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We consider the annealing diffusion process and investigate conver-
gence rates. Namely, for the diffusion dXt = -- VV(Xf) dt + ( r ( t ) d B f ,
where (Bf)l ^ 0 is the c/-dimensional Brownian motion and cr(t) decreases
to zero, we prove a large deviation principle for ( V ( X t ) ) and weak conver-
gence of(<T~2(t)(V(Xf) ~~ inf V )).

1. Introduction. Let V be a real-valued function defined on Rd. Follow-
ing the idea of simulated annealing to search for the global minima of V,
several papers [3, 10. 11, 12, 14, 18, 20, 22] have considered the annealing
diffusion process defined by

(1) dXt= - VV( Xt) dt + <r(t) dBt,

where XQ is independent of the d-dimensional Brownian motion (Bf) and
where ^a2(t) is the annealing rate (or temperature) which decreases to zero
if t -> oc. Under suitable conditions on V and cr(-), these works proved the
convergence in probability of (Xf) to the set

(2) Argmin V = {x e U d : V ( x ) = inf V]

with inf V = i n f v C _ - R , / V( v) , and the weak convergence of (Xt) to some proba-
bility on Argmin V. In this work we consider the annealing diffusion pro-
cesses on R° and obtain the following results on large deviations from the
global minima and weak convergence rates, whose precise statements will be
given in Section 1.2.

Large deviations. For r > 0 small enough, if E[V(X())] < ^,

(3) lim ( T 2 ( / ) l n P ( V ( X t ) > inf V + r) = -2r.
/ -

Weak convergence. Under some regularity conditions on V in a neighbor-
hood of Argmin V, 4<r <2(t)[V(Xt) - inf V] converges weakly to a chi-square
random variable.

Throughout this work we consider a function V satisfying the following
assumptions.

Al (Assumptions about the function V), V: Hd ~> !R is twice continuously
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differentiable and:

(i) V tends to ^ as \\x\\ —> °c;
(ii) || V V||2 - AV is bounded from below;

(iii) (W = 0} has a finite number of connected components;
(iv) for positive constants A and B, V < A\\W \2 + B.

REMARK 1. Part (iv) of assumption Al is not necessary for the preliminary
results stated below (where lim V ( x ) = ^ as \\x\\ -* ^ would be sufficient). Its
introduction in [16] was given in order to prove a logarithmic Sobolev
inequality; not surprisingly, it will also be helpful to obtain convergence rates
(namely, for Proposition 1).

Symbols. We adopt the following symbols throughout the rest of the paper:
The symbol ® denotes the product between measures. We will use VV and
AV, respectively, to denote the gradient and Laplacian of the potential V on
Rd. l l ' l l v a r is the total variation of a measure and x denotes asymptotic
equivalence. The symbol ¥<: stands for a generic strictly positive constant,
whose value might change during a proof. Specifying the initial state XG = x,
Xt will sometimes be denoted Xf*.

Before precisely stating our results, we need some preliminaries, given in
Section 1.1. Then, in Section 1.2 we shall state our theorems. The proofs are
given in Sections 2 and 3.

1.1. Previous results.
1.1.1. Large deviation principle for Gibbs distribution. Under assump-

tions Al, for any temperature r > 0, the normalization constant

(4) c(l/V) = fexp(-~V(x)/r)dx

is finite (see [15], page 347). Let (GT) be the Gibbs distribution with density
[c(l/r)]~ ] exp( — V / r ) with respect to the Lebesgue measure. From Bryc's
inverse Varadhan lemma (see [6]), it follows that the family (GT) satisfies a
large deviation principle with rate function V — inf V when r —> 0. Conse-
quently, for any r > 0,

(5) lim r l n G T ( V - inf V > r) - -r.
r > 0

1.1.2. About the homogeneous gradient diffusion process. The homoge-
neous diffusion process defined by (1) taking (r(-) = <r for a constant o~ > 0
has been extensively studied. It is a recurrent process and its stationary
distribution is G(r* ,2. The infinitesimal generator

(6) L,r(0 = [^/2]A(-) - V V - V ( - )

has a self-adjoint negative extension on L2(GV , r 2 / 2 ) with discrete spectrum
0 = \i > \2 > • • • > AJ?

r > • • • . Large deviation principles for this diffusion for
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small <T are linked to a constant A described in several works [14, 15].
Jacquot [15] gives the following characterization of A. For two points x, y in
Ud, we denote by Fry the set of C1 parametric curves joining x and y. Then,

(7) A = 2 sup inf f sup{V(y(0 )} - V(x) - V(y) + inf V
> , / - y e r x - v I /

REMARK 2. It is clear that A > 0. When Argmin V has several connected
components, A > 0.

Based on large deviation properties [1, 9, 24], the following results are
stated in [14].

Large deviations for the spectral gap.

(8) lim cr2 l n ( -A£) = -A.
<r-+ 0

Convergence rate to the stationary distribution. For all A > A, there exists
a /3 > 0 and a C > 0, such that for all compact sets K and cr < <TO small
enough, taking T(a) — exp(A<r 2) ,

(9) sup | P ( X f ( t r ) e •) - G,rV2||var < exp(-0<7--2) ,
x^K

(10) supP sup I IX /H > C < exp(-j8o--2).
*Ftf ^< r« r ) '

1.1.3. Simulated annealing. Taking the annealing schedule a2(t} =
c/lnt, with c > A, for the critical constant described above, the annealing
diffusion process (Xt

x) ruled by (1) satisfies,

| p ( z ; - e . ) - G ^ m / 2 | v a r ~ > o .
This is proved in [3] and [14] for c > 3A/2 and in [22] for c > A. See also [20].
Following [14], there also exists a constant \l < A such that, for c e (A1? A],
the weaker statement applies: the distance of(Xf

x) to Argmin V converges to
zero in probability.

1.1.4. Time change, (a) For most of our proofs, it will be convenient to
consider the time-changed diffusion process defined as follows: For a = a 2

set A(t) = /(j <r*(s)ds and B} = /{f ' ( n cr(s)dBlf. Then ( B l
t ) is a Brownian

motion and Yt = XA \ { t ) is a diffusion with slowly increasing drift, driven by

(11) dYf - -a(t)VV(Yf) dt + dE],

All results claimed for the annealing diffusion process have their translation
for the time changed diffusion processes.

(b) Taking t r ( - ) = <r, if (P/r) is the transition semigroup associated with
the homogeneous gradient diffusion processes (1), then the semigroup associ-
ated with (Y,) is (FT?) where \l?(x, dy) - P/%1 \x, dy).

1.2. Statement of our results. We make the following assumptions on the
annealing schedule cr(-) .
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A2 (Assumptions on the "small annealing schedule" cr(-)). We have c r 2 ( t )
= c/lnU + a) with c > A and <r2(0) < 2. Or, more generally, we have the
following:

(i) cr'2(t) > c/ln t with c > A for t large enough and sup^ c r 2 ( t ) < 2;
(ii) if t -> sc, <r is a regular and slowly varying function decreasing to zero

from [0, ^c] to (0,«:), that is, o - ( t ) decreases to zero and cr(tx)/a(t) tends to 1
for all x > 0;

(iii) (r(ta2(t))/a(t) -* 1;
(iv) for large t, (T2(t) is continuously differentiate and convex.

REMARK 3. As pointed out in [14], A is the best constant in the sense that
the weak convergence of the annealing process (Xf) to some probability
concentrating on Argmin V fails to hold if c < A. For the convergence rates
investigated in this work, we do not consider the case c e (At , A] mentioned
in Section 1.1.3.

REMARK 4. For slow variation, see [8], pages 268-276. For a = a 2 and
the function A defined in 1.1.4, we have, if t —> ^,

a ( t ) ia(t)
A(t) x —, a ' ( t ) =o —

Hence, according to part (iii), a(A(t)) x a ( t ) .
1.2.1. Large deviation principles.

PROPOSITION 1. Under assumptions Al and A2, the annealing diffusion
process has the following tightness property, there exist real constants R,
C > 0 such that, for any x IN i f/

(12) E [ V ( X t
x ) l ( V l X . } > R } ] <C[l + V ( * ) ] < 7 2 ( * ) .

THEOREM 1 (Large deviations). For any compact set F, and for r > 0
small enough,

(13) lim sup <T2(t)lnP(V(Xt
x) > infV + r) = -2r.

l-^"*- X E T

Moreover, for E[V(X0)] < ^ and r > 0 small enough,

(14) lim c T l 2 ( t ) l n P ( V ( X f ) > inf V + r) = ~2r.
f-> -^

1.2.2. Weak convergence rates. Following Hwang [13], some regularity
assumptions on V in a neighborhood of Argmin V ensure the weak conver-
gence of the Gibbs distribution GT when r -> 0 to a probability G0 concentrat-
ing on Argmin V. Let us consider the three frameworks analyzed by Hwang.

A3 (Complementary assumptions on V).

A3.1. The set Argmin V has a strictly positive Lebesgue measure.

Then G() is the uniform distribution on Argmin V.
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A3.2. The function V is three times continuously differentiable and, for all
z e Argmin V, D'2V(z) is positive definite.

Then, as V(x) tends to ^ as |#!| -» ^, Argmin V is a finite set and, for all
y e Argmin V,

G 0 ( y ) = [detD2V(.y)] ' ' 'I £ [detD2V(z)] '1/2

V ze-E Argmin V /

A3.3. The function V is three times continuously differentiable, Argminy
has a finite number of connected compact components and each component is
a smooth manifold. Furthermore, for all points of any of these manifold with
the highest dimension, the "second order partial differential of V with
respect to smooth normal coordinates" is invertible.

Then G0 concentrates on the highest dimensional components. We refer to
[13] for a precise statement of assumptions A3.3 based on smooth local
coordinates of V.

We now state some convergence rates under regularity assumptions linked
to those of Hwang, as we will describe in Remark 5.

THEOREM 2. Assuming that, on a neighborhood of Argmin V, I!VV||2 >
%'(V — inf V), we have, for any compact set F,

s u p s u p < T - * ( t ) E [ V ( X ? ) - i n f V ] <*.
/ .rer

Moreover, ifE[V(X0)] < oc,

s u p a ~ 2 ( t ) E [ V ( X f ) - i n f V ] <*.
t

We denote => for "converges weakly."

THEOREM 3. We assume that the function a •-> c(a) = f^ exp(-aV(x)} dx
varies regularly with exponent (-8/2), 8 e (U Then, ifE[V(X0)} < oc?

4o- - 2 (0[V(X,) - i n f V ] ^x*(8),

where ^2(0) is the Dirac measure on 0 and, for 8 > 0, / ^
2 (5) is a chi-square

random variable with 3 degrees of freedom.

REMARK 5. (a) Under assumption A3.1, the function c(a) tends, as a -> ^,
to the Lebesgue measure of the set Argmin V. Thus, theorem 3 holds with
8 = 0.

(b) Under assumption A3.2 in a neighborhood of zi e Argmin V, V(x) x
fc'\\x — zr\\

2. Thus Theorem 2 and Theorem 3 apply with 8 = d.
(c) Let v be the highest dimension of the regular components. Following

the proof of Theorem 3.1 of [13], it is easy to check that, under assumption
A3.3, Theorem 2 and Theorem 3 apply with 8 = d — v.
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THEOREM 4. Under assumption A3.2, ifE[V(X0)] < *>, then, when t -> oc?

we have

(15) 4a 2 ( t ) [ V ( X t ) - i n f V ] -* 2 (<5) ,

(16) ( X t , ^ - 1 ( O V V ( Z r ) ) = » £ G 0 ( 2 ) ® J V ( 0 , f l 2 V ( e ) ) ,
ze Argrnin V

denoting by MO, Z)2VXz)) the Gaussian distribution with covariance D2V(z).
Furthermore, the family of processes (Xttu,o- l(t + w)W(J^ + M))r> 0 con-

verges weakly to Zr'} = (Z ( x ' ] ) , Z(:x '2 )), w;/zere Z^'} has the distribution

(17) £ G O ( Z ) ® A f ( o , L > 2 v ( z ) ) ,
Z G Argmin Vr

n;i*/i Z < a - J ) = Z<x' u for all t and

(18) dZl
t
y'*} = -D2V(Z(,;-l)}Zy--2) + D2V(Z^'1 ))dBM

where (Bf)f < 0 i.s a Brownian motion independent of (Z(^}).

1.2.3. Comments. Convergence rates for simulated annealing on discrete
spaces have been widely studied, mostly with large deviation methods. A
large deviation principle similar to our Theorem 1 is proved for annealing
diffusions on compact Riemannian manifolds by [11]. In the same framework,
[4] gives bounds for the density of (Xt) with respect to G ( r 2 ( t ) / 2 - As the best
function cr(-) available for global optimization (as soon as ArgminV has
several connected components) is cr(t) ^ (c/ln tY/2 for c > A, such rates of
weak convergence are, of course, disappointing for a practical simulated
annealing purpose. However, they might be helpful in better understanding
the mathematical structure of such nonstationary diffusions; further studies
should focus on accelerating this optimization process.

A companion paper of Pelletier [21] investigates similar rates of conver-
gence of discrete time annealing algorithms on [R(/.

2. Proof of large deviation principles. We first prove Proposition 1 in
Section 2.1. In Section 2.2 we state some upper bounds for Chiang, Hwang
and Sheu's proof, which leads in Section 2.3 to the proof of Theorem 1 when
c r 2 ( t ) > c/ln t, c > 3A/2. In Section 2.4 we consider the general case c > \
and conclude the proof of Theorem 1, precising upper bounds in Royer's proof.

2.1. Proof of Proposition 1. Step I . Let us first prove that

E [ V ( X f
x ) ] <V(x) +Kt.

By Ito's formula and part (ii) of assumptions Al,

dV(Xt
x) = -\\VV(Xf

x)\\*dt + ( < r * ( t ) / 2 ) ± V ( X t
x ) + < r ( t ) ( V V ( X f ) , d B t y

< V'dt + (T(t}(\V(Xi)JdBt),

and the assertion follows.
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STEP 2. By parts (ii) and (iv) of assumptions Al there exist two constants
r > 0 DJ > 0, such that, for V > r,

V + Ay ^ D J I V V H 2 .

Let <f) be an increasing C2 function from IR to [0, 1], equal to 0 on ( — 3°, r]
and equal to 1 on [fl,*0. Since V(<£ ° V) = ( 4 > ' ° y)VV and A ( 0 < > y ) =
(</>"° V)||Vy||2 + (0 '°y)Ay are continuous functions with compact support,
they are bounded.

Set fy = (<£ ° y)y. Then, a short computation shows that

V^P - (<£ 'oy )yvy + ( 4 > ° y ) V y

and

A^ - ( < / > ° y ) A y 4- 0 /> ' °V)(2 | |VV| i 2 -f VAV) -h ( < / > " ° y)y||Vy||2

= o((4>oy) | |vy | i 2 + i),
By Ito's formula,

d(V(Xt*)) = -^(V(Z^))| |VV(^)| |2^

- V(Xt
x)<t>f(V(Xt

x))\\VV(X*)\\2 dt

+ {cr2(t)lM(X?)dt + a(t)(VV(Xt
x)7dBt).

Set a(O = £[0(y(X^))y(X^)]; then, for t > t0, t0 large enough, s > 0,

a (£ + s ) - a ( £ ) < ~# f +* a(u) du + { +* cr2(u) du,Jt Jt

and, by Gronwall's lemma,

a ( t ) < a2(t)a(t0}.

Finally, combining the inequalities above we get, for all Jt,

E[v(Xt*)ilV(v,fK}] <«r[ i + V ( x ) ] ( T 2 ( 0 ,

which proves the proposition. D

2.2. Upper bounds in Chiang, Hwang and Sheu's proof. We return to the
proof given in [3]. The basic idea is to consider, for any r > 0, the shifted
annealing diffusion X ( T } = (Xt + T), and to check how long it "follows" the
homogeneous diffusion with the same starting point and the constant sched-
ule a = <T(T). Until that time a(r), properties of the homogeneous diffusion
can be transferred to the annealing diffusion. As the basic tool is Girsanov's
theorem, it will be easier to handle the time-changed diffusions described in
Section 1.1.4.

2.2.1. Diffusion processes with an increasing drift. Let h be a bounded
and Lipschitz function from [Rf/ to Rd. For a and a, nondecreasing right-
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continuous lR+-valued functions with a(0) = d(0), let us consider the diffusion
processes

dYt = a(t)h(Yt)dt 4- dBt,

dZt = d(t)h(Zt) dt + dBt.

We denote as always Yt
x and Zx if Y() = Z0 = x.

(a) How does ( Z x ) follow ( Y t
x ) and how long? According to Girsanov's

theorem and following [3] (see Pages 743-744), we set

Kt= /%(s) -d(s ) ] 2 ds .
•'O

Then for any bounded Borel function rf> from IR^ and IR and any A > 0,

(20) \E[4>(Yt
x)] -E[4>(Z?)] <CJ|^| |#//2exp(C2^),

(21) p(sup| |Ysl>A) -p(sup||Z*| > A J < C,K^2 exp(C2Kt);
, S ' < < ' , S '< f

Cl and C2 are two positive constants depending only on \\h\\ = supHWOII.
(b) Application to shifted diffusion processes. For r > 0, B(

t
T] = (Bt+T -

Br)t> 0, the above result holds for the shifted diffusion processes ruled by

dYt
(r} = a(t + r ) h ( Y t

( r ] } dt + B(
t
r\

(22) V

dZ(
f
T} = a ( r ) h ( Z (

f
r } ) dt 4- B(

t
T}

with Kt replaced by

K{
f
T) = l\a(s + r) - a(r)]2 ds

Jo

, t3

^ ( « ' ( ^ ) ) 2 y

a ( r ) \ 2 ^
- ol '

T / 3 y

For a R + = valued function a(r), increasing to infinity, such that r 2 (r) = K(
a

T
(
]
T)

tends to 0 as r -» °°, inequalities (20) and (21) can be written as

£[<£(Y; , ( T ) + T ) /y T = x ] - E[<i>(za(Tt< T}/zT = ^] |
<C3 | |^ | | r 2 (T) ,

(23)

P( sup | |Y s t r | |>2 | | jc i |+A/y T = % j

(24) V—\
< P sup ||Zs+r|| > A Z T - x ) + C 3 r 2 ( r ) ,

\ S < t t ( T )

C3 only depending on \\h\\.
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2.2.2. Accompanying the homogeneous gradient diffusion process. Let us
study the diffusion

(25) dYt = -a(t)VV(Yt) dt + dBt.

For a real continuous function </> with compact support, taking R large
enough in Proposition 1, there exists a compact set K containing the support
of 4> and the set {V < /?}, such that

(26) P(Yt
x£K) <*'(! + V(x))l/a(t).

Let us consider, for each u > 0, a homogeneous diffusion process driven by

(27) d Z (
t

u * x ) = - a ( u ) V V ( Z (
f

u - x } ) d t + B(
t
u\

with Z(
0

U'X) = *, x e K. Then, the inequalities (9) and (10) of 1.1.2 can be
translated as follows: for A > A and u > u0 large enough, if a(u) =
a(u)exp(\a(u}), there exists a constant J3 > 0 such that

(28) s u p | | P ( Z < « ' f ) e •) - G1 / 2 a ( J [ v a r < exp( - j3a( u ) ) ,
xcK

and there exists a constant A such that K c (\\X\\ < A} and

(29) supp[ sup | |ZJ"-- r ) | | > A) < exp(- /3a(w)) .
x^K f < a ( u }

Unfortunately the function W is not bounded. Therefore we cannot di-
rectly apply the results obtained in Section 2.2.1. However, as we shall see,
for a fairly large amount of time, the diffusion remains bounded on an event
of probability increasing to 1.

For Al = A + 2supr t / J jc||, let V be a twice continuously differentiable
function, such that the following holds:

1. the restriction of V to the ball of center 0 and radius Al is V;

2. V and its first- and second-order derivatives are bounded.

Then, 2.2.Kb) applies to compare Y ( u ] and Z ( u } governed by

dYt
(u} = -a(t - u}\V(Yt

(u)}dt +B\U\
(30) „ „ .

dZ\li] = - a ( u ) V V ( Z (
f

u ) } d t + B(
t
u]

with Y(\
u} = ZJ/0 = x, x e K. For the function r denned in 2.2.Kb) we have

r ( u ) = o ( [ a ( u ) ] 3 / 2 a ( u ) / u ) = o ( [ a ( u ) ] * / 2 u l e x p ( 3 A a ( u } / 2 } ) .

As we assumed that a ( u ) < In u/c, it follows that

(31) r ( u ) = o f [ l n z / ] 5 / 2 M - 1 + S A ' 2 c ) .

2.3. Proof of Theorem I when c > 3A/2. We take the constant A > A
such that c > 3A/2. By (31), we have

r ( u) < c/ exp( — ,sa( w ) )
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for 0 < s < 1 - 3A/2c. Thus, we have by 2.2.Kb),

P( sup \\YS
(U}\\ >A}] < p ( sup iiZ^H > A J + g exp(~,sa(^))

- , s < a ( w ) ' v , s < a ' ( i / ) >

with a constant ^ independent of x e J^T,
Hence, if :c e ̂ ,

pf sup I U 7 M ) - Y;«>|| > 0/YU = Y(l
u) =x\ <£ ' exp ( - sa (M)) ,

^ s < a ( w ) '

1127

P sup \\Z[U} -Z(u]\\ > 0/ZU --Z(
Q

U) = x \ <tfexp(-sa(u)).
\*<a(u) 1

Moreover, we have, by 2.2.Kb),

E[4>(zwu>)/ztf> = x] -E[^(Y^/Y^ = x]
< ^ 1 l < ^ | i e x p ( - p a ( M ) ) ,

with p = infl.s, f3). Thus, thanks to inequality (9) applied to Z(a\ we get,
uniformly if x e K,

E\4>(Y^}}/Y^ = X\ - G 1 / 2 H ( u ) ( c A )
(32)

E [ 4 > ( Y a ( U H U ) / Y u = x ] -G 1 / 2 o ( a , (0)

< r | i</)! |exp(-pa(w)),

< ^||^||exp(-pa(M)).

Hence, by Proposition 1,

E[4>(Y*U^U)] - G 1 / 2 , H U ) ( < f > )

< «: | |^ | | (exp(-pa(u)) + (1 + V(x))l/a(u)).
As a(w + a(«)) x a(w), we also have

£[<^(y/)] -G 1 / 2 a ( „ , (</ / )
< <<M|(exp( -pa(«) ) + (1 4- V ( x ) ) l / a ( M ) ) .

The constant 5^ is uniform over all continuous functions whose supports are
included in the same compact. For 0<rl<r<R,R large enough such that
Proposition 1 holds, let us take the function d> in the last result such that

(33)

l { r + i t t f V < V R} < (t> < l|r] f inf y < y ^ 2 R} •

Then, from (33), we obtain

P(V(YU
X) > i n f V + r ) < E[d>(Yu

x)] + ^(l + V(x))l/a(u)
and

P(V(Y*) > inf V Hh r T ) > £ [ (A(y / ) ] ,
which implies

P(V(Y/) > inf y + r) < G 1 / 2 ( 1 ( U ) (V> ^ + inf V)

+ S,(exp( -pa(u}} + (1 + V ( * ) ) l / a ( w ) ) ,

P(V(y/) > infV+r,) > Gl/2atut(V> r, + inf V)

-^•(exp(-pa(«)) + ( 1 + V ( * ) ) l / a ( « ) ) .
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Hence, by the large deviation principle in Section 1.1.1, for 2r < p,
1

lim sup lnP(V(Y,*) > inf V + r) = -2r.
* -»* jrer a(0

By part (iii) of assumptions A2, a(A(t))/a(t) —> 1, hence (13) follows, taking
xtx = y Au>» with A(t) = /0' aU) cfe. For £[ V(Z0)] < * we find (14) by the same
arguments. D

REMARK 6. For A < c < 3A/2, the previous proof tells us that, until the
time a(u) = O(ul'), v < 2/3, the annealing diffusion follows the homoge-
neous diffusion, with r ( u ) = o(us ( ) . Unfortunately, this time is not suffi-
ciently long to guarantee the convergence to the Gibbs measure. However, we
still have

(34) supp( sup \\Yf
<u)\\ > A}/YU = x\ < *exp(-pa(»).

x^K \t<a(u) '

The aim of the next section is to prove Theorem 1 for c > A.

2.4. Proof of Theorem 1 fore > A.
2.4.1. Accompanying the stepwise diffusion process. For 0 < a < 1/3, de-

fine tn = E)'_J k n x (1/(1 - a ) ) n l ~ '\ and a stepwise function d(t) = a(tn)
on the interval [ t n , tn__ j ) . We return to the framework of Section 2.2.1.

How does (Yf) follow7 (Yf) and how long? Let A be a function from N to N
increasing to infinity with A(N) = o(N). Let us consider the shifted diffusion
processes (Yf_{ , v ) and ( Y f . t , ) . For tN , < u < tN, we set a(u) = tN + A(N) —
tN _!, then

K,-,tu}= I V " l V ) [o («) -a ( . s ) ]^ . s

N + A(N)

E
,/ = A?

[a'(';)]2(^i-';f

== 0

/V + A ( A r )
V^1 • - 3 < v Pi -I2 • 2 *• • 2«L .7 [ Iny] 7

_ / - = j V

= o ( ( l n N ) 2 [ A T - 1 a - (N + A ( 7 V ) ) " L ' " ] )

= o((lnN)2N *'"A(N)).

If we take A(N) = NT with a < r < a + 2(1 - «)/3, then

a ( z / ) x { (JV-f N7)1"" -TV1 ( V 1
1 — a

x AT—'

- 0 ( M ( r ' 4 ) ' ( 1 a ) ) ,
with (r-«)/(!-a) < 2/3. Hence, ^V ( w ) -o((ln A^)27V"2 "^ 2(1
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Then, if we take up the notations of Section 2,3, we obtain by (34),

(35) sup PI sup \\Yt\\>Al/Yu=x]<&exp(-pa(u)).
x^K ^ u< t<u + a( u )

Thus, an easy adaptation of the proof in Section 2.3 gives, for A2 = Al +
2 s uP*e#IWl

(36) P sup \\Yt\\>A.2/Yu=x\<K'exp(-pa(u)),
\u<t<u + a ( u ) i

(37) E[4>(Yu + a(u)}/Yu = x ] - E[4>(YU + &(U})/YU = *]

< r||<£|iexp( -pa(u)).

The constant £T depends only on the support of </>. In Section 2.4.3 we shall
prove that, uniformly for x e K7 for tN l <u < tN,

(38) £ [ < A ( Y U H <;(u))/t = x\ ~ Gi / a o ( / , . . ,V ) ) (0) < vr|Mlexp( -pa(«)) .

Then the end of the proof in Section 2.3 remains valid and we again obtain
(32) with a replaced by a, thus (33) and Theorem 1 hold with c > A.

2.4.2. Convergence rates for stepwise annealing diffusion process. We now
consider the diffusion process ruled by

(39) dft= -a(t)VV(Yt)dt + dBt.

Let us state Royer's results [22], precising some upper bounds. In this section
we assume that V(x) = \\x\\4 for large i|x|| (super normal case).

(a) Hypercontractivity in "the supernormal case." Based on Log-Sobolev
inequalities for the Schrodinger operators [2], [5], Royer [22] obtains the
following hypercontractive estimates for the transition semigroup (P/r) of the
homogeneous gradient diffusion process (1).

For all 8 > 0 if t = 8 ln(2), then, for f e L2(GrrV2),

(40) l l P / J ( / ) l l ^ V ; ( r , , 2 ) < ^ M l l / ^ ! i ^ ^ 2 / 2 )

with

d In 8 a
(41) 2M - K\l + a 2 ) — +

2

48 2 '

The above result could be written for the transition of the time-changed
diffusion (Yt\ I l f ( x , dy) = Pt

a/a
 2 ( j t , dy\ as

(42) l i n « ( ^ ) | | L 4 ( G ] , 2 f ; ) < e M | | f | | L , ( G l / 2 a )
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with

d t t
(43) 2M = ̂ (1 + a) In -

4 \ a

d It\ (m2) 2

In(ln2) + -^2-a-

(b) Hypercontractivity for stepwise transition semigroup. The bound (42)
gives a constant Mn such that

(44) lin^;> tK(f)\\L^!l,l,,ln,^eM"\\f\\^Gli..2aiini}

and

(45) 2Mn < K'n2" In n.

(c) Spectral gap. By (8), for A < A < c and n > N, N large enough, it
follows from result (8) in Section 1.1.2, for f e L2(G1/2aUH)), f f d G l / 2 a ( t ^ = 0,

I I 1'TaU,,) / / "Ml ,
'I11'*/!"',,' ' '"L < G l ' 2 a ( / , , > >

^ exp — ̂  y?-exp( + A a ( ^ ) ) ||/'||La(G1/2aa n
\ a(tn) j

< exp
en < J / A \

- 7; ^ exp - -(1 - a) In n\ \\\f\\i*(G,.2a{t ,
\ (1 — a)In n \ c }] {r'}

by the asymptotic behavior of tn. Hence,

I/ 1 1 rr a it,,) / r\ j | , \

1 - rn = sup --—^ lL"'6' '2"""');/>G,/2o(M = 0
I I / ! ! L 2 ( G l / 2 a ( / ; , ) ) y

cn ( f / A
< exp -— exp (1 - a)lnn1 (1 - a)ln n \ c

— exp
_ cn - « - - ( A / r X l « )

(1 — a ) In n

(d) Variations of Gibbs distributions. Set v^ = c^ exp(--/3V) the density of
G£. On (V(x) > /z'"5"}, the following inequalities are proved in [22], for n large
enough:

V2ait,,.. , ) ( * ) ^ ^2a^ / 7 ) (^)

and

V > 2 a ( t t l ) ( X ) - V2a(tn.})(
X) ^ ^n( X) ^2a(tn 4 ,)(

 x)

for a function <pn defined by

<l>n(
x) = (V2a(tn)(

x)/V2a(tn^)(x) ~ l)l{V(X) > n^}

satisfying
/ \ l / 2

In{f<t>t(x)v2a(ta)(x)dx] x -a(^)7i3".
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Hence, for all a < 1,

In
** M "H<ML*( , 2 f l C ,

-a(tn)n
3a.

On the other hand, for V(x) < n3a and for n large enough, [22] obtains

V2a(tn^)(x) ~ *W,,)(*)I ^ yn
v2a(tn)(

x)

with

yn = n3a(a(tn,l) -a(tn))=o
n2alntn

t»
= o(n'l + 3alnn).

(e) Convergence rates for the stepwise annealing diffusion. Following the
proof of Lemma 2.1 in [22], we pointed out that, for n > N, if Yt admits a
density gN with respect to G1/2a(tr), then, for n > N, Yt admits also a
density gn with respect to Gl/2a(t } and

satisfies

where

and

yn = f[i-gn]'2dGl/2a(t:i)

yn+l <anyn + bn,

a,,(l - yn) = (1 - rnf + e 2 M "l l</>J lL 2 <GY 2 , , , , , , ,>

bn(l-yn) = yn+e2M»Un\\LhG^a(ln,.

Then, for 0 < k < 2, n > N, N large enough, we have rn < 1/2 and Rn =

% + • • • + ' • „ ,
an<l~krn and bn<rnR'n

s

with s > 0. Hence,

yn^<(l-krn)yn + rnR~n«.

Thus (see, e.g., [7], Lemma 4.1.1) we obtain

yn < sup{exp(-kRn)yN,^Rn
s],

that is,

(46) \\Pftn - G1/2a(J|2var < sup{exp( -kRn)yN, %>R;*}.

2.4.3. Proof of formula (39).

STEP 1. By (36), it is enough to prove, for tN_ l < u < tN and x e K,

(47) S[*(^-«(JVpM<.,H^( HA^2 l /yw =*] - Gl/2a(t^AiNt}(<!>)

< &exp( — pa(u)).
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For any Borel set F of U d , set

^ ( * , r ) = p ( [ y , v e = r ] n [ sup \\Y,\\ <A2]/YU = *).
\ [u<s<tN \ I

Define V as in Section 2.3, with bounded derivatives of order 1 or 2 and with
V(y) = V(y) for \\y\\ < A2. Set Y0 = x, and for t > 0,

dYt = -d(u)VV(Yt) dt + dBt.

Applying Lemma 1.1 of [23] (see also [17]), the transition density (p") of (Yt)
satisfies the inequality

p?(x,y) < (27Tt)~d/2exp([-\\x-y\\2/2t + &ta(u)]).

Thus, F N ( x , - ) has a density f N ( x , - ) with respect to the Lebesgue measure
which satisfies

f N ( x , y ) <^^^/2l{!Ly luA2};

and, with respect to Gl/2a(t )? the normalized distribution FN(x, - )/FN(x, Rr f )
has a density gN(x, • ) satisfying

gN(x,y)<&Nad/2l{M<A.2}exp(2a(u) sup V(y))=&Nf*,
1 l ! y i l < A 2

 ;

with (3 positive constant.
Thus, in order to prove (38), it is sufficient to prove that, if Yt has a

distribution with a density respect to Gl/2a(t }, bounded above by ^TV^,

(48) ^[^(^^(A^l^sup^^^^.^l ini l^A,,}] ~ Gl/2a(tN>A(N))(<l>)

< %'exp(-pa(tN)).

STEP 2. In order to prove (48), we may modify V and take V(y) = \\y\\ for
||3/|| > 2 A2. Thus, applying again the inequality (36), it is sufficient to prove,
in the supernormal case,

(49) E[<t>(YtN A(N))] - G l / 2 a ( t N t A ( N ) } ( 4 > ) <^exp(-pa(tN)).

In Section 2.4.1 we have taken A(AO = NT with a < r < a + 2(1 - a)/3.
Then for any d < a + A(l — a)/c and N large enough, we get by (46) for
RN+A(N) = rN + "" +rN+A(N)i

N+A(N)

RN+A(N) — L^ J
J = N

>&((N + A ( N ) ) l ~ 8 -N*-*)

>&NT~S i f r < 8 .
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Thus, taking a < r < a + (l- a)inf[2/3, A/c],

M *(**-< Jl - G l /2«<^>>(*) 2

< V sup{7V2^ exp(-kRN+ a(N)), RN
s
+a(N}]

and (49) is proved. This completes the proof of Theorem 1. D

3. Proof of weak convergence rates. For simplicity, let us set inf V =
0 throughout this section.

3.1. Proof of Theorem 2.
STEP 1. Large deviation principles for the shifted diffusion process.
It follows from the assumptions A2 that

lim sup
t<T

f a2(u + s) ds - ta2(u)
J(\0

Hence, Freidlin and WentzelPs results concerning the homogeneous diffusion
process with small perturbations can be transcribed to the family of diffusion
processes X(u} = (Xu + t\<t<T (see [19, 24] for more details).

STEP 2. Let W be a neighborhood of ArgminV where ||W||2 < WV\ for
r > 0 small enough, {V < 2r] c W and {V < 2r} is a region of attraction for
the ordinary differential equation z ( t ) = — W(z(t)). Thus, by Step 1, for any
T> 0,

lim sup < T 2 ( r / ) l n p ( s u p V(Xt+u) > 2r/V(Xu) < r) < 0.
u^oc \t<T '

STEP 3. Applying Theorem 1 and Proposition 1 with r > 0 defined in Step
2 and R > r, we get, for u large enough, 0 < t < T and constant p > 0,

E(V(Xt*+tt)] £ E [ V ( X ? + u ) l ( V ( X , i u } & r } ] +exp(-p /<r 2 (a) )

< rP(V(XZ) >r)+ E[V(Xt'+u)l{V{X^r)]

+ exp(-p/ f j
2 (w)) .

By Ito' formula and part (ii) of assumption Al, we have for all u,

E[V(Xt\u)l{V(X;},r}]

<rP(V(X*)<r)

-£E[(\\VV(X?, J||2 + lW(X?+u)<r*(s + u))l(V(X^r}] ds

+ &l (72(s + u) dsJo

<E[V(Xt)] + exp(-p/az(u)) + ̂ \faz(s + u) ds]
l/o J

^[/^[n^jv^,,,,]^].
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Hence

E[V(Xt\u)] <E[V(X*)] - *'fE\V(X*+u}\ ds + Va\u}.
J(}

By GronwalFs inequality we obtain

E[V(X^U)] < (E[V(X;)] + Wa2(u))exp(-WT)

and, for k large enough,

/ * \
E[v(XkT)] ^ V(x}exp(-k¥T] 4- ^ £ exp(-i^T)a2((k - i ) T ) \

\ i = l /

< V(x)exp(-ktfT) 4- ^exp(-(A;/2)#T) + (r'2((K/2)T)

<&<r*(kT),

and, for t = kT + h, h < k and k large enough,

•h

0

< ^C72(*0 < &(T2(t).

This completes the proof of Theorem 2. D

£[V(^)] < E [ V ( X f T ) ] + <T2(kT)-*'fhE[V(XkT+x)]ds
J (\

3.2. Proof of Theorem 3.
STEP 1. For c(a) = /R f / exp(-ay(;c))rfx, with a = 1/r, and C7a a random

variable with distribution G1/2a, the Laplace transform of 4aV(Ufl) is the
function A ^» c(2a(2A 4- l))/c(2a), which converges, as a —> ^, to the func-
tion defined by (2 A H- 1) f > / 2 , that is, to the Laplace transform of the distribu-
tion /Y

2(5). Hence, for any r > 0,

Gl/2a(4aV>r)^x2(S)((r,*)).

STEP 2. For any r > 0, let us take R > r satisfying Proposition 1 and
rl e (0, r). For any t > 0, we apply (33) to a continuous function ^, such that

l{r /4am< V< R} — ^t — *{rl /4a(t) < V < 2R}'

Then

P(4a(OV(y/) > r) < E[<l>t(Y*)] + ^f(l 4- V(jc))l /a(0

and

P(4a(OV(Y,*) ^rj^^^y, ' )] ,

which implies, for any rl < r,

P(4a(t)V(Yt
x) >r)< G}/.2atn(4a(t)V > r ,)

+ r(exp(-pa(0) + (1 +V(*)) l /a (0) ,

P ( 4 a ( O V ( y t * ) > r 1 ) ^ G 1 / 2 a ( / ) ( 4 o ( O V ^ r )

-r(exp(-pa(0) + ( 1 + V(*) ) l /a (*) ) ,
and Theorem 3 follows from Step 1. D
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3.3. Proof of Theorem 4. Set Z - {Zt}f>Q = ( X f , W t ) where Wt =
a~1(t)W(Xf) and, for u > 0, let us define the family of shifted diffusion
processes, ZJ M ) = Z, + M = ( X < u \ W t

( u ) ) .

STEP 1. For all function ( p i R ^ x R ^ - ^ R continuous and bounded with
compact support, we have to prove, denoting vz = 7V(0,(l/2)D2V(z)),

£[«p(X,,W,)] -* £ Gn(2)f(f(z,y)d^(y)
z <E Argmin V

or, equivalently,

E [ < p ( Y t , [ a ( t ) ] l ' ' 2 V V ( Y t ) ) ] -> £ G o ( z ) f < p ( z , y ) d v * ( y ) .
z e Argmin V

Thanks to formula (34), this is equivalent to showing

E{9(Yt_.,(n,(a(t+a(t))]i/2VV(Ytl,(n)}}

E G n ( z ) f < p ( z , y ) d v * ( y )
^ t E A r g m i n V

or

^[^^^.nJaC^ + iCO)]1''^^.,^,)!,^^.^^,^^^,,,^]

E G 0 (2) | (p (2 , .y )d^( .y ) .
zeArgrain Vr

Consequently, in the proof of the above formula, we may modify V for large
\\x\\ and, for technical reasons, we shall, in addition to assumption Al, assume
that

l i v v i i 2 < w
outside a suitable compact as F and that the partial derivatives of order 2
and 3 of V are bounded. Thus,

E[(T 2(t)\\VV(Xt)\\
2\ <*a-'2(t)E[V(Xt)] + K'a \t)P(Xt £ F)

with the right-hand side bounded, thanks to Theorem 2 and Proposition 1.

STEP 2 (Tightness). By Proposition 1, (Z(
0
U}) is tight. Hence, from Ito's

formula,

d(<r~l(t)VV(Xt)) = -<r'(t)(r-'2(t)VV(Xt)dt ~ a l (t)D2V( Xt) VV( Xt) dt

(T(t)

+ _LJLA[W](X,) dt + D2V(Xt) dBt,/j
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where A[ W] denotes the vector of Laplacians of the components of VV. Thus
Z = (X, W) is a solution of the stochastic differential system

dXt - -VV(Xt)dt i- ( r ( t ) d B t ,
(50) ' f J f

dWt = -D2V(Xt)Wtdt + Rtdt + D2V(Xt)dBt,

where

Rt = ~^-\[VV](Xt) - a'(t)a- l(t)Bt.

By Kolmogorov's inequality, we get

E sup
t<T

<T(r)dBr < I + " a2(r) dr x 2Tcr2(u).

Hence, the family of processes {[**" cr(r) dBr}t > 0 converges weakly to the
process identical to zero. On the other hand, by Step 1,

E
•^

('vV(Xr + u) dr < (t - .s)/' + "£[| |VV(X,.)ll2] dr < V'(t - ,s)2;
Js Js+ u

therefore, the family of processes ( X ( u ) ) is tight.
Similarly, by Step 1,

2"

E f *"D*V(Xr)Wrdr < (t -s)[ + u E [ \ \ D * V ( X r ) W r \ \ 2 ] dr
S + U S + II

< *'(t ~ S) ,

and the family of processes { j " ~f D2V(XS)WS ds}f > 0 is also tight.
Furthermore, the family of processes {/Q Rs+ u ds}f> 0 converges weakly to

the process identical to zero when u -> ^. This results from

E sup
t<T

r*R,d* <ru^E[wv](xt)\\]dtj a * a 2

rT\-u
+ ' (T'(t)tr-2(t)E[\\VV(Xt)\\]dt

* U

CT±u I 1
< (f \ ( r ( t ) dt 4- V?Ju \a(u +(u + T) a(u)

with the last expression decreasing to zero as u -» ^.
Finally, by Burkholder's inequality,

4"

E
t+u

D2V(Xr)dBr < K'E D2V(Xr)\\ dr

< W(t - 8^ruE\\\DzV(Xr)\*\ dr < W(t ~ s)2;
* o + i, L -"

thus, the family of processes { / M
w " f D2V(X^ dBs}t > 0 is tight.

Hence the families of processes ( X { u } ) , ( W ( M ) ) and ( Z { u ) ) are tight.
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STEP 3 (Convergence). As we proved the convergence to the process
identical to zero of (j^u cr(r) d B r ) f > ( ) and (/J R S ] U d s ) f > ( } when u -* ^, any
closure point of ( Z ( u } ) is a solution of the stochastic differential system

(51)
dZ(

t^
l] - -VV(Z(

t^
l}}dt,

dZ<x'2 ) = - D 2 V ( Z f ' l ) ) Z (
f ^ 2 ) + D2V(Zf l})dBt.

Since (Xu) converges weakly to G0, ZQ*'I) has the distribution G0. Moreover,
the first equation is an ordinary differential equation whose initial value is a
stable point for the gradient, hence ZJx'n = Z Q C - I ) for all t and

dZ<*'2) = -D2V(Z£'l})Zf-*} + D2V(Z£>l>)dBt,

where [Bt}t>Q is a Brownian motion independent of ( Z ( ^ ' l ) , Z^'2)).
For flT = D2V(Z^ 1}), we have

ZJ X ' 2 ) - exp( -//o|^r-2) + fexp(Hs) dBs).
I ^o ' /

Thus, given a function </> Lipschitz and bounded, we obtain

E[<p(zr<»,zr<»)]
- fG0(dz)Jz,exp(-D2V(z)t)ftexp(-D2V(z}s)dBsJ \ J0

< ||0||exp(-AO,

with A = infz€_ArgminV Amn] D2V(z).
Let JJL be a probability on [R2c/, closure point of (XU,WU) for the weak

convergence. The first marginal law of JUL is G0 and, by Step 1, the second
marginal law has a second-order moment bounded above by supM.E[||WJ| ] < °c.

Let us consider now a sequence {u(n)}n>() increasing to infinity such that
( X u ( n } , W u ( n ) ) converges weakly to //,. By the tightness of the process
(X(u\ W(u}), for all t > 0, there exists a subsequence of{u(n)}n > 0, denoted by
{v(n)}n>0, such that ( X ( v ( n ) ~ *\ W ( v ( n ) n) converges weakly to the process
Z(x), solution of (51).

Hence, for vz = N(Q,(I/2)D2V(z)\

E[<p(Zf>l\Z<x<»)] - E Go(z)f<p(z,y)dp*(y)
ze Argmin V

<g'1|(f.||exp(-AO,

and for all t > 0,

J<MM - f < p ( z , y ) dv*(y) <i?'||0||exp(-AO,
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thus

M = E G0(z)8,®vz

z e Argmin V

and Theorem 4 is established, n
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