτ/

√
n) to√

2πn

(Eτ)Var(τ )

∫ ∞
−∞

exp
{
−(zEτ + it ′Cτ )

2

(Eτ)Var(τ )
+ it ′µz

}
dz

= 2π
√

n

Eτ
exp
{

t ′µC′
τ t

Eτ
− t ′µµ′t Var(τ )

2Eτ

}
,

in which the integral can be evaluated by completing the square. Substituting this
into (6.17) yields

I = (1 + o(1)
)
eit ′µ√

n−t ′V (µ)t/2
∫

g(y) dπθµ(y)(6.18)

uniformly in ‖t‖ ≤ n1/10 and µ ∈ C, noting that by Lemma 3,

V (µ) = Cov(Sτ − µτ)

Eτ
= Cov(Sτ )

Eτ
− 2µC′

τ

Eτ
+ µµ′ Var(τ )

Eτ
.
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For sufficiently small ‖t‖ and v, use of Taylor’s expansion of b(t, v) as in (6.16)
shows that |b(t, v)| ≤ 1 − β(‖t‖2 + v2) for some β > 0. Combining this with
maxδ≤‖t‖≤δ−1,|v|≤π |b(t, v)| < 1 as established before then shows II = o(n−d) and
also (6.9). Therefore, from (6.18) and the decomposition qn,µ(t/

√
n) = I + II +

o(n−d), it follows that qn,µ(t/
√

n) = (1 + o(1))ei
√

nµ′t φ̂µ(t)
∫

g(y) dπθµ(y) +
o(n−d) uniformly in ‖t‖ ≤ n1/10 and µ ∈ C, proving (6.8). �
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