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STOCHASTIC DOMINATION RESULTS
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University of Maryland Baltimore County
and University of Helsinki

Let Xi and Yi follow noncentral chi-square distributions with the
same degrees of freedom νi and noncentrality parameters δ2

i and µ2
i , re-

spectively, for i = 1� � � � � n, and let the Xi ’s be independent and the Yi ’s
independent. A necessary and sufficient condition is obtained under which∑n

i=1 λiXi is stochastically smaller than
∑n

i=1 λiYi for all nonnegative real
numbers λ1 ≥ · · · ≥ λn. Reformulating this as a result in geometric proba-
bility, solutions are obtained, in particular, to the problems of monotonic-
ity and location of extrema of the probability content of a rotated ellipse
under the standard bivariate Gaussian distribution. This complements re-
sults obtained by Hall, Kanter and Perlman who considered the behavior
of the probability content of a square under rotation. More generally, it is
shown that the vector of partial sums �X1�X1 +X2� � � � �X1 + · · · +Xn�
is stochastically smaller than �Y1�Y1 +Y2� � � � �Y1 + · · · +Yn� if and only
if
∑n

i=1 λiXi is stochastically smaller than
∑n

i=1 λiYi for all nonnegative
real numbers λ1 ≥ · · · ≥ λn.

1. Introduction. This paper originates with a problem which in its sim-
plest form can be stated as follows. Let χ2

ν�δ2� denote the noncentral chi-square
distribution with ν > 0 degrees of freedom and δ2 as noncentrality parameter.
Suppose that X1 and X2 are independent random variables distributed, re-
spectively, as χ2

1�δ2
1� and χ2

1�δ2
2�, and suppose that Y1 and Y2 are independent

and distributed as χ2
1�δ2

1 + δ2
2� and χ2

1�0�, respectively. Is it true that

λX1 +X2 ≤� λY1 +Y2 for all λ ≥ 1�(1.1)

or equivalently, that

λX1 + �1 − λ�X2 ≤� λY1 + �1 − λ�Y2 for all λ ∈ 
1/2�1��(1.2)

where “≤� ” denotes ordinary stochastic domination? [For real-valued random
variables U and V, U ≤� V if P�U ≤ a
 ≥ P�V ≤ a
 holds for all a ∈ R.]
Heuristically, since P�χ2

ν�δ2� ≤ a
 is decreasing as a function of the noncen-
trality parameter δ2 (for fixed a), it follows that X1 ≤� Y1, and therefore
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one would expect, for example, inequality (1.2) to hold at least for values of
λ sufficiently close to unity. [Similarly, the converse inequality should hold in
(1.2) for small enough nonnegative λ.]

Suppose, more generally, that Xi is distributed as χ2
νi
�δ2

i � for i = 1� � � � � n,
with the Xi’s independent, and suppose that Yi is distributed as χ2

νi
�µ2

i � for i =
1� � � � � n, with the Yi’s independent. Under what condition on the noncentrality
parameters can one have

n∑
i=1

λiXi ≤�

n∑
i=1

λiYi�(1.3)

the λi’s being any nonnegative scalars satisfying λ1 ≥ · · · ≥ λn? The origi-
nal motivation for considering this problem comes from Mathew, Sharma and
Nordström (1995), where a special case of (1.3) is encountered in the context
of constructing confidence regions in a multivariate calibration problem.

The preceding problems can alternatively be recast as problems in geomet-
ric probability. This reformulation, which we find particularly intriguing, is
perhaps best illustrated using (1.1). Let X1, X2, Y1 and Y2 be as in (1.1), and
let

δ =
(
δ1

δ2

)
and µ =

 √
δ2

1 + δ2
2

0

�(1.4)

assuming, without loss of generality, that δ1� δ2 ≥ 0. Given λ > 1, define
Q�δ� = λX1 +X2 and Q�µ� = λY1 +Y2, and let Z = �Z1�Z2�′ be standard
bivariate Gaussian. Then

Q�δ� =� λ�Z1 − δ1�2 + �Z2 − δ2�2(1.5)

and

Q�µ� =� λ

(
Z1 −

√
δ2

1 + δ2
2

)2

+Z2
2�(1.6)

and the inequality in (1.1) requires that

P�Q�δ� ≤ a
 ≥ P�Q�µ� ≤ a
(1.7)

hold for all a ∈ R.
Let � · � and � · �� denote, respectively, the standard Euclidean norm and

the weighted norm corresponding to the matrix � = diag�λ�1�, and define

�η = �z ∈ R
2� �z− η�2

� ≤ a
� η ∈ R
2� a > 0�(1.8)

Then inequality (1.7) takes the form

�2π�−1
∫
�δ

exp�−�z�2/2�dz ≥ �2π�−1
∫
�µ

exp�−�z�2/2�dz�(1.9)

Clearly, �δ and �µ are ellipses with principal semiaxes of lengths �a/λ�1/2 and
a1/2, and with centers δ and µ lying on the circle centered at the origin and
with radius �δ� �= �µ��. In view of (1.9) it is seen that, if true, (1.7) [and hence
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(1.1)] requires that the probability content of the ellipse �δ be larger than that
of �µ, regardless of the choice of a ∈ R. In other words, the probability content
under the standard bivariate Gaussian distribution should increase when the
ellipse is rotated by an angle of θ �0 ≤ θ ≤ π/2� by rotating its center from
the position µ to position δ while keeping its principal axes parallel to the
coordinate axes (see Figure 1), or equivalently (in view of spherical symmetry),

Fig. 1. Rotating the ellipse �µ by rotating its center µ = �
√
δ2

1 + δ2
2�0�′ counterclockwise through

an angle of θ along the boundary of the ball of radius �µ� to position δ = �δ1� δ2�′ �θ =
arccos�δ1/

√
δ2

1 + δ2
2��.
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by keeping its center fixed at µ and rotating it through an angle of θ about
its center.

More generally, one may consider the problems of monotonicity and loca-
tion of extrema of the probability content of an ellipse under rotation. It is
interesting to note that this is the exact analogue of a problem considered by
Hall, Kanter and Perlman (1980), who studied the behavior of the probabil-
ity content of a square under rotation. Indeed, from a general log concavity
result for Laplace transforms, they deduced that the probability content is
a maximum when one of the diagonals of the square (or the extension of the
diagonal) passes through the origin. They also showed that the probability con-
tent decreases monotonically when the square is rotated from such a position,
achieving its minimum after a rotation through an angle of π/4. Although the
present problem is strikingly similar, there is a noteworthy difference which
appears to call for different methods of proof. Namely, while a square, centered
at the origin, is invariant under exchange of coordinates, this clearly is not the
case with an ellipse. This invariance, together with the spherical symmetry of
the standard Gaussian distribution, played a crucial role in Hall, Kanter and
Perlman (1980).

In the next section, a result is given, which, for n = 2 and ν1 = ν2 = 1,
provides a necessary and sufficient condition for the stochastic domination
(1.3) to hold (Theorem 1). This result yields, in particular, a solution to the
problem about rotating an ellipse outlined above. Suppose that instead of (1.4),
µ is any vector in R

2, that is, that

δ =
(
δ1

δ2

)
and µ =

(
µ1

µ2

)
�(1.10)

Given a vector µ in R
2 and any nonnegative scalars λ1 ≥ λ2, a characterization

is in fact obtained of the region where the center δ of the ellipse �δ, defined
in terms of � = diag �λ1� λ2�, must lie such that the probability content of
�δ exceeds that of �µ. A further refinement is also obtained, characterizing
subregions in terms of permissible families of ellipses such that �δ is assigned
more probability mass than �µ (Theorem 2). The extension to ellipsoids in
R
n is straightforward and can be obtained from the general necessary and

sufficient condition for the stochastic domination (1.3) (Theorem 3).
Let Xi and Yi, i = 1� � � � � n, be as in (1.3), and define for k = 1� � � � � n,

�k�X� = ∑k
i=1 Xi and �k�Y� = ∑k

i=1 Yi, the partial sums of the random
vectors X = �X1� � � � �Xn�′ and Y = �Y1� � � � �Yn�′. Then (1.3) can be rewritten
as (defining λn+1 = 0)

n∑
k=1

�λk − λk+1��k�X� ≤�

n∑
k=1

�λk − λk+1��k�Y��(1.11)

Since the expressions in (1.11) are increasing functionals of the random vectors
� �X� = ��1�X�� � � � ��n�X��′ and � �Y� = ��1�Y�� � � � ��n�Y��′, one may,
more generally, ask for conditions under which

� �X� ≤� � �Y��(1.12)
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[For random vectors U and V, U ≤� V if Eφ�U� ≤ Eφ�V� holds for all bounded
increasing functionals φ; see, e.g., Kamae, Krengel and O’Brien (1977) and
Section 3 for equivalent conditions and further details.] A necessary and suffi-
cient condition is given also for the stochastic domination (1.12) (Theorem 4).
Interestingly, the condition turns out to be exactly the same as the condition
for (1.3). Although one would, in general, expect the multivariate stochastic
domination property (1.12) to be substantially stronger than the univariate
domination (1.3), it thus transpires that requiring (1.3) to hold for all nonneg-
ative λi’s satisfying λ1 ≥ · · · ≥ λn is indeed enough to imply the multivariate
stochastic domination (1.12) between the vectors of partial sums � �X� and
� �Y�.

The proofs of the results involve coupling constructions, that is, construc-
tions of pointwise ordered random variables (vectors), are briefly outlined in
Section 3, and are given in full in Mathew and Nordström (1996). That cou-
pling should occur in this context is, of course, no surprise, in view of the
well-known result by Strassen (1965).

2. Results. The following result provides (for n = 2 and ν1 = ν2 = 1) a
necessary and sufficient condition for the stochastic domination (1.3) to hold,
and shows, in particular, the validity of inequality (1.1) [and (1.2)].

Theorem 1. Let Xi and Yi be distributed, respectively, as χ2
1�δ2

i � and
χ2

1�µ2
i �, i = 1�2, with X1 and X2 independent and Y1 and Y2 independent.

Then

λ1X1 + λ2X2 ≤� λ1Y1 + λ2Y2(2.1)

holds for all nonnegative λ1 ≥ λ2 if and only if

δ2
1 ≤ µ2

1(2.2)

and

δ2
1 + δ2

2 ≤ µ2
1 + µ2

2(2.3)

are satisfied.

Let δ = �δ1� δ2�′ and µ = �µ1� µ2�′. Given µ ∈ R
2
+, the positive quadrant, let

�+
�µ� denote the part of the ball ��µ� centered at the origin and of radius �µ�

which lies within R
2
+, and define the regions (cf. Figure 2)

�1 = {
δ ∈ �+

�µ�� δ1 ≤ µ1� δ2 ≤ µ2
}
�(2.4)

�2 = {
δ ∈ �+

�µ�� δ1 ≤ µ1� δ2 > µ2
}

(2.5)

and

�3 = {
δ ∈ �+

�µ�� δ1 > µ1� δ2 ≤ µ2
}
�(2.6)

Restricting ourselves, without loss of generality (in view of spherical symme-
try), to the positive quadrant R

2
+ (δi� µi ≥ 0), the inequality (2.1) holds if and

only if δ ∈ �1 ∪ �2, in view of Theorem 1 above. However, the assumption
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Fig. 2. Given an ellipse �µ with center µ = �µ1� µ2�′ �µ1� µ2 ≥ 0�, the part of the ball of radius
�µ� which lies in the positive quadrant splits into three disjoint regions �1, �2 and �3.

λ1 ≥ λ2 is needed only when δ ∈ �2. This is, indeed, a consequence of the fol-
lowing result, which shows that the subregions of �+

�µ� can be characterized
in terms of permissible families of ellipses for which the probability content
of �δ exceeds that of �µ. Given η ∈ R

2
+, �η denotes here an ellipse from the

homothetic family (obtained by varying a > 0) defined by (1.8), with specified
� = diag�λ1� λ2�.

Theorem 2. Let µ ∈ R
2
+ and a > 0 be given and suppose that δ ∈ R

2
+. Under

the standard bivariate Gaussian distribution, the probability inequality

P��δ
 ≥ P��µ
(2.7)
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holds:

(i) for all ellipses �δ and �µ with major principal axis in the direction of
the vertical coordinate axis if and only if δ ∈ �1 ∪�2;

(ii) for all ellipses �δ and �µ with major principal axis in the direction of
the horizontal coordinate axis if and only if δ ∈ �1 ∪�3;

(iii) for all ellipses �δ and �µ if and only if δ ∈ �1;

where the regions �1, �2 and �3 are defined by (2.4)–(2.6).

From (i) it follows, in particular, that when λ1 > λ2 the probability content
of �µ increases monotonically when its center moves from ��µ��0�′ to �0� �µ��′
along the boundary ∂��µ� in R

2
+, the minimum and maximum being achieved

(for fixed �µ�) at these points, respectively. This provides an affirmative an-
swer to the question about the probability content of an ellipse under rotation,
outlined in Section 1.

As pointed out in Section 1, a rotation of an ellipse by an angle of θ can,
from the point of view of probability content (under the standard Gaussian
distribution), be thought of either as a rotation of the center while keeping
the principal axes parallel to the coordinate axes (see Figure 1), or as a ro-
tation of the ellipse through an angle of θ about its center while keeping the
center fixed. The case of rotating an ellipse with center, say, on the horizontal
coordinate axis, but with principal semiaxes not in generic position, that is,
not parallel to the coordinate axes, is thus covered as well under the present
setup. Indeed, in view of spherical symmetry, one simply rotates the coordi-
nate axes into generic position relative to the ellipse, and the above results
apply to such an ellipse in the new coordinate system.

It is interesting to note that inequality (2.7) can, in fact, be inferred for the
entire region �1 ∪ �2 (or �1 ∪ �3) from a knowledge of the behavior of the
probability content of �µ when µ = �µ1� µ2�′ moves along the boundary ∂��µ�
only. Indeed, from a well-known convolution inequality due to T.W. Anderson
(1955), it follows that the probability content of �µ increases monotonically
when the center µ is pulled toward the origin along a ray passing through
µ. Therefore the probability content of �δ exceeds that of �µ when δ ∈ R

2
+

can be obtained from µ ∈ R
2
+ by means of a rotation counterclockwise along

∂��µ� ∩ R
2
+, followed by a contraction toward the origin. This corresponds to

the subregion of �1 ∪�2 lying above the ray passing through µ (cf. Figure 2).
However, from Anderson’s theorem we are not able to infer inequality (2.7) for
the entire region �1 ∪ �2. This is because Anderson’s theorem is for convex
centrally symmetric sets, while the ellipse exhibits even greater symmetry;
namely, it is invariant under coordinate-wise sign changes (axial symmetry).
But applying a variant of Anderson’s inequality for such sets [see, e.g., Theo-
rem 2.1 in Jogdeo (1977)] shows that the probability content of �µ is, in fact,
monotonically decreasing in µ1 and µ2 separately, not only along rays emanat-
ing from the origin. Thus inequality (2.7) follows also for the part of �1 ∪�2
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lying below the ray passing through µ (cf. Figure 2). (We are indebted to a
referee for drawing our attention to this latter fact.)

The preceding results extend straightforwardly to n noncentral chi-square
random variables and to ellipsoids in R

n, n ≥ 2. We content ourselves here
with formulating the extension of Theorem 1 to the case n ≥ 2 and νi > 0,
i = 1� � � � � n [cf. (1.3)].

Theorem 3. Let Xi and Yi be distributed, respectively, as χ2
νi
�δ2

i � and

χ2
νi
�µ2

i �, i = 1� � � � � n, with X1� � � � �Xn independent and Y1� � � � �Yn indepen-
dent. Then

n∑
i=1

λiXi ≤�

n∑
i=1

λiYi(2.8)

holds for all nonnegative λi’s satisfying λ1 ≥ · · · ≥ λn if and only if

k∑
i=1

δ2
i ≤

k∑
i=1

µ2
i for all k = 1� � � � � n�(2.9)

At the end of Section 1, the inequality (2.8) was rewritten in a form which
suggested that multivariate stochastic domination could perhaps hold between
the vectors of partial sums formed from the Xi’s and the Yi’s; see (1.11) and
(1.12). The following result shows that the same condition (2.9) is in fact neces-
sary and sufficient also for such a multivariate stochastic domination property.

Theorem 4. Let Xi and Yi, i = 1� � � � � n, be as in Theorem 3, let X =
�X1� � � � �Xn�′ and Y = �Y1� � � � �Yn�′, and let � �X� = ��1�X�� � � � ��n�X��′
and � �Y� = ��1�Y�� � � � ��n�Y��′, where �k�X� = ∑k

i=1 Xi and �k�Y� =∑k
i=1 Yi, k = 1� � � � � n. Then

� �X� ≤� � �Y�(2.10)

holds if and only if condition (2.9) is satisfied.

It should be pointed out that, in the special case when all the degrees of
freedom are equal, the fact that (2.9) implies (2.10) can also be obtained using
Theorem 2 in Boland, Proschan and Tong (1992) [cf. also Proposition 2.13 in
Shaked, Shanthikumar and Tong (1995)].

The multivariate stochastic dominance relation (2.10) is clearly equivalent
to φ
� �X�� ≤� φ
� �Y�� for all increasing functionals φ. Upon rewriting
(2.8) in the form (1.11), one would expect the multivariate stochastic domi-
nance relation (2.10) to be a substantially stronger domination property than
(2.8). However, from Theorem 3 and Theorem 4 we conclude that (2.10) holds
if and only if (2.8) holds for all nonnegative λi’s satisfying λ1 ≥ · · · ≥ λn. Thus
we have a situation where requiring stochastic dominance to hold only for a
subclass of increasing functionals, namely, the class of linear functionals of
the form l′� �X� and l′� �Y� with nonnegative coordinates li, i = 1� � � � � n,
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is enough to imply φ
� �X�� ≤� φ
� �Y�� for the class of all increasing func-
tionals φ [cf. (1.11)].

Remark 1. The condition (2.9) resembles weak majorization [see Marshall
and Olkin (1979), Chapter 1]. The difference is that, unlike majorization and
weak majorization, condition (2.9) is not stated in terms of the ordered com-
ponents of the vectors of noncentrality parameters

δ̃ = �δ2
1� � � � � δ

2
n�′ and µ̃ = �µ2

1� � � � � µ
2
n�′�(2.11)

Note that while Schur-convex functions are necessarily permutation invariant,
the probability P�∑n

i=1 λiXi ≥ a
, as a function of δ̃, fails to be so, in general.
However, suppose we denote the ordered components of δ̃ as δ2

�1� ≥ δ2
�2� ≥ · · · ≥

δ2
�n�, and write δ̃↓ = �δ2

�1�� δ
2
�2�� � � � � δ

2
�n��′. Now if Xi ∼ χ2

νi
�δ2

�i��, i = 1� � � � � n,
then Theorem 3 states that the probability P�∑n

i=1 λiXi ≥ a
, as a function of
δ̃↓, is increasing and Schur-convex for every a > 0 and λ1 ≥ · · · ≥ λn ≥ 0 [cf.
Marshall and Olkin (1979), page 59].

3. Proofs. We begin by recalling some auxiliary results and properties,
which are needed in the proofs. The theorems in the previous section follow
straightforwardly from these auxiliary results (A.1), (A.2) and (A.3), as well as
from Lemma 1 stated below. Hence we only give a brief outline of the proofs
here, referring to Mathew and Nordström (1996) for full details.

The first result is a standard result concerning the noncentral chi-square
distribution.

A.1. For a noncentral chi-square distribution χ2
ν�δ2�,

χ2
ν�δ2� ∼ χ2

ν+2N where N ∼ Poisson�δ2/2��
that is, it is representable as a Poisson mixture of central chi-squares.

For random vectors U and V, taking values in a common Euclidean space,
stochastic domination (ordering) is defined by U ≤� V if Eφ�U� ≤ Eφ�V�
holds for all bounded functionals φ which are increasing w.r.t. the componen-
twise vector ordering. Alternatively, U ≤� V is characterized by P�U ∈ � 
 ≤
P�V ∈ � 
 holding for all Borel sets � with increasing indicator 1� �·� [see,
e.g., Kamae, Krengel and O’Brien (1977)].

The following simple result will also be used repeatedly.

A.2. Let U, V and T be random vectors, U and V taking values in a
common Euclidean space. If, for some determinations of the conditional dis-
tributions,

P�U ∈ � �T = t
 ≤ P�V ∈ � �T = t
(3.1)

holds for all Borel sets � with increasing indicator 1� �·� and for all t ∈
supp�T�, the support of T, then (3.1) holds unconditionally. That is, we have
U ≤� V.
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A further characterization of stochastic dominance is the characterization
in terms of coupling, which forms the backbone of our proofs. We shall now
state this characterization.

A.3. For random vectors U and V, taking values in a common Euclidean
space, U ≤� V holds if and only if there exist distributional copies Û =� U

and V̂ =� V, realized on a common probability space, such that P�Û ≤ V̂
 = 1.

When U ≤� V, Strassen (1965) proved the existence of such a coupling of
U and V, but a constructive proof is known only when U and V are univari-
ate; see, for example, Kamae, Krengel and O’Brien (1977) or Szekli (1995),
Chapter 2 for further details.

We shall first state a lemma that is used to prove Theorem 1 as well as
Theorem 4. The lemma actually establishes Theorem 4 and the equivalence
of (2.10) and (2.8) for the special case n = 2 and follows directly from (A.1),
(A.2) and (A.3).

Lemma 1. Let Ui and Vi be distributed, respectively, as χ2
νi
�ε2

i � and χ2
νi
�ξ2

i �,
i = 1�2, with U1 and U2 independent and V1 and V2 independent.

(i) Suppose that ε2
1 ≤ ξ2

1 and that ε2
1 + ε2

2 ≤ ξ2
1 + ξ2

2. Then there exist in-
dependent Poisson random variables Ni, i = 1�2�3�4, and central chi-square
random variables Z1, Z2, W1 and W2 such that Z1 and Z2 are independent
and W1 and W2 are independent, and such that, conditionally given Ni = ni,
i = 1�2�3�4,(

U1

U1 +U2

)
=�

(
Z1

Z1 +Z2

)
�

(
V1

V1 +V2

)
=�

(
W1

W1 +W2

)
�(3.2)

where the distributions of Z1, Z2, W1 and W2 depend on the conditioning
values ni of Ni �i = 1�2�3�4�. Furthermore,

Z1 ≤ W1 and Z1 +Z2 ≤ W1 +W2�(3.3)

(ii) The bivariate stochastic dominance(
U1

U1 +U2

)
≤�

(
V1

V1 +V2

)
holds if and only if ε2

1 ≤ ξ2
1 and ε2

1 + ε2
2 ≤ ξ2

1 + ξ2
2 are satisfied.

Proof of Theorem 1. By virtue of spherical symmetry, it can be assumed
that δi� µi ≥ 0, i = 1�2. The necessity of (2.2) and (2.3) follows directly by
taking λ2 = 0 and λ1 = λ2 > 0, respectively, in (2.1). To prove sufficiency, note
that if (2.2) and (2.3) hold, then(

X1

X1 +X2

)
≤�

(
Y1

Y1 +Y2

)
�
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by Lemma 1(ii). This implies l1X1 + l2�X1 +X2� ≤� l1Y1 + l2�Y1 +Y2� for
all l1� l2 ≥ 0. In other words, (2.1) holds for all nonnegative λ1 ≥ λ2. ✷

Proof of Theorem 2. Given µ ∈ R
2
+, and with δ restricted to R

2
+, it follows

from Theorem 1 that (2.1) holds for all λ1 ≥ λ2 ≥ 0 if and only if δ ∈ �1 ∪�2.
But the probability inequality (2.7) is equivalent to (2.1) [cf. (1.9)], and with
�a/λ1�1/2 and �a/λ2�1/2 being, respectively, the length of the horizontal and the
vertical principal semiaxes of the ellipses, the claim in (i) follows. Parts (ii)
and (iii) can be similarly established. ✷

We shall now briefly outline the proof of Theorem 4.

Proof of Theorem 4. Suppose that � �X� ≤� � �Y�. Then, clearly,∑k
i=1 Xi ≤�

∑k
i=1 Yi for k = 1� � � � � n. Hence the conditions (2.9) must hold.

Conversely, suppose that (2.9) holds. The proof that � �X� ≤� � �Y� in-
volves a coupling construction similar to that in part (i) of Lemma 1 together
with the result A.3. We provide an outline only of the argument here, refer-
ring to Mathew and Nordström (1996) for full details. As in (2.11), let δ̃ and µ̃
denote the vectors of noncentrality parameters, and define δ̃ � µ̃ if conditions
(2.9) hold. The relation “�” defines a partial vector ordering, and it is possi-
ble to exhibit an ascending chain of vectors, all of which lie between δ̃ and µ̃
(relative to “�”), and such that any two adjacent vectors in the chain differ in
two coordinates at most. Indeed, define

µ2
k∗ =

k∑
i=1

µ2
i −

k−1∑
i=1

δ2
i � k = 2� � � � � n�

and observe that, by construction,

δ2
j ≤ µ2

j∗ and δ2
k−1 + µ2

k∗ = µ2
�k−1�∗ + µ2

k�

j = 1�2� � � � � n; k = 2� � � � � n, where µ2
1∗ = µ2

1. Let

δ̃�j� = �δ2
1� � � � � δ

2
j−1� µ

2
j∗� µ

2
j+1� � � � � µ

2
n�′� j = 2� � � � � n�

Then we have

δ̃ � δ̃�n� � δ̃�n−1� � · · · � δ̃�2� � µ̃�(3.4)

Such a chain of vectors is also constructed in Boland, Proschan and Tong
(1992), who use it in the proof of their Theorem 2. The proof of Theorem 4
is complete if we can show that, given any two adjacent vectors in the chain
(3.4), the random vector of partial sums corresponding to the larger vector
of noncentrality parameters is stochastically larger. This can be established
using Lemma 1, (A.2) and (A.3). ✷

Proof of Theorem 3. Theorem 3 follows from Theorem 4 using argu-
ments similar to those in the proof of Theorem 1. ✷
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