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ON USING THE FIRST DIFFERENCE
IN THE STEIN–CHEN METHOD1

By Aihua Xia

University of New South Wales

This paper investigates an alternative way of using the Stein–Chen
method in Poisson approximations. There are three principal bounds stated
in terms of reduced Palm probabilities for general point processes. The first
two are for the accuracy of Poisson random variable approximation to the
distribution of the number of points in a point process with respect to
the total variation metric and the Wasserstein metric, and the third is for
bounding the errors of Poisson process approximation to the distribution of
a point process on a general compact space with respect to a Wasserstein
metric. The bounds are frequently sharper than the previous results using
the Stein–Chen method when the expected number of points is large.

1. Introduction. The Stein–Chen method was introduced in Chen (1975)
to work out upper bounds on the total variation distance between the distribu-
tion of a sum of dependent 0–1 random variables and a Poisson distribution.
The method has then been developed for Poisson process approximation by
Arratia, Goldstein and Gordon (1989) in the context of a finite carrier space
and Barbour (1988), Barbour and Brown (1992a) and Brown and Xia (1995a)
for a more general carrier space.

One way of understanding the Stein–Chen method is by introducing a
Markov process whose equilibrium distribution is Poisson and using the prop-
erties of the Markov process to assist in the estimation of the distance. Barbour
(1988) and Barbour and Brown (1992a) [see also Barbour, Holst and Janson
(1992), henceforth referred to as BHJ] adapted the method so that a Poisson
process is the equilibrium distribution of the adapted generator.

The idea of Stein’s technique, as implemented by Barbour and Brown
(1992a), is to use an auxiliary space–time Markov process to investigate
the approximation of a point process by a Poisson process. The auxiliary
process has equilibrium distribution which is that of a Poisson process, and
the way in which the process (started at the distribution of the point process)
converges to the Poisson process is used in proving the approximation re-
sult. The space-time Markov process is an immigration–death process, with
immigration occurring according to the mean measure of the approximating
Poisson process and deaths occurring at unit per capita death rate.
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Let � be a compact, second countable Hausdorff space. We use ρ or ��� to
stand for the total mass of the finite measure � on �. Let � be a finite measure
on � and � be the space of finite point process configurations on �� Then the
space–time process can be defined by its generator on � as follows

� h�ξ� =
∫
�
�h�ξ + δα� − h�ξ����dα�

+
∫
�
�h�ξ − δα� − h�ξ��ξ�dα� ∀ ξ ∈ �

(1.1)

for suitable functions h defined on � �
We use Po��� to stand for the distribution of a Poisson process with mean

measure � and Po�λ� to denote a Poisson distribution with mean λ� The cor-
responding Stein equation of � for a bounded function f is then given by

� h�ξ� = f�ξ� − Po����f��(1.2)

Note that if f is a function of �ξ� alone, then Stein’s equation is reduced to

λg�j+ 1� − jg�j� = f�j� − Po�λ��f�
(1.3)

where g�j+ 1� �= h�j+ 1� − h�j�
 j ≥ 0� If we can find such an h satisfying
(1.2), then the estimation of �E�f���� −Po����f�� is transformed to the inves-
tigation of �E� h����, where � is a point process on �; that is, � is a random
element on a probability space with values in � .

Stein’s approximation is centered around the Poisson process with mean
measure �
 and the generator equation (1.1) is designed so that Po��� is the
corresponding equilibrium distribution. The solution of (1.2) is given explicitly
by (2.3) of Barbour and Brown (1992a) as

h�ξ� = −
∫ ∞

0
�Eξf�Z�t�� − Po����f��dt
(1.4)

where Z is an immigration–death process on � [for each fixed time t, Z�t� is
a random element with values in � ] with immigration intensity � and unit
per capita death rate, and Eξ is the conditional expectation given Z�0� = ξ�

If we set �1 �= �1A� A ⊂ Z+�
 where Z+ = �0
1
2
 � � ��
 then the test
functions in �1 will define a total variation metric dTV on the set of probability
measures on Z+:

dTV�Q1
Q2� = sup
f∈�1

∣∣∣∣
∫
fdQ1 −

∫
fdQ2

∣∣∣∣�
We also have

dTV�Q1
Q2� = inf P�X �= Y�

where the infimum is taken over all possible joint distributions for random
variables �X
Y� such that X has distribution Q1 and Y has distribution Q2
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and it is possible to construct �X
Y�, called maximal coupling, so that the
infimum is attained; and

dTV�Q1
Q2� = 1
2

∞∑
i=0

�Q1�i� − Q2�i��

[see BHJ, Appendix]. Similarly, the test functions in �2 �= �f� Z+ → R
 �f�n+
1� − f�n�� ≤ 1
 ∀ n ∈ Z+� define a Wasserstein distance dW between two
probability measures on Z+:

dW�Q1
Q2� = sup
f∈�2

∣∣∣∫ fdQ1 −
∫
fdQ2

∣∣∣ �
Equivalently, we can write the Wasserstein metric as

dW�Q1
Q2� = inf E�X−Y� =
∞∑
i=0

�Q1�i
∞�− Q2�i
∞��


where the infimum is as for the total variation metric and there also exists a
maximal coupling �X
Y� so that the infimum is attained [see BHJ, Appendix].

The following example shows how the Stein–Chen method has been widely
used. Let I1
 I2
 � � � 
 In denote a sequence of independent 0–1 random vari-
ables such that

P�Ii = 1� = pi
 P�Ii = 0� = 1 − pi

for each i, and let

W =
n∑

i=1

Ii
 λ =
n∑

i=1

pi�

Observe from (1.3) that

Ef�W� − Po�λ��f� = E�λg�W+ 1� −Wg�W��

=
n∑

i=1

piE�g�W+ 1� − g�Wi + 1��

=
n∑

i=1

p2
iE�g�Wi + 2� − g�Wi + 1��


(1.5)

where Wi =
∑

j �=i Ij� In particular, it follows that

�P�W ∈ A� − Po�λ��A�� ≤ sup
j

�gλ
A�j+ 1� − gλ
A�j��
n∑

i=1

p2
i �

It can be shown that

sup
j

�gλ
A�j+ 1� − gλ
A�j�� ≤
1 − e−λ

λ
�(1.6)



902 A. XIA

Therefore,

dTV�� W
Po�λ�� ≤ 1 − e−λ

λ

n∑
i=1

p2
i(1.7)

[see BHJ]. The bound is based on using the first difference of g and thus the
second difference of h in Stein’s equation. It seems to be the best possible bound
since the equality in (1.6) is attained at A = �1� [see page 8 of BHJ]. However,
a somewhat different asymptotic expansion for the probabilities P�W ∈ A� is
given in Deheuvels and Pfeifer (1986, 1988) with

dTV�� W
Po�λ�� ≤




(
1
e
+ 2�6 max

1≤i≤n
pi

)
θ
 for max1≤i≤n pi ≤ 1/4


(
1
e
+ �2θ�1/2

1 − �2θ�1/2

)
θ
 for θ < 1/2


where θ �= �1/λ�∑n
i=1 p

2
i � Hence, there is a room to improve the performance

of the Stein–Chen method. To do so, it is necessary to look at the method
differently. As a matter of fact, it is not difficult to see from (1.5) that

�P�W ∈ A� − Po�λ��A�� ≤ 2 sup
j

�gλ
A�j��
∑
i

pidTV�� W
� Wi��

This observation gives an alternative upper bound based on the use of
supj �gλ
A�j�� and hence the first difference of h in Stein’s equation. As an
application of this observation, we have (see Proposition 2.5)

dTV�Bi�n
p�
Po�np�� ≤ 0�6844p
√
np√�np��1 − �np�/�n− 1�� 


where �np� is the integer part of np� This result is better than

dTV�Bi�n
p�
Po�np�� ≤ p

deduced from (1.7) when np is large.
We will use Palm theory [see, e.g., Daley and Vere-Jones (1988), Kallenberg

(1983) or Karr (1986)] to state the results. Intuitively, a Palm distribution of a
point process � at a prescribed location α is the distribution of � conditional
on the presence of a point of � at α. A point process �α on � is called a Palm
process of � at location α if it has the Palm distribution of � at α� For the
context of Poisson approximation, it is more convenient to remove an atom at
α ∈ � from the realization of �α by considering the process �α − δα
 called
the reduced Palm process, where δα is the Dirac measure at α� Lemma 10.2 of
Kallenberg (1983) then gives, for all measurable functions f� �×� → �0
∞�

and all Borel sets B ⊂ �


E
(∫

B
f�α
�− δα���dα�

)
=

∫
B

Ef�α
�α − δα���dα�
(1.8)
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where � is the mean measure of �� An important fact is that, for a simple
point process � with a diffuse mean measure �
 � is a Poisson process if and
only if � ��α − δα� = � ��� �-a.s. [see, e.g., Daley and Vere-Jones (1988)].
Thus, if � ��α − δα� is near � ��� for all α
 then � ��� is nearly distributed
as a Poisson process.

Using the Palm probabilities approach, the first difference seems not of
much use if the point process and the approximating Poisson process have
the same mean measure [see Barbour and Brown (1992a, b), Brown and Xia
(1995a)]. However, Stein’s constant for the first difference has been improved
many times (see Remark 1.1.2 of BHJ), and it seems worth investigating the
possibility of using the first difference approach with the hope of producing
more accurate upper bounds. In Section 2, we first prove several results par-
allel to the ones obtained by using the second difference approach [see Bar-
bour and Brown (1992b) and BHJ], and then apply the results to the Poisson
random variable approximation to the sum of independent indicator random
variables. Section 3 is devoted to the estimation of errors in Poisson process
approximation. We will first improve Stein’s constant for the first difference,
and then establish a theorem using the first difference approach. The theo-
rem is then applied to approximating a Bernoulli process and an upper bound
with the same magnitude as the lower bound is obtained, indicating a good
prospect in using the first difference in Stein’s equation.

2. Poisson random variable approximation. Barbour and Brown
(1992b) provided an explicit bound for the departure of the distribution of the
number of points in a set from Poisson in terms of the average Wasserstein
distance between the distribution and the reduced Palm distribution for the
number of points in the set. The results in this section provide alternative
upper bounds derived from using the first difference. The results are stated
in terms of the reduced Palm probabilities with a general carrier space, and
in the case when � is finite, they coincide with that of BHJ, page 16. However,
BHJ commented that the results are less useful because of the loss of the
attractive factors. We will show in this section that results of this kind are
sometimes more useful than those with Wasserstein distance in the bounds
since, as we will see in applications, the information of Stein’s factors is
contained in the total variation distance in the upper bound. Moreover, these
results provide us opportunities to improve the upper bounds in estimating
the errors in Poisson approximations while the Wasserstein distance-based
bounds give us little chance to obtain better estimates.

The next lemma is established in Remark 3.4 of Barbour and Brown (1992a)
[see also (3.3) below].

Lemma 2.1. We have c1�λ
dTV� �= supj≥0
A⊂Z+ �gλ
A�j�� ≤ 1 ∧
√

2
eλ
�

Theorem 2.2. Suppose � is a point process on � with a finite mean measure
�
 and that, for each α ∈ �
 �α is the Palm process at α for �� Then, for any
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bounded measurable set B of � and µ > 0


dTV�� ��B�
Po�µ��

≤
√

2
eµ

{
2
∫
α∈B

dTV�� ��B�
� ��α − δα��B����dα� + ���B� − µ�
}
�

(2.1)

In particular, if µ is taken as ��B�
 then (2.1) reduces to

dTV�� ��B�
Po���B��� ≤ 2
√

2√
e��B�

∫
α∈B

dTV�� ��B�
� ��α − δα��B����dα��

Proof. Let g be any function on Z+ satisfying supi �g�i�� ≤ c1�µ
dTV��
Then applying (1.3) yields

�Eµg���B� + 1� − E��B�g���B���
≤ E��µ− ��B��g���B� + 1��

+ �E��B�g���B� + 1� − E��B�g���B����
(2.2)

The second term of (2.1) comes from an estimate of the first term of (2.2). For
the second term of (2.2), we have

E��B�g���B�� = E
(∫

B
g���B����dα�

)

= E
{∫

B
g���− δα��B� + 1���dα�

}

= E
{∫

B
g���α − δα��B� + 1���dα�

}

because the integral is a sum over the values at the atoms of � times the
number of points at each atom, and the last equality follows from (1.8). Note
that

E���B�g���B� + 1�� =
∫
B

E�g���B� + 1����dα�

and the second term of (2.2) is bounded by∫
B
�E�g���α − δα��B� + 1�� − E�g���B� + 1�����dα�

≤ 2 sup
i

�g�i��
∫
B
dTV�� ��α − δα��B�
� ��B����dα�� ✷

As an application, we have:

Proposition 2.3. Let �Ii
 1 ≤ i ≤ n� be independent indicator random
variables with distribution P�Ii = 1� = 1 − P�Ii = 0� = pi
 1 ≤ i ≤ n� Set
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W = ∑n
i=1 Ii
 λ = ∑n

i=1 pi and τ1 = ∑n
i=1 pi�1 − pi� − max1≤j≤n pj�1 − pj�;

then

dTV�� W
Po�λ�� ≤
√

2
eλτ1

n∑
i=1

p2
i �

To prove the proposition, we need a technical lemma.

Lemma 2.4. In the setting of Proposition 2.3,

max
0≤i≤n

P�W = i� ≤ 1
2

( n∑
i=1

pi�1 − pi�
)−1/2

�(2.3)

E
1

W+ 1
≤ 1 − e−λ

λ
�(2.4)

Proof. Inequality (2.3) is from Lemma 1 of Barbour and Jensen (1989).
To show the second inequality, we have

E
1

W+ 1
=

n∑
i=0

1
i+ 1

P�W = i� =
n∑

i=0

∫ 1

0
si dsP�W = i�

=
∫ 1

0

(
EsW

)
ds =

∫ 1

0

n∏
i=1

�1 − pi�1 − s��ds

≤
∫ 1

0

n∏
i=1

e−pi�1−s� ds =
∫ 1

0
e−λ�1−s� ds = 1 − e−λ

λ
� ✷

Proof of Proposition 2.3. Set � = �1
2
 � � � 
 n�, � = ∑
α∈� Iαδα and B =

� in Theorem 2.2; then ��α − δα��B� = ∑
i�=α Ii �= Wα
 and

dTV�� W
� Wα� ≤ pα max
0≤i≤n−1

P�Wα = i�

≤ pα

2
√∑

i�=α pi�1 − pi�
≤ pα

2
√
τ1

�
(2.5)

Now the proposition follows from Theorem 2.2. ✷

For Poisson random variable approximation to the binomial distribution,
we have:

Proposition 2.5.

dTV�Bi�n
p�
Po�np�� ≤ 0�6844p
√
np√�np��1 − �np�/�n− 1�� 


where �np� is the integer part of np�
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Proof. Instead of using estimate (2.5), we apply Proposition A.2.5 of BHJ,
page 261, to give

max
0≤k≤n−1

Bi�n− 1
 p��k� = Bi�n− 1
 p���np�� ≤ 1√
2π�np��1 − �np�/�n− 1�� 


and thus

dTV�Bi�n
p�
Bi�n− 1
 p�� ≤ p√
2π�np��1 − �np�/�n− 1�� �(2.6)

Now, applying Theorem 2.2 gives the proposition. ✷

As we can see from the proof of Proposition 2.3, the difficulty in applying
Theorem 2.2 is in estimating dTV�� ��B�
� ��α−δα��B��� In general, it looks
more difficult than the Wasserstein distance dW�� ��B�
� ��α−δα��B�� since
the maximal coupling of two probability measures with respect to the Wasser-
stein metric can be easily identified when one of the two probability measures
is stochastically greater than the other [see Brown and Greig (1996) for more
applications of this property]. For example, in the case of approximating the
sum of independent indicator random variables, the obvious coupling �W
Wα�
defined in the proof of Proposition 2.3 is actually the maximal coupling of � W
and � Wα for the Wasserstein distance, while the maximal coupling of the
same distributions for the total variation distance is not obvious, although it
exists.

The second result concerns the upper bound for the departure of the dis-
tribution of the number of points in a set from Poisson with respect to the
Wasserstein metric.

Theorem 2.6. With the assumptions and notation of Theorem 2.2,

dW�� ��B�
Po�µ�� ≤ 2
∫
α∈B

dTV�� ��B�
� ��α − δα��B����dα�

+ �µ− ��B���
(2.7)

Proof. The proof is the same as the proof of Theorem 2.2 except replace
c1�µ
dTV� by c1�µ
dW� �= supj≥0
 f∈�2

�gµ
f�j�� ≤ 1 (see Remark 3.3). ✷

Using (2.5) and Theorem 2.6, one obtains the following proposition.

Proposition 2.7. With the assumptions and notation of Proposition 2.3,

dW�� W
Po�λ�� ≤
∑n

i=1 p
2
i√

τ1
�

Similarly, applying (2.6) and Theorem 2.6 gives:

Proposition 2.8. dW�Bi�n
p�
Po�np��≤ �0�8np2�/√�np��1−�np�/�n−1���
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Remark 2.9. This result is slightly better than

dW�Bi�n
p�
Poisson�np�� ≤ 1�144p
√
np

(see BHJ, page 16) when np is large.

3. Poisson process approximation. It is well understood that the total
variation metric is too strong for measuring the errors of Poisson process ap-
proximation [see, e.g., Barbour and Brown (1992a) for more discussion]. Thus,
we will use the Wasserstein metric introduced in Barbour and Brown (1992a)
to measure the errors of process approximation. To define the metric, let d0
be a metric on � bounded by 1. Let � stand for the set of Lipschitz functions
k� � �→ �−1
1� such that

s1�k� �= sup
α �=β∈�

� k�α� − k�β� �
d0�α
β�

≤ 1�

Barbour and Brown (1992a) defined the first Wasserstein metric d1 between
finite measures on � as

d1��
�� =




1
 if ρ �= σ


σ−1 sup
k∈�

∣∣∣∣
∫
kd� −

∫
kd�

∣∣∣∣
 if ρ = σ > 0�

Let �3 denote the set of Lipschitz functions f� � �→ �−1
1� such that

s2�f� �= sup
ξ1 �=ξ2∈�

�f�ξ1� − f�ξ2��
d1�ξ1
 ξ2�

≤ 1


and define the second Wasserstein distance with respect to d1 between prob-
ability measures Q1 and Q2 over � by

d2�Q1
Q2� �= sup
f∈�3

∣∣∣∣
∫
fdQ1 −

∫
fdQ2

∣∣∣∣�
Note that

d2�Q1
Q2� = inf
�X
Y�

Ed1�X
Y�


where the infimum is over all point processes �X
Y� such that X has distri-
bution Q1 and Y has distribution Q2 [see Rachev (1984)].

Barbour and Brown (1992a), Brown and Xia (1995a), Barbour, Brown and
Xia (1995) and BHJ established upper bounds for the d2 distance between the
distributions of a simple point process � and a Poisson process with mean
measure � using different approaches. The bound may not be useful for very
large λ, because there is an ln+ λ factor in Stein’s constant. Getting rid of
the ln+ λ factor has been proved impossible if one wishes to extract Stein’s
constants in their theory derived from the second difference estimation [see
Brown and Xia (1995b)]. However, as analyzed in Xia (1997), the logarith-
mic factor is more likely to be superfluous because from the definition of d1,
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d2�� �
Po���� consists of two parts. The first comes from dTV�� ���
Po�λ��
and the second is a quantity measuring the discrepancy of the locations of
the points of � and Po���
 given the two processes have the same number of
points. By looking at the first difference, we shall establish a general result
which gives an upper bound with the right order of convergence in a Poisson
process approximation to a Bernoulli process. Before we state the main result
in this section, we improve the upper bound for the first difference.

Lemma 3.1. We have

c1�λ
d2� �= sup
f∈�3
 ξ∈� 
 α∈�

∣∣h�ξ + δα� − h�ξ�∣∣ ≤ 1 ∧
[√

2
eλ

+ 1
λ

∫ λ

0

1 − e−y

y
dy

]
�

Remark 3.2. This estimate is better than

c1�λ
d2� ≤ 1 ∧ 1�65λ−1/2

proved in Lemma 3.3 of Barbour and Brown (1992a) when λ is large.

Proof. It suffices to show that, for any ξ ∈ � and α ∈ �


�h�ξ + δα� − h�ξ�� ≤ 1 ∧
[√

2
eλ

+ 1
λ

∫ λ

0

1 − e−y

y
dy

]



where

h�ξ� = −
∫ ∞

0
�Eξf�Z�t�� − Po����f��dt

and Z is an immigration–death process over � with immigration intensity �
and unit per capita death rate. Construct two immigration–death processes
Z1 and Z2 with measures

� �Z1� = � �Z�Z�0� = ξ� and � �Z2� = � �Z�Z�0� = ξ + δα�
together, by taking independent realizations of a third process Z0 with
� �Z0� = � �Z�Z�0� = 0�, a pure death process X with unit per capita death
rate starting with X�0� = ξ and a standard exponential random variable E,
and then setting

Z1�t� = Z0�t� +X�t�
 Z2�t� = Z1�t� + δα1�E>t��

Then it follows that

h�ξ + δα� − h�ξ�

=
∫ ∞

0
E�f�Z1�t�� − f�Z2�t���dt

=
∫ ∞

0
e−t

∑
η�ξ

P�X�t� = η�E�f�Z0�t� + η� − f�Z0�t� + η+ δα��dt

(3.1)

where the notion �η � ξ� means η and ξ − η are both elements of � � Since

�f�Z0�t� + η� − f�Z0�t� + η+ δα�� ≤ 1
(3.2)
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we have c1�λ
d2� ≤ 1 immediately. On the other hand,

∣∣h�ξ + δα� − h�ξ�∣∣ ≤ ∣∣∣∣h�ξ + δα� −
1
λ

∫
�
h�ξ + δy���dy�

∣∣∣∣
+

∣∣∣∣1λ
∫
�
h�ξ + δy���dy� − h�ξ�

∣∣∣∣�
By Lemma 2.6 of Brown and Xia (1995a), we have∣∣∣∣h�ξ + δα� −

1
λ

∫
�
h�ξ + δy���dy�

∣∣∣∣ ≤ 1
λ

∫ λ

0

1 − e−y

y
dy


and so it remains to show∣∣∣∣1λ
∫
�
h�ξ + δy���dy� − h�ξ�

∣∣∣∣ ≤
√

2
eλ

�(3.3)

Noting that

1
λ

∫
�
h�ξ + δy���dy� − h�ξ� = 1

λ

∫
�

∫ ∞

0
e−t

∑
η�ξ

P�X�t� = η�

× E�f�Z0�t� + η� − f�Z0�t� + η+ δy��dt��dy�
and, for each k ≥ 1


E
[
f�Z0�t� + η�∣∣ �Z0�t�� = k

] = 1
λk

∫
�k

f

( k∑
i=1

δxi
+ η

)
��dx1� · · ·��dxk�


by conditioning on the value of �Z0�t��
 we have

1
λ

∫
�

E�f�Z0�t� + η� − f�Z0�t� + η+ δy����dy�

= P��Z0�t�� = 0�f�η� + ∑
k≥1

�P��Z0�t�� = k� − P��Z0�t�� = k− 1��

× 1
λk

∫
�k

f

( k∑
i=1

δxi
+ η

)
��dx1� · · ·��dxk��

Subtracting 1
2�inf ζ∈� f�ζ�+supζ∈� f�ζ�� from f if necessary, we may assume

supζ �f�ζ�� ≤ 1
2s2�f� ≤ 1

2 
 so∣∣∣∣1λ
∫
�

E�f�Z0�t� + η� − f�Z0�t� + η+ δy����dy�
∣∣∣∣

≤ 1
2

P��Z0�t�� = 0� + 1
2

∑
k≥1

∣∣P��Z0�t�� = k� − P��Z0�t�� = k− 1�∣∣
= max

k≥0
P��Z0�t�� = k�

≤ 1√
2eλ�1 − e−t� 
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where the equality is because �Z0�t�� ∼ Po�λ�1 − e−t�� and P��Z0�t�� = i� is
increasing in i for i < λ�1 − e−t� and decreasing in i for i > λ�1 − e−t�� the
second inequality comes from Proposition A.2.7 of BHJ. Hence∣∣∣∣1λ

∫
�
h�ξ + δy���dy� − h�ξ�

∣∣∣∣ ≤
∫ ∞

0
e−t

[
1 ∧ 1√

2eλ�1 − e−t�

]
dt

=
∫ 1

0
1 ∧ 1√

2eλs
ds

=
√

2
eλ

− 1
2eλ




and (3.3) follows. ✷

If f ∈ �2
 then (3.2) holds. Thus, using (3.1) gives the following.

Remark 3.3. We have c1�λ
dW� ≤ 1�

Theorem 3.4. With the assumptions and notation of Theorem 2.2, if � is
any other finite nonnegative measure on �
 then

d2�� �
Po����
≤ 2

∫
α∈�

{
c1�µ
d2�dTV�� ���
� ��α − δα�� + Eφα�����}��dα�

+ �1 − e−µ�d1��/λ
�/µ� + c1�µ
d2��λ− µ�

(3.4)

where φα�k� �= d2�� ������ = k�
� ��α − δα���α − δα� = k���

Remark 3.5. One might expect smaller Stein’s constants in (3.4) since pre-
vious bounds have a Stein’s magic factor �1 + ln+ λ�/λ [see BHJ, Barbour and
Brown (1992a) and Brown and Xia (1995a)]. However, the dTV and d2 dis-
tances between the process and its reduced Palm probabilities are smaller
than the counterparts in the previous results in Barbour and Brown (1992a)
and Brown and Xia (1995a), indicating that the more attractive magic factor
in BHJ, Barbour and Brown (1992a) and Brown and Xia (1995a) was intro-
duced at the cost of a larger remainder. The following examples show that the
constants in (3.4) are in fact of the right order.

Proof of Theorem 3.4. The last two terms of (3.4) come from the direct
estimation

d2�Po���
Po���� ≤ �1 − e−µ�d1��/λ
�/µ� + c1�µ
d2��λ− µ�(3.5)

[see (2.8) of Brown and Xia (1995a)], so it suffices to show that (3.4) is true
under the assumption that � = ��

Applying (1.8) gives

E�� h���� = E
∫
�
�h��+ δα� − h������dα� + E

∫
�
�h��− δα� − h������dα�

= E
∫
�
�h��+ δα� − h��� + h��α − δα� − h��α����dα�
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and we have also

E�h��+ δα� − h��� + h��α − δα� − h��α��

=
∞∑
k=0

{
E
[
h��+ δα� − h���∣∣ ��� = k

]
+ E

[
h��α − δα� − h��α�

∣∣ ��α − δα� = k
]}

P���� = k�

+
∞∑
k=0

E
[
h��α − δα�−h��α�

∣∣ ��α − δα� =k
]�P���α − δα� =k�−P���� =k���

The first term of (3.4) arises as an estimate of

∞∑
k=0

E
[
h��α − δα� − h��α�

∣∣ ��α − δα� = k
]�P���α − δα� = k� − P���� = k���

For the second term of (3.4), it is sufficient to show that for two configurations
ξ1 = ∑n

i=1 δyi
and ξ2 = ∑n

i=1 δzi
on �


��h�ξ1 + δα� − h�ξ1�� − �h�ξ2 + δα� − h�ξ2��� ≤ 2d1�ξ1
 ξ2��(3.6)

To prove (3.6), let Z0 be an immigration–death process over � with immi-
gration intensity � and unit per capita death rate starting with zero initial
points, �Ei�1≤i≤n+1 be independent standard exponential random variables
and independent of Z0. Set

Z1�t� =
n∑

i=1

δyi
1Ei>t
 Z2�t� =

n∑
i=1

δzi
1Ei>t


and let Y1 = Z0 +Z1 and Y2 = Z0 +Z2; then

��h�ξ1 + δα� − h�ξ1�� − �h�ξ2 + δα� − h�ξ2���

≤
∫ ∞

0

∣∣E[
f
(
Y1�t� + δα1En+1>t

)− f
(
Y2�t� + δα1En+1>t

)
− f�Y1�t�� + f�Y2�t��

]∣∣dt
≤

∫ ∞

0
e−t

∣∣E[
f
(
Y1�t� + δα

)− f
(
Y2�t� + δα

)
− f�Y1�t�� + f�Y2�t��

]∣∣dt�

(3.7)

By Lemma 2.4 of Brown and Xia (1995a) and using the fact that �Z0�t�� follows
Poisson(λ�1 − e−t��
 we have

�E�f�Y1�t�� − f�Y2�t����

≤ d1�ξ1
 ξ2�
n exp�−λ�1− e−t��e−t

λ�1− e−t�
∫ λ�1−e−t�

0
es
(

1− e−t + se−t

λ�1− e−t�
)n−1

ds

≤ d1�ξ1
 ξ2�
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and similarly

�E�f�Y1�t� + δα� − f�Y2�t� + δα��� ≤ d1�ξ1
 ξ2�


and so (3.6) follows from (3.7). ✷

As an application of Theorem 3.4, we estimate the errors of the Poisson
process approximation to a Bernoulli process. The reason we look at the in-
dependent case is that, if the method does not work for this case, it is very
unlikely to work well for a dependent case.

Proposition 3.6. Let � = �α1
 � � � 
 αn�
 and suppose �Iα� α ∈ �� are inde-
pendent indicator random variables with P�Iα = 1� = 1−P�Iα = 0� = pα
 ∀ α ∈
�� Set � = ∑

α∈� Iαδα
 � = ∑
α∈� pαδα, τ1 = ∑n

i=1 pi�1−pi�−max1≤j≤n pj�1−pj�
and τ2 = λ−maxα∈� pα� Then for any other finite nonnegative measure � on �


d2�� �
Po���� ≤
[√

2
eµτ1

+ 1
µ
√
τ1

∫ µ

0

1 − e−y

y
dy+ 2�1 − e−τ2�

τ2

] ∑
α∈�

p2
α

+ �1 − e−µ�d1

(
�

λ



�

µ

)
+

[√
2
eµ

+ 1
µ

∫ µ

0

1 − e−y

y
dy

]
�λ− µ��

In particular,

d2�� �
Po���� ≤
[√

2
eλτ1

+ 1
λ
√
τ1

∫ λ

0

1 − e−y

y
dy+ 2�1 − e−τ2�

τ2

] ∑
α∈�

p2
α�(3.8)

Remark 3.7. The bound in (3.8) is of the correct order.

In fact, recalling that θ = �1/λ�∑n
i=1 p

2
i 
 we have dTV�Po�λ�
� ���� ≥ θ/32

[see Corollary 3.D.1 of BHJ, page 61 or Barbour and Hall (1984)], which implies

d2�� �
Po���� ≥ θ

32
�

To prove the proposition, we need the following lemma.

Lemma 3.8. Let � be any finite subset of �
 �Xβ
 β ∈ �� be independent
indicator random variables, V = ∑

β∈� Xβδβ; then for every ξ ∈ � 
 α ∈ �
 we
have

d2�� �ξ +V+ δα��V� = k�
� �ξ +V��V� = k+ 1�� ≤ 1
�ξ� + k+ 1

�
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Proof. We use mathematical induction to prove the lemma. The claim is
obvious for k = 0� Suppose the claim is true for k = m; then for k = m+ 1,

d2�� �ξ +V+ δα��V� = m+ 1�
� �ξ +V��V� = m+ 2��

= sup
f∈�3

∣∣∣∣E�f�ξ +V+ δα���V� = m+ 1�

− E�V�f�ξ +V�1�V�=m+2

E�V�1�V�=m+2

∣∣∣∣
= sup

f∈�3

∣∣∣∣E�f�ξ +V+ δα���V� = m+ 1�

−
∑

β∈� pβEf�ξ + δβ +Yβ�1�Yβ�=m+1∑
β∈� pβP��Yβ� = m+ 1�

∣∣∣∣
≤ sup

f∈�3
 β∈�

∣∣E�f�ξ +V+ δα���V� = m+ 1�

− E
[
f�ξ + δβ +Yβ�

∣∣�Yβ� = m+ 1
]∣∣


(3.9)

where Yβ = ∑
γ∈�\�β� Xγδγ
 pβ = P�Xβ = 1�� On the other hand,

E�f�ξ +V+ δα���V� = m+ 1�

=
pβEf�ξ + δα + δβ +Yβ�1�Yβ�=m + �1 − pβ�Ef�ξ + δα +Yβ�1�Yβ�=m+1

pβP��Yβ� = m� + �1 − pβ�P��Yβ� = m+ 1� �
(3.10)

However, for each f ∈ �3


∣∣E�f�ξ+δα+Yβ���Yβ� = m+1�−E�f�ξ+δβ+Yβ���Yβ� = m+1�∣∣ ≤ 1
�ξ� +m+ 2

and

∣∣E�f�ξ+δα+δβ+Yβ���Yβ� = m�−E�f�ξ+δβ+Yβ���Yβ� = m+1�∣∣ ≤ 1
�ξ� +m+ 2




by induction hypothesis, and thus combining (3.9) and (3.10) gives the claim
for k = m+ 1. ✷

Proof of Proposition 3.6. It suffices to show (3.8) because the proof of
the other is similar upon using (3.5). Noting that, for each f ∈ �3


E�f������� = k� = pαE�f��α�1��α�=k� + �1 − pα�E�f��α − δα�1��α−δα�=k�
pαP���α� = k� + �1 − pα�P���α − δα� = k� 
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one obtains

d2
(
� ������ = k�
� ��α − δα���α − δα� = k�)
= sup

f∈�3

∣∣E[
f���∣∣��� = k

]− E
[
f��α − δα�

∣∣��α − δα� = k
]∣∣

= sup
f∈�3

pα�E�f��α�� ��α� = k� − E�f��α − δα�� ��α − δα� = k��P���α� = k�
P���� = k�

= pαP���α� = k�
P���� = k� d2�� ��α���α� = k�
� ��α − δα���α − δα� = k��

≤ pαP���α� = k�
kP���� = k� 


where the last inequality follows from Lemma 3.8. Therefore, using (2.4) gives

Eφα����� =
∞∑
k=1

φα�k�P���� = k�

≤ pα

∞∑
k=1

P���α� = k�
k

= pαE
1

��α − δα� + 1

≤ pα�1 − e−τ2�
τ2




(3.11)

where φα�k� = d2�� ������ = k�
� ��α − δα���α − δα� = k��� Now Proposi-
tion 3.6 follows from (2.5) and (3.11). ✷

Finally, it may be worth pointing out that when all of the pi’s are equal,
there is a symmetric property which enables us to produce a better estimate of
the errors in Poisson process approximation [cf. Barbour and Brown (1992a),
Example 3.9 and Xia (1997)].

Proposition 3.9. Let � = �0
 S� with metric d0�x
y� = �x − y� ∧ 1
 where
S is a positive integer. Let � = �i/n� 1 ≤ i ≤ nS�� Suppose that �Iα
 α ∈ ��
are independent 0–1 random variables with P�Iα = 1� = 1−P�Iα = 0� = p for
all α ∈ �� Set � = ∑

α∈� Iαδα� If � is the measure with constant intensity np
with respect to Lebesgue measure on �0
 S�
 then

d2�� �
Po���� ≤
[√

2µ
e

+
∫ µ

0

1 − e−y

y
dy

]
0�8p√�µ��1 − �µ�/�nS− 1��

+ pep + 1 − e−µ

2n
�
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Proof. Let m = nS and � be the mean measure of �, then λ = µ = nSp�
Equations (14) and (16) of Xia (1997) give

E� h��� =
m∑

k=0

E
[∫ S

0
�h��+ δα�−h������dα�

∣∣∣∣��� =k

]
�p�m
k�−p�m−1
 k��

+ 1
λ

E
∫ S

0

∫ S

0
�h��β − δβ + δα� − h��α����dα���dβ�

and ∣∣∣∣1λE
∫ S

0

∫ S

0
�h��β − δβ + δα� − h��α����dα���dβ�

∣∣∣∣ ≤ pep


where p�i
 j� �= (
i
j

)
pj�1 − p�i−j for 0 ≤ j ≤ i and p�i
 j� �= 0 if j > i�

However,∣∣∣∣
m∑

k=0

E
[∫ S

0
�h��+ δα� − h������dα�

∣∣∣��� = k

]
�p�m
k� − p�m− 1
 k��

∣∣∣∣
≤ 2c1�λ
d2�λdTV�Bi�m
p�
Bi�m− 1
 p��


and thus the proposition follows from (2.6) and the fact that d1��/λ
�/µ� ≤
1/2n [see Xia (1997)]. ✷
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