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A problem of bounding the generalization error of a classifier f ∈
conv(H), where H is a “base” class of functions (classifiers), is considered.
This problem frequently occurs in computer learning, where efficient algo-
rithms that combine simple classifiers into a complex one (such as boosting
and bagging) have attracted a lot of attention. Using Talagrand’s concentra-
tion inequalities for empirical processes, we obtain new sharper bounds on
the generalization error of combined classifiers that take into account both
the empirical distribution of “classification margins” and an “approximate
dimension” of the classifiers, and study the performance of these bounds in
several experiments with learning algorithms.

1. Introduction. Let (X1, Y1), . . . , (Xn,Yn) be a sample of n labeled training
examples that are independent identically distributed copies of a random couple
(X,Y ),X being an “instance” in a measurable space S and Y being a “label”
taking values in {−1,1}. Let P denote the distribution of the couple (X,Y ).
Given a measurable function f from S into R, we use sign(f (x)) as a predictor
of the unknown label of an instance x ∈ S. We will call f a classifier of the
examples from S. The quantity P{Yf (X) ≤ 0} = P {(x, y) :yf (x) ≤ 0} is called
the generalization error of the classifier f . The goal of learning (classification) is,
given a set of training examples, to find a classifier f with a small generalization
error.

Some of the important recent advances in statistical learning theory are related
to the development of complex classifiers that are combinations of simpler ones. In
so-called voting methods of combining classifiers (such as boosting, bagging, etc.)
a complex classifier produced by a learning algorithm is a convex combination of
simpler classifiers from the base class.
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Let H be a class of functions from S into R (base classifiers) and let F :=
conv(H) denote the symmetric convex hull of H :

conv(H) :=
{

N∑
i=1

λihi :N ≥ 1, λi ∈ R,

N∑
i=1

|λi| ≤ 1, hi ∈ H

}
.

Our main goal in this paper is to develop new probabilistic upper bounds
on the generalization error of a classifier f from the symmetric convex hull
F = conv(H) of the base class. The well-known approach to such a problem,
developed in the pathbreaking works of Vapnik and Chervonenkis (see [27] and
references therein), is based on an easy bound,

P
{
(x, y) :yf (x) ≤ 0

} ≤ Pn

{
(x, y) :yf (x) ≤ 0

} + sup
C∈C

[P (C) − Pn(C)],

where Pn is the empirical distribution of the training examples; that is, for any set
C ⊂ S × {−1,1},Pn(C) is the frequency of training examples in the set C,

C := {{(x, y) :yf (x) ≤ 0} : f ∈ F
}
,

and on further bounding of the uniform (over the class C) deviation of the
empirical distribution Pn from the true distribution P . The methods that are used
to solve this problem belong to the theory of empirical processes and the crucial
role is played by the VC-dimension of the class C or by more sophisticated entropy
characteristics of the class. For instance, if mC(n) denotes the maximal number of
subsets obtainable by intersecting a sample of size n with the class C (the so-called
shattering number), then the following bound holds (see [8], Theorem 12.6) for all
ε > 0:

P
{
P {(x, y) :yf (x) ≤ 0} ≥ Pn{(x, y) :yf (x) ≤ 0} + ε

} ≤ 8mC(n)e−nε2/32.

It follows from this bound and from Sauer’s lemma (see [8], Theorem 13.2) that the
training error measures the generalization error of a classifier f ∈ F with accuracy
O(

√
(V (C) logn)/n), where V (C) is the VC-dimension of the class C [i.e., the

smallest n such that mC(n) < 2n]. In the so-called zero-error case, when there
exists a classifier f̂ ∈ F with zero training error, we even have the bound (see [8],
Theorem 12.7)

P
{
P {(x, y) :yf̂ (x) ≤ 0} ≥ ε

} ≤ 2mC(2n)2−nε/2,

which implies that the generalization error of the classifierf̂ is O((V (C) logn)/n).
The above bounds, however, do not apply directly to the case of the class F =
conv(H), which is of interest in applications to bounding the generalization error
of the voting methods, since in this case typically V (C) = +∞. Even when one
deals with a finite number of base classifiers in a convex combination (which is the
case, say, with boosting after a finite number of rounds), the VC-dimensions of the
classes involved are becoming rather large, so the above bounds do not explain the
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generalization ability of boosting and other voting methods observed in numerous
experiments. This motivated Bartlett [2] and Schapire, Freund, Bartlett and Lee
[24] (see also [1]) to develop a new class of upper bounds on the generalization
error of a convex combination of classifiers, expressed in terms of the empirical
distribution of margins (the role of classification margins in improving the general-
ization ability of learning machines was clear in earlier work on support vector ma-
chines as well; see [7]). The margin of a classifier f on a training example (X,Y )

is defined as the product Yf (X). Let H be a “base class” of measurable functions
from S into {−1,1}. Suppose that the class of sets C := {{x : h(x) = +1} :h ∈ H}
is Vapnik–Chervonenkis [i.e., V (C) < +∞] and let V (H) := V (C). Schapire
et al. [24] showed that for a given α ∈ (0,1) with probability at least 1 − α for
all f ∈ conv(H),

P
{
(x, y) :yf (x) ≤ 0

} ≤ inf
δ

[
Pn

{
(x, y) :yf (x) ≤ δ

}

+ C√
n

(
V (H) log2(n/(V (H)))

δ2 + log
(

1

α

))1/2]
.

Choosing in the above bound the value of δ = δ̂(f ) that solves the equation

δPn{(x, y) :yf (x) ≤ δ} =
√

V (H)

n

(which is nearly an optimal choice), one gets (ignoring the logarithmic factors) the
generalization error of a classifier f from the convex hull

O

(
1

δ̂(f )

√
V (H)

n

)
.

Koltchinskii and Panchenko [17], using the methods of the theory of empirical,
Gaussian and Rademacher processes (concentration inequalities, symmetrization,
comparison inequalities), generalized and refined these types of bounds. They also
suggested a way to improve these bounds under certain assumptions on the growth
of random entropies of a class F to which the classifier belongs. The new bounds
are based on the notion of the γ -margin of the classifier, introduced in their paper.
The γ -margins are defined for γ ∈ (0,1) (see the definitions in Section 2 below);
the value of γ = 1 roughly corresponds to the case studied in [24]. The quality
of the bound improves as γ decreases to 0. However, bounds of this type are
proved to hold for values of γ ≥ 2α/(2 + α), where α ∈ (0,2) is the growth
exponent of the random entropy of the class F . In the case F := conv(H),
where H is a VC-class with VC-dimension V (H), this leads to the values of
α = 2(V (H) − 1)/V (H) < 2, which allow one to use γ -margins with γ < 1
(but it is going to be rather close to 1 unless the VC-dimension is very small).
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The experiments of Koltchinskii, Panchenko and Lozano [18] showed that, in the
case of the classifiers obtained in consecutive rounds of boosting, the bounds on
the generalization error in terms of γ -margins hold even for much smaller values
of γ . This allows one to conjecture that such classifiers belong, in fact, to a class
F ⊂ conv(H) whose entropy might be much smaller than the entropy of the whole
convex hull. The problem, though, is that it is practically impossible to identify
such a class prior to experiments, leaving the question of how to choose the values
of γ for which the bounds hold open. In this paper, we develop a new approach
to this problem. Namely, we suggest an adaptive bound on the generalization error
of a convex combination of classifiers from a base class that is based, on the one
hand, on the margins of the combined classifiers and, on the other hand, on their
approximate dimensions (the numbers of “large enough” coefficients in the convex
combinations). This adaptive bound “captures” the size of the entropy of a subset
of the convex hull to which the classifier actually belongs.

The results are formulated precisely in Section 2. The proofs that heavily rely
upon Talagrand’s concentration and deviation inequalities for empirical processes
are given in Section 3. Section 4 includes the results of several experiments
with existing learning algorithms (such as boosting and bagging) for which we
computed the bounds on the learning curves that follow from our results. We also
discuss here some approaches to combining classifiers that attempt to minimize
the margin cost function, keeping the dimension of the classifier small.

2. Empirical margins and approximate dimensions: Main results. Let
(S,A) be a measurable space and let F be a class of real-valued measurable
functions on (S,A). In this section, to shorten the notation, we suppress the labels.
To apply the results in the setting of the Introduction, instead of S, consider the
space S × {−1,1} and instead of a function f on S, consider a function (x, y) �→
yf (x) on S × {−1,1}. The results also can be used in the case of multiclass
problems (see Section 5 in [17]). In what follows P denotes a probability measure
on (S,A), {Xn} is a sequence of i.i.d. random variables defined on a probability
space (�,�,P) and taking values in (S,A) with distribution P and Pn denotes
the empirical measure based on the sample (X1, . . . ,Xn),

Pn(A) := n−1
n∑

i=1

IA(Xi), A ⊂ S,

IA being the characteristic function (the indicator) of the set A.
In what follows, we frequently use metric entropies to measure the complexity

of function classes involved in our bounds. Given a metric space (T , d), Hd(T ; ε)

denotes the ε-entropy of T with respect to d , that is,

Hd(T ; ε) := log Nd(T ; ε),
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where Nd(T ; ε) is the minimal number of balls of radius ε covering T . If Q is a
probability measure on (S;A), dQ,2 will denote the metric of the space L2(S;dQ),

dQ,2(f ;g) := (Q|f − g|2)1/2.

We start by extending the bounds on the generalization error obtained by
Koltchinskii and Panchenko [17] in terms of so-called γ -margins. More precisely,
let γ ∈ (0,1] and let

εn,γ (δ) := 1

n1−γ /2δγ
.

It was shown in [17] (see also Example 1 below) that if HdPn,2(F ; ε) grows as ε−α

for some α ∈ (0,2), then, with high probability for all f ∈ F and all δ > 0,

P {f ≤ 0} ≤ C[Pn{f ≤ δ} ∨ εn,γ (δ)],(2.1)

where γ = 2α
α+2 and C is a constant. The expression in the brackets is the maximum

of two functions of the margin δ. The first one is the empirical distribution function
of margins, Pn{f ≤ δ}. It is a nondecreasing function of δ. The second one,
εn,γ (δ), is a decreasing function of δ and it depends on the parameter γ related
to the complexity of the class F (the growth exponent α of its entropy). The value
of the margin δ that minimizes the expression in brackets (equivalently, the value
for which the two functions in the maximum are equal) was called in [17] the
γ -margin of a classifier f , δ̂n(γ ;f ). Clearly, Cεn,γ (δ̂n(γ ;f )) is in this case an
upper bound on the generalization error of f (with high probability). The bound in
[24] corresponded to the choice of γ = 1, but it is easily seen that smaller values
of γ provide sharper bounds.

Below we give a definition of what we call ψ-bounds that will play a major
role in bounding the generalization error of classifiers. These quantities depend on
a function ψ that characterizes the complexity of the class F (more specifically,
it will provide an upper bound on the so-called Dudley entropy integral for the
class F ) and, therefore, determines the quality of the bounds.

Let ψ be a concave nondecreasing function on [0,+∞) with ψ(0) = 0. For a
fixed δ > 0, denote by ε

ψ
n (δ) the smallest solution of the equation

ε = 1

δ
√

n
ψ
(
δ
√

ε
)

(2.2)

with respect to ε. Similarly, for a fixed ε > 0, denote by δ
ψ
n (ε) the largest solution

of (2.2) with respect to δ [if ψ is strictly concave, the solutions of (2.2) are unique].
Clearly, for a concave ψ the function ϕ(x) ≡ ψ(x)

x
is nonincreasing. Therefore, it

is easy to see that

δψ
n (ε) = ϕ−1(

√
εn)√

ε
.
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If ψ(x) = x1−α/2 with α ∈ (0,2) [which will be our choice of ψ when the
L2(Pn)-entropy of the class F is on the order ε−α; see Example 1], then ε

ψ
n = εn,γ

(with γ = 2α
α+2 ). Actually, we show below that for a general function ψ (that

bounds Dudley’s entropy integral of the class F from above), the generalization
error of all the classifiers f ∈ F is bounded from above by

C inf
δ>0

[Pn{f ≤ δ} ∨ εψ
n (δ)](2.3)

with high probability. The ψ-bounds introduced below give the size of the infimum
in expression (2.3).

Given a function f and t > 0, define the quantity

εψ
n (f ; t) := inf

{
ε ≥ t ∨ 2 logn

n
:P {f ≤ δψ

n (ε)} ≤ ε

}
and its empirical version

ε̂ψ
n (f ; t) := inf

{
ε ≥ t ∨ 2 logn

n
:Pn{f ≤ δψ

n (ε)} ≤ ε

}
.

Since for all ε > 0, δ
ψ
n (ε) ≥ 0, it immediately follows from the definition that for

all f ∈ F ,

P {f ≤ 0} ≤ inf
{
P {f ≤ δψ

n (ε)} : ε ≥ εψ
n (f ; t)

} ≤ εψ
n (f ; t).

We will call ε
ψ
n (f ; t) and ε̂

ψ
n (f ; t) the ψ-bound and the empirical ψ-bound of the

classifier f , respectively. We show below that under a proper assumption on the
random entropy of the class F , with a high probability the empirical ψ-bounds
ε̂
ψ
n (f ; t) are, for all the functions from the class, within a multiplicative constant

from the true ψ-bounds ε
ψ
n (f ; t). This allows one to replace ε

ψ
n (f ; t) in the above

bound on P {f ≤ 0} by ε̂
ψ
n (f ; t) (which gives in applications a bound on the

generalization errors of classifiers).

THEOREM 1. Let ψ be a concave nondecreasing function on [0,+∞) with
ψ(0) = 0. Suppose the bound on Dudley’s entropy integral holds with some
Dn > 0, ∫ x

0
H

1/2
dPn,2

(F , u) du ≤ Dnψ(x), x > 0 a.s.,(2.4)

where Dn = Dn(X1, . . . ,Xn) is a function of training examples such that
EDn < ∞. Then there exist absolute constants A,B > 0 such that for Ā :=
A(1 + EDn)

2 and for all t > 0,

P
{∀f ∈ F : Ā−1ε̂ψ

n (f ; t) ≤ εψ
n (f ; t) ≤ Āε̂ψ

n (f ; t)
}

(2.5)

≥ 1 − B log2 log2
n

t ∨ 2 logn
exp

{
−
(

t

2
∨ log n

)}
.
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The following corollary is immediate.

COROLLARY 1. Under the conditions of Theorem 1 there exist numerical
constants A,B > 0 such that for Ā := A(1 + EDn)

2 and for all t > 0,

P
{∃f ∈ F :P {f ≤ 0} ≥ Āε̂ψ

n (f ; t)
}

(2.6)

≤ B log2 log2
n

t ∨ 2 logn
exp

{
−
(

t

2
∨ logn

)}
.

REMARK. Because of the presence of the multiplicative constant in front of
the ψ-bound, the last result seems to be useful only in the case of small Bayes risk
(which is not unusual in modern classification problems where rather complex
combinations of base classifiers are often being used). However, Koltchinskii [14]
showed that if Dudley’s entropy integral is o(ψ(x)) as x → 0, then the constant in
the bounds of this type becomes asymptotically close to 1 as n → ∞. Thus, the
above bounds might be useful even in the case of larger values of the Bayes risk.

EXAMPLE 1. Let α ∈ (0,2) and ψ(x) ≡ x1−α/2. Let γ := 2α
α+2 . Koltchinskii

and Panchenko [17] defined γ -margins of a function f as

δn(γ ;f ) := sup
{
δ ∈ (0,1) : δγ P {f ≤ δ} ≤ n−1+γ /2},

δ̂n(γ ;f ) := sup
{
δ ∈ (0,1) : δγ Pn{f ≤ δ} ≤ n−1+γ /2}.

An easy computation shows that

εψ
n (f ;nγ/2) = 1

n1−γ /2δn(γ ;f )γ
.

Corollary 1 immediately implies that if for some α ∈ (0,2) and Dn > 0, EDn < ∞
and

HdPn,2(F ;u) ≤ D2
nu

−α, u > 0 a.s.,

then for any γ ≥ 2α
α+2 there exist constants A,B > 0 such that for Ā := A(1 +

EDn)
2,

P

{
∃f ∈ F :P {f ≤ 0} ≥ Ā

n1−γ /2δ̂n(γ ;f )γ

}
(2.7)

≤ B log2 log2 n exp
{−nγ/2

2

}
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(see also [17]). It is easy to see that the quantity

1

n1−γ /2δ̂n(γ ;f )γ
(2.8)

in the above upper bound on the generalization error becomes smaller as
γ decreases from 1 to 0. The Schapire–Freund–Bartlett–Lee type of bounds
correspond to the worst choice of γ (γ = 1). In the case when F is the symmetric
convex hull of a VC-class H with VC-dimension V (H), the value of α is equal
to 2(V (H)−1))

V (H)
< 2 that allows us to have γ < 1, improving the previously known

bound. In fact, Koltchinskii, Panchenko and Lozano [18] computed the empirical
γ -margins of classifiers obtained in consecutive rounds of boosting and observed
that the bounds on their generalization error in terms of γ -margins hold even
for much smaller values of γ . This allows one to conjecture that such classifiers
belong, in fact, to a class F ⊂ conv(H) whose entropy might be much smaller
than the entropy of the whole convex hull.

EXAMPLE 2. Consider now the case of ψ(x) ≡ x
√

log e
x

for x ≤ 1 and
ψ(x) ≡ x for x > 1. Then, by a simple computation,

δψ
n (ε) = e1−nε

√
ε

, ε ≥ n−1.

If we define

ε̂VC
n (f ; t) := inf

{
ε ≥ t ∨ 2 logn

n
:Pn

{
f ≤ e1−nε

√
ε

}
≤ ε

}
,(2.9)

then under the condition

HdPn,2(F ;u) ≤ D2
n log

1

u
∨ 1, u > 0 a.s.,

with some Dn = Dn(X1, . . . ,Xn), EDn < +∞ (which holds, e.g., if F is a
VC-subgraph class, that is, the class of sets{{(x, t) ∈ S × R : t < f (x)} :f ∈ H

}
is Vapnik–Chervonenkis), we get from Corollary 1 that with some numerical
constants A,B > 0 for all t > 0,

P
{∃f ∈ F :P {f ≤ 0} ≥ Āε̂VC

n (f ; t)
}

≤ B log2 log2
n

t ∨ 2 logn
exp

{
−
(

t

2
∨ log n

)}
,

where Ā := A(1 + EDn)
2.
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The proofs of Theorems 1 and 3 are based on the following generalization of
one of the results of Koltchinskii and Panchenko [17] (that itself relies heavily
on the concentration inequality for empirical processes due to Talagrand; see
Theorem 1.4 of [25]).

THEOREM 2. Suppose that condition (2.4) holds with some concave nonde-
creasing ψ such that ψ(0) = 0. Then, for all δ > 0 and for all ε ≥ ε

ψ
n (δ) ∨ 2 logn

n
the bounds

P

{
∃f ∈ F :Pn{f ≤ δ} ≤ ε and P

{
f ≤ δ

2

}
≥ Āε

}

≤ B log2 log2 ε−1 exp
{
−nε

2

}
and

P

{
∃f ∈ F :P {f ≤ δ} ≤ ε and Pn

{
f ≤ δ

2

}
≥ Āε

}

≤ B log2 log2 ε−1 exp
{
−nε

2

}

hold, where Ā = A(1 + EDn)
2 and A,B are numerical constants.

There are two major problems with the margin type bounds given above. First
of all, the values of the constants involved in the bounds are far from being optimal
and are too large at the moment (see, however, the remark after Corollary 1).
Their improvement is related to a hard problem of optimizing the constants in
Talagrand’s concentration inequalities for empirical and Rademacher processes
used in the proofs below. However, in the case when F = conv(H) the constants
in question depend only on the base class H and this allows one to use the bounds
to study the behavior of the generalization error when the number of rounds of
learning algorithms (such as boosting) increases. Another problem is related to the
fact that there is no much prior knowledge about the subset of conv(H) to which a
classifier created by boosting or another method of combining classifiers is going
to belong. This makes one tend use the value of

γ = 2α

α + 2
= 2(V (H) − 1)

2V (H) − 1
,(2.10)

which is very close to 1 unless the VC-dimension of the base is very small. Our
major goal in the current paper is to address this problem. We do this by proving a
new upper bound on the generalization error of a classifier that belongs to a convex
hull of a base class. The bound includes the sum of two main terms. The first one
is an “approximate dimension” of the classifier (the number of “large enough”
coefficients in the convex combination) divided by the sample size. The second
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term is related to the margins of the classifier. Balancing these two terms allows us
to get a rather tight upper bound that “captures” the size of the entropy of a class
to which the classifier actually belongs. It combines previously known bounds in
terms of VC-dimension (in zero-error case) and in terms of margins, and becomes
close to one of these two bounds in the extreme cases.

Let H be a class of measurable functions from (S,A) into R. Let F ⊂
conv(H). For a function f ∈ F and a number 
 ∈ [0,1], we define the
approximate 
-dimension of f as the smallest integer number d ≥ 0 such
that there exist N ≥ 1, functions hj ∈ H, j = 1, . . . ,N , and numbers λj ∈ R,
j = 1, . . . ,N , satisfying the conditions f = ∑N

j=1 λjhj ,
∑N

j=1 |λj | ≤ 1 and∑N
j=d+1 |λj | ≤ 
. The 
-dimension of f will be denoted by d(f ;
).
In what follows we assume that for some V > 0 and K > 0 and for all

probability measures Q on (S;A),

NdQ,2

(
H; (QH 2)1/2ε

) ≤ Kε−V , ε > 0,(2.11)

where H is a measurable envelope of H [i.e., a nonnegative measurable function
such that, for all h ∈ H and x ∈ S, |h(x)| ≤ H(x)]. In particular, this condition
holds if H is a VC-subgraph class. Condition (2.11) implies the bound on the
entropy of the convex hull of H ,

HdQ,2

(
conv(H); (QH 2)1/2ε

) ≤ Cε−2V/(V +2), ε > 0,

with V from the bound (2.11) and C := C(K;V ) (see [26]). One can easily
compute in this case that

∫ x

0
H

1/2
dPn,2

(F , u) du ≤ 1
2 (V + 2)C1/2(PnH

2)V/(2(V +2))x2/V +2, x > 0 a.s.

and, therefore, condition (2.4) of Theorem 1 is satisfied with ψ(x) = x2/(V +2)

under the assumption PH 2 < ∞. Subsequently we will assume that one of the
following two conditions holds:

1. Class H is uniformly bounded and F ⊂ conv(H).
2. The envelope H of the class H is P -square integrable and

F ⊂
{

N∑
i=1

λihi :N ≥ 1, hi ∈ H, λi ∈ R,

N∑
j=1

|λj | = 1

}
.

Note, that under the second condition, F consists only of proper symmetric
convex combinations.
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Let α := 2V
V +2 and 
f = {
 ∈ [0,1] :d(f ;
) ≤ n}. Define

εn(f ; δ) := inf

∈
f

[
d(f ;
)

n

(
log

1

δ
+ log

ne2

d(f ;
)

)
(2.12)

+
(




δ

)2α/(α+2)

n−2/(α+2)

]
∨ 2 logn

n
.

The function of margin εn(f ; δ) will play exactly the same role as εn,γ in (2.1) or

ε
ψ
n in (2.3). As before, we will essentially show that with high probability for all

f ∈ F the generalization error is bounded from above by

C inf
δ>0

[Pn{f ≤ δ} ∨ εn(f ; δ)].(2.13)

However, this time the function εn(f ; δ) depends not only on the complexity of
the class F , but also on the complexity of a particular classifier f ∈ F for which
the generalization error is to be bounded (namely, on the sparsity of the weights
of f reflected in the definition of the approximate 
-dimension). The value of δ

for which the infimum in (2.13) is attained can be evaluated as

δ̂n(f ) := sup
{
δ ∈ (0,1/2) :Pn{f ≤ δ} ≤ εn(f ; δ)

}
and the size of the infimum becomes εn(f ; δ̂n(f )). According to the next theorem,
the quantity of this type provides an upper bound on the generalization error with
high probability.

THEOREM 3. Assume that one of the above conditions 1 or 2 on the class F
holds. Then there exist constants A,B > 0 such that for all 0 < t < nα/(2+α), the
following bound holds:

P

{
∃f ∈ F :P

{
f ≤ δ̂n(f )

4

}
≥ A

(
εn

(
f ; δ̂n(f )

2

)
+ t

n

)}
≤ Be−t/4.

To understand this bound, let us look again at the definition of εn(f ; δ). First of
all, if one sets 
 = 1 instead of minimizing over 
, then, since d(f,1) = 0, the
bound becomes equivalent to the previous γ -bound of Example 1 (with γ = 2α

α+2 ),
which means that the bound of the Theorem 3 improves the γ -bound. For a
fixed 
, the two terms in the definition of εn(f ; δ) correspond to two parts of
the combined classifier. The first term corresponds to the sum of d(f,
) base
classifiers with the largest weights and the form of the bound basically coincides
with the standard VC-dimension based bound in the zero-error case. The second
term corresponds to an “improper” convex combination of classifers with the
smallest weights (the number of them is not limited) and the form of the bound
is determined by the complexity of the whole convex hull, only scaled by a factor
of 
. It is clear that if a voting algorithm produces a convex combination in which
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there are very few classifiers with large weights, then the bound of the theorem
can improve upon the γ -bound of Example 1 significantly. Another way to say it
is that the faster is the weight decay in the convex combination, the smaller is the
complexity of the corresponding subset of the convex hull and the sharper is the
bound. This is easily demonstrated by the following example.

EXAMPLE 3. If F ⊂ conv(H) is a class of functions such that for some
β > 0,

sup
f ∈F

d(f ;
) = O(
−β),(2.14)

then with “high probability” for any classifier f ∈ F the upper bound on its
generalization error becomes on the order of

1

n1−γβ/2(γ+β)δ̂n(f )γβ/(γ+β)

(which, of course, improves a more general bound in terms of γ -margins; the
general bound corresponds to the case β = +∞). Condition (2.14) means that
the weights of the convex combination decrease polynomially fast, namely, |λj | =
O(j−α), α = 1+β−1. The case of exponential decrease of the weights is described
by the condition

sup
f ∈F

d(f ;
) = O

(
log

1




)
.(2.15)

In this case the upper bound becomes on the order of 1
n

log2(n/(δ̂n(f ))).

3. Proofs of the main results.

PROOF OF THEOREM 1. We use the first bound of Theorem 2. The condition
ε ≥ ε

ψ
n (δ) is equivalent to the condition δ ≥ δ

ψ
n (ε). Thus, we can use this bound

for δ = δ
ψ
n (ε) and ε ≥ (2 logn)/n. We get

P

{
∃f ∈ F :Pn{f ≤ δψ

n (ε)} ≤ ε and P

{
f ≤ δ

ψ
n (ε)

2

}
≥ Āε

}

≤ B log2 log2 ε−1 exp
{
−nε

2

}
.

Next we set εj := 2−j . Let J = {j ≥ 0 : εj ≥ t∨2 logn
n

} and

E :=
{
∃ j ∈ J ∃f ∈ F :Pn{f ≤ δψ

n (εj )} ≤ εj and P

{
f ≤ δ

ψ
n (εj )

2

}
≥ Āεj

}
.
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We have

P(E) ≤ B
∑
j∈J

log2 log2 ε−1
j exp

{
−nεj

2

}

≤ B log2 log2
n

t ∨ 2 logn

∑
j≥0

exp
{
−
(

t

2
∨ log n

)
2j

}
(3.1)

≤ B ′ log2 log2
n

t ∨ 2 logn
exp

{
−
(

t

2
∨ logn

)}
.

Suppose that for some j and for some f ∈ F , ε̂
ψ
n (t;f ) ∈ (εj+1, εj ]. On the event

Ec, the inequality Pn{f ≤ δ
ψ
n (εj )} ≤ εj implies that P {f ≤ δ

ψ
n (εj )/2} ≤ Āεj .

Since

δ
ψ
n (εj )

2
= ϕ−1(

√
εjn)

2
√

εj

≥ ϕ−1(√4εjn
)

√
4εj

= δψ
n (4εj ),

we also have P {f ≤ δ
ψ
n (4εj )} ≤ Āεj , which implies P {f ≤ δ

ψ
n (8ε̂

ψ
n (f ; t))} ≤

2Āε̂
ψ
n (f ; t). Therefore, on the event Ec, we get for all f ∈ F , ε

ψ
n (f ; t) ≤

(2Ā ∨ 8)ε̂
ψ
n (f ; t). It follows from (3.1) that

P
{∃f ∈ F : εψ

n (f ; t) ≥ (2Ā ∨ 8)ε̂ψ
n (f ; t)

}
≤ B ′ log2 log2

n

t ∨ 2 logn
exp

{
−
(

t

2
∨ log n

)}
.

Quite similarly, using the second bound of Theorem 2, one can prove that

P
{∃f ∈ F : ε̂ψ

n (f ; t) ≥ (2Ā ∨ 8)εψ
n (f ; t)

}
≤ B ′ log2 log2

n

t ∨ 2 logn
exp

{
−
(

t

2
∨ logn

)}
,

which implies the inequality of Theorem 1. �

To prove Theorem 2, we follow the proof of Theorem 6 in [17], which is based
on an iterative application of Talagrand’s concentration inequality for empirical
processes (Theorem 1.4 in [25]) which allows us in some sense to localize the
classifier f and to evaluate better its generalization error. To implement the
iterative “localization,” we will choose in a rather special way (for a fixed δ) a finite
decreasing sequence δj ,1 ≤ j ≤ N , such that δj < δ and δN = δ/2. We consider
the functions ϕj , j ≥ 1, which are defined as shown in Figure 1 and which play the
role of continuous (even, Lipschitz) approximations of the indicator step functions
I (x ≤ δj ) (in fact, we will use even two sequences of functions like this).
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FIG. 1.

Assume that we have already bounded P {f ≤ δk−1} by a number rk−1. The
main idea is now to bound P {f ≤ δk} by P (ϕk ◦ f ) and further by

Pn

{
f ≤ δk−1

} + sup
{∣∣(Pn − P )(ϕk ◦ f )

∣∣ :f ∈ F , P {f ≤ δk−1} ≤ rk−1
}
.

Talagrand’s concentration inequality allows one to replace the supremum of
|(Pn − P )(ϕk ◦ f )| in the above bound by its expectation, which in turn can be
bounded by Dudley’s entropy integral of the class{

ϕk ◦ f :f ∈ F , P {f ≤ δk−1} ≤ rk−1
}
.

Since ϕk is a Lipschitz function, the L2(Pn)-entropy of the above class can be
easily bounded in terms of the L2(Pn)-entropy of the class F itself. This leads to
a bound rk on P {f ≤ δk}. It happens that this procedure allows us to improve the
above bounds iteratively and to end up with the bound claimed to be true in the
theorem.

We now proceed to the proof.

PROOF OF THEOREM 2. Define

r0 := 1, rk+1 = C
√

rkε ∧ 1,

where C = c(1 + EDn) with a sufficiently large constant c > 1 (which will be
chosen later). A simple induction shows that either C

√
ε ≥ 1 and rk ≡ 1, or

C
√

ε < 1, and in the last case,

rk = C1+2−1+···+2−(k−1)

ε2−1+···+2−k = C2(1−2−k)ε1−2−k = (C
√

ε)2(1−2−k).

Let γk := (ε/rk)
1/2 = C2−k−1ε2−k−1

. Then

γk + γk−2 + · · · + γ0 = C−1[C√
ε + (C

√
ε)2−1 + · · · + (C

√
ε)2−k]

(3.2)
≤ C−1(C

√
ε)2−k(

1 − (C
√

ε)2−k)−1 ≤ 1/2
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for ε ≤ C−4, C > 2(21/4 − 1)−1 and k ≤ log2 log2 ε−1 (note that ε ≤ C−4 implies
C

√
ε < 1). In what follows, we fix ε > 0 and use only the values of k such that

k ≤ log2 log2 ε−1. Let δ > 0. Define

δ0 = δ, δk := δ(1 − γ0 − · · · − γk−1), δk,1/2 = 1
2 (δk + δk+1), k ≥ 1.

Next we set F0 := F and define recursively

Fk+1 := {
f ∈ Fk :P {f ≤ δk,1/2} ≤ rk+1/2

}
.

For k ≥ 0, define a continuous function ϕk from R into [0,1] such that ϕk(u) = 1
for u ≤ δk,1/2, ϕk(u) = 0 for u ≥ δk and ϕk is linear for δk,1/2 ≤ u ≤ δk .
Also, for k ≥ 1, let ϕ̄k be a continuous function from R into [0,1] such that
ϕ̄k(u) = 1 for u ≤ δk , ϕ̄k(u) = 0 for u ≥ δk−1,1/2, and ϕ̄k is linear for δk ≤
u ≤ δk−1,1/2. It follows from (3.2) that δk ∈ (δ/2, δ) for all k such that 1 ≤ k ≤
log2 log2 ε−1. Let us introduce the function classes

Gk := {
ϕk ◦ f :f ∈ Fk

}
, k ≥ 0

and

Ḡk := {
ϕ̄k ◦ f :f ∈ Fk

}
, k ≥ 1.

It follows from the definitions that, for k ≥ 1,

sup
g∈Gk

Pg2 ≤ sup
f ∈Fk

P {f ≤ δk} ≤ sup
f ∈Fk

P {f ≤ δk−1,1/2} ≤ rk/2 ≤ rk

and

sup
g∈Ḡk

Pg2 ≤ sup
f ∈Fk

P {f ≤ δk−1,1/2} ≤ rk/2 ≤ rk.

(For k = 0, the first inequality also holds since r0 = 1.)
Recall a commonly used notation

‖Y‖G := sup
g∈G

|Y (g)|, Y :G �→ R,

G being a class of measurable functions on S, and note that in what follows
we view signed measures ν on (S,A) (such as, e.g., Pn − P ) as mappings
g �→ ν(g) = ∫

S g dν.
Consider the events

E(k) := {‖Pn − P ‖Gk−1 ≤ K1E‖Pn − P ‖Gk−1 + K2
√

rk−1ε + K3ε
}

∩ {‖Pn − P ‖Ḡk
≤ K1E‖Pn − P ‖Ḡk

+ K2
√

rkε + K3ε
}
, k ≥ 1.

By the concentration inequality of Talagrand (Theorem 1.4 in [25]; see also [22]),
for some values of the numerical constants K1,K2,K3 > 0,

P
(
(E(k))c

) ≤ 2e−nε/2.
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We set E0 = �,

EN :=
N⋂

k=1

E(k), N ≥ 1.

Clearly,

P(Ec
N) ≤ 2Ne−nε/2.(3.3)

Assume, without loss of generality, that ε < (2 + C)−2, which implies rk+1 < rk
and δk ∈ (δ/2, δ], k ≥ 0. [If ε ≥ (2 + C)−2, the bounds of the theorem hold with
any constant A > 2 + C.] The rest of the proof is based on the following lemma.

LEMMA 1. Let

J :=
{

inf
f ∈F

Pn{f ≤ δ} ≤ ε

}
.

For any N such that

N ≤ log2 log2 ε−1 and rN ≥ ε,(3.4)

we have on the event EN ∩ J,

(i) ∀f ∈ F Pn{f ≤ δ} ≤ ε ⇒ f ∈ FN

and

(ii) sup
f ∈Fk

Pn{f ≤ δk} ≤ rk, 0 ≤ k ≤ N.

PROOF. We will prove the lemma by induction with respect to N . For N = 0,
the statement is obvious. Suppose it holds for some N ≥ 0, such that N + 1 still
satisfies condition (3.4). Then, on the event EN ∩ J,

sup
f ∈Fk

Pn{f ≤ δk} ≤ rk, 0 ≤ k ≤ N

and

∀f ∈ F Pn{f ≤ δ} ≤ ε ⇒ f ∈ FN.

Suppose that f ∈ F is such that Pn{f ≤ δ} ≤ ε. By the induction assumptions,
f ∈ FN on the event EN . Hence, on the event EN+1,

P {f ≤ δN,1/2} ≤ Pn{f ≤ δN } + ‖Pn − P ‖GN

(3.5)
≤ ε + K1E‖Pn − P ‖GN

+ K2
√

rNε + K3ε.

Given a class G, let

R̂n(G) :=
∥∥∥∥∥n−1

n∑
i=1

εiδXi

∥∥∥∥∥
G

,
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where {εi} is a sequence of i.i.d. Rademacher random variables and δx denotes the
probability measure concentrated at a point x ∈ S. (The random variable R̂n(G)

is called the Rademacher complexity of the class G. It was used by Koltchinskii
[15], Bartlett, Boucheron and Lugosi [3] and Koltchinskii and Panchenko [16]
as a randomized complexity penalty in learning problems.) The symmetrization
inequality

E‖Pn − P ‖G ≤ 2ER̂n(G)

(see, e.g., [26], Lemma 2.3.1) yields

E‖Pn − P ‖GN
≤ 2EIEN

EεR̂n(GN) + 2EIEc
N

EεR̂n(GN).(3.6)

Using the entropy inequalities for sub-Gaussian processes (see [26], Corollary
2.2.8), we get

EεR̂n(GN) ≤ inf
g∈GN

Eε

∣∣∣∣∣n−1
n∑

j=1

εjg(Xj )

∣∣∣∣∣
(3.7)

+ const√
n

∫ (2 supg∈GN
Png2)1/2

0
H

1/2
dPn,2

(GN ;u)du.

REMARK. Here and in what follows in the proof, “const” denotes a constant;
its values can be different in different places.

The induction assumption implies that on the event EN ∩ J,

inf
g∈GN

Eε

∣∣∣∣∣n−1
n∑

j=1

εjg(Xj )

∣∣∣∣∣ ≤ inf
g∈GN

E
1/2
ε

∣∣∣∣∣n−1
n∑

j=1

εjg(Xj )

∣∣∣∣∣
2

≤ 1√
n

inf
g∈GN

√
Png

2

≤ 1√
n

inf
f ∈FN

√
Pn{f ≤ δN }

≤ 1√
n

inf
f ∈FN

√
Pn{f ≤ δ} ≤

√
ε

n
≤ ε,

since ε > n−1. Also, on the same event,

sup
g∈GN

Png
2 ≤ sup

f ∈FN

Pn{f ≤ δN } ≤ rN .

The Lipschitz constants ϕk−1 and ϕ̄k are bounded by

L = 2(δk−1 − δk)
−1 = 2δ−1γ −1

k−1 = 2

δ

√
rk−1

ε
,
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which yields

dPn,2(ϕN ◦ f ;ϕN ◦ g) =
(
n−1

n∑
j=1

∣∣ϕN(f (Xj )) − ϕN(g(Xj ))
∣∣2)1/2

≤ 2

δ

√
rN

ε
dPn,2(f, g).

Note that for ε ≥ ε
ψ
n (δ), the inequality ψ(δ

√
ε/2)/(δ

√
n) ≤ ε holds. It follows

that, on the event EN ∩ J,

1√
n

∫ (2 supg∈GN
Png2)1/2

0
H

1/2
dPn,2

(GN ;u)du

≤ 1√
n

∫ (2rN )1/2

0
H

1/2
dPn,2

(
F ; δ

√
εu

2
√

rN

)
du

(3.8)

≤ 1√
n

2
√

rN

δ
√

ε

∫ δ
√

ε/2

0
H

1/2
dPn,2

(F ; v) dv ≤ 1√
n

2
√

rN

δ
√

ε
Dnψ

(
δ
√

ε

2

)

≤ 2Dn
√

rN√
ε

ε = 2Dn

√
rNε.

Now (3.7) and (3.8) imply that on the same event,

EεR̂n(GN) ≤ const(1 + Dn)
√

rNε.(3.9)

Since EεR̂n(GN+1) ≤ 1, we conclude from (3.3), (3.6) and (3.9) that

E‖Pn − P ‖GN
≤ const(1 + EDn)

√
rNε + 2P(Ec

N)

≤ const(1 + EDn)
√

rNε + 4Ne−nε/2.

By condition (3.4) and the fact that ε ≥ 2 logn/n, we have 4Ne−nε/2 ≤ ε.
Therefore,

E‖Pn − P ‖GN
≤ const(1 + EDn)

√
rNε.

By (3.5), on the event EN+1 ∩ J,

P {f ≤ δN,1/2} ≤ const(1 + EDn)(ε + √
rNε).(3.10)

Choosing a constant c > 0 in the recurrent relationship that defines the sequence
{rk} properly, we ensure that on the event EN+1 ∩ J,

P {f ≤ δN,1/2} ≤ 1
2C

√
rNε = rN+1/2.

This implies that f ∈ FN+1 and the induction step for (i) is proved.
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To prove (ii), note that on the event EN+1,

sup
f ∈FN+1

Pn{f ≤ δN+1} ≤ sup
f ∈FN+1

P {f ≤ δN,1/2} + ‖Pn − P ‖ḠN+1

(3.11)
≤ rN+1/2 + K1E‖Pn − P ‖ḠN+1

+ K2
√

rN+1ε + K3ε.

Using the symmetrization inequality, we get

E‖Pn − P ‖ḠN+1
≤ 2EIEN

EεR̂n(ḠN+1) + 2EIEc
N

EεR̂n(ḠN+1).(3.12)

Similarly to (3.7),

EεRn(ḠN+1) ≤ inf
g∈ḠN+1

Eε

∣∣∣∣∣n−1
n∑

j=1

εjg(Xj )

∣∣∣∣∣
(3.13)

+ const√
n

∫ (2 supg∈ḠN+1
Png2)1/2

0
H

1/2
dPn,2

(ḠN+1;u)du.

It follows from (i) that on the event EN+1 ∩ J,

inf
g∈ḠN+1

Eε

∣∣∣∣∣n−1
n∑

j=1

εjg(Xj )

∣∣∣∣∣

≤ inf
g∈ḠN+1

E
1/2
ε

∣∣∣∣∣n−1
n∑

j=1

εjg(Xj )

∣∣∣∣∣
2

≤ 1√
n

inf
g∈ḠN+1

√
Png2

≤ 1√
n

inf
f ∈FN+1

√
Pn{f ≤ δN,1/2} ≤ 1√

n
inf

f ∈FN+1

√
Pn{f ≤ δ} ≤

√
ε

n
≤ ε.

The induction assumption implies that on the event EN+1 ∩ J,

sup
g∈ḠN+1

Png
2 ≤ sup

f ∈FN

Pn{f ≤ δN,1/2} ≤ rN .

Since the Lipschitz constant ϕ̄k is bounded by 2
δ

√
rk−1/ε, we have

dPn,2(ϕ̄N+1 ◦ f ; ϕ̄N+1 ◦ g) =
(
n−1

n∑
j=1

∣∣ϕ̄N+1 ◦ f (Xj ) − ϕ̄N+1 ◦ g(Xj )
∣∣2)1/2

≤ 2

δ

√
rN

ε
dPn,2(f, g).
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Similarly to (3.8), we have on the event EN+1 ∩ J,

1√
n

∫ (2 supg∈ḠN+1
Png2)1/2

0
H

1/2
dPn,2

(ḠN+1;u)du

≤ 1√
n

∫ (2rN )1/2

0
H

1/2
dPn,2

(
F ; δ

√
εu

2
√

rN

)
du

(3.14)

≤ 1√
n

2
√

rN

δ
√

ε

∫ δ
√

ε/2

0
H

1/2
dPn,2

(F ; v) dv ≤ 1√
n

2
√

rN

δ
√

ε
Dnψ

(
δ
√

ε

2

)

≤ 2Dn
√

rN√
ε

ε = 2Dn

√
rNε.

Combining all the bounds, we prove that on the same event,

sup
f ∈FN+1

Pn{f ≤ δN+1} ≤ rN+1

2
+ const(1 + EDn)

√
rNε.(3.15)

Choosing a constant c > 0 in the recurrent relationship that defines the sequence
{rk} properly, we get on the event EN+1 ∩ J,

sup
f ∈FN+1

Pn{f ≤ δN+1} ≤ C
√

rNε = rN+1,

which completes the proof of (ii) and of the lemma. �

To complete the proof of the theorem, note that the choice of N =[log2 log2 ε−1]
implies that rN+1 ≤ cε for some c > 0. Indeed, if we introduce sk = rk/C and ε1 =
Cε, then sk+1 = √

skε and s0 = C−1 ≤ 1. It is easy to see that sN ≤ ε1−2−N

1 ≤ 2ε1

for N ≥ log2 log2 ε−1
1 and, hence, rN ≤ C2ε = Āε.

The proof of the second inequality is similar with minor modifications. �

To prove Theorem 3, we need the following statement, which seems to be well
known, but we have not found the precise reference and give the proof here for
completeness.

Let

convd(H) :=
{

d∑
j=1

λjhj :λj ∈ R,

d∑
j=1

|λj | ≤ 1, hj ∈ H

}
.

LEMMA 2. Let H be a class of functions from (S,A) into R. Let Q be a
probability measure on (S,A) such that

H̄ := sup
h∈H

(Qh2)1/2 < +∞.
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The following bound holds for all d ≥ 1 and ε > 0:

NdQ,2

(
convd(H), (1 + H̄ )ε

) ≤
(2e2NdQ,2(H, ε)(d ′ + 4ε−2)

d ′2
)d ′

,

where d ′ = d ∧ NdQ,2(H, ε).

PROOF. First note that if H ′ := H ∪ {h : −h ∈ H}, then convd(H ′) =
convd(H) and

NdQ,2(H
′; ε) ≤ 2NdQ,2(H; ε).

Thus, it is enough to show that for a class H , such that h ∈ H implies −h ∈ H ,
we have

NdQ,2

(
convd(H), (1 + H̄ )ε

) ≤
(

e2NdQ,2(H, ε)(d + 4ε−2)

d2

)d

.

For such a class we have

convd(H) :=
{

d∑
j=1

λjhj :λj ≥ 0,

d∑
j=1

λj ≤ 1, hj ∈ H

}
.

Note that if
∑

j |λj | ≤ 1, then

dQ,2

(∑
j

λjhj ;
∑
j

λjh
′
j

)
=

∥∥∥∥∥∑
j

λj (hj − h′
j )

∥∥∥∥∥
L2(Q)

≤ ∑
j

|λj |max
j

‖hj − h′
j‖L2(Q) ≤ max

j
‖hj − h′

j‖L2(Q).

It follows that if Hε is an ε-net of H , then a δ-net of convd(Hε) is an ε + δ-net
of convd(H). This observation allows us to reduce the proof of the lemma to the
case when H is a finite class. In this case we want to show that

NdQ,2

(
convd(H), H̄ ε

) ≤
(

e2card(H)(d + 4ε−2)

d2

)d

.

To this end, we use the idea of Maurey; see [23, 26]. Let N := card(H). Consider
some representation of a function f = ∑N

i=1 λihi ∈ convd(H). We assume that
λj ≥ 0,

∑
j λj ≤ 1 and at most d ′ of the coefficients are not equal to 0. Consider an

i.i.d. sequence of random variables Yj , j = 1, . . . , k, taking values in H ∪{0} such
that P (Yj = hi) = λi for i = 1, . . . ,N and P (Yj = 0) = 1 − ∑N

i=1 λi . (We simply
add the probabilities when the same function h corresponds to several weights λi

with different indices.) We have

E

∥∥∥∥∥k−1
k∑

j=1

Yj −
N∑

i=1

λihi

∥∥∥∥∥
2

Q,2

= E

∥∥∥∥∥k−1
k∑

j=1

Yj − EY1

∥∥∥∥∥
2

Q,2

≤ 1

k
E‖Y1 − EY1‖2

Q,2 ≤ 4H̄ 2k−1.
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If we set k = 4ε−2, then with probability 1 there exists a realization Ȳk =
k−1 ∑k

j=1 Yj such that ∥∥∥∥∥Ȳk −
N∑

i=1

λihi

∥∥∥∥∥
Q,2

≤ εH̄ .

To compute the bound for the H̄ ε-covering number we have to calculate the
number of possible realizations of k−1 ∑k

j=1 Yj . Simple combinatorics shows that

this number does not exceed
(N
d ′
)(d ′+k

k

)
. Next we use the following bound, which

holds for all 1 ≤ d ≤ N :(
N

d

)(
d + k

k

)
≤

(
e2N(d + k)

d2

)d

.

To prove the bound, first assume that d < N . Then one can check using Stirling’s
formula that

N !
d!(N − d)!

(d + k)!
d!k! ≤ nn

dd(N − d)N−d

(d + k)d+k

kkdd

≤
(

N(d + k)

d2

)d(
1 + d

N − d

)N−d(
1 + d

k

)k

≤
(

e2N(d + k)

d2

)d

.

The case when d = N can be considered similarly. The bound immediately implies
the result. �

PROOF OF THEOREM 3. Let us fix δ ∈ (0,1/2]. For any function f we denote
d(f ) := d(f, 
̄), where 
̄ is such that the infimum in the definition (2.12) is
attained at 
̄. For a fixed δ we consider a partition of F into two classes F δ

1 and
F δ

2 = F \F δ
1 , where F δ

1 := {f :d(f ) = 0} [note that d(f ) depends on δ]. The fact
that f ∈ F δ

1 means that the weights of the classifier f are distributed “uniformly”
and in this case the bound of the theorem does not improve upon Example 1. The
family of classes that we use to localize the classifier f is defined as

Fd,
 := {
f ∈ F δ

2 :d(f ;
) ≤ d
}
.

If f ∈ Fd,
 and 
 is small, then it means that the “voting power” is concentrated
in the faction that consists of the first d base classifiers of the convex combination.
In the first four steps of the proof we will deal with F δ

2 and we will assume only
that the class H has a square integrable envelope H . In Step 1 we will start by
estimating the complexity of the class Fd,
 and applying Theorem 2 to get uniform
control of the margin over class Fd,
. In the remaining steps we will show that the
bound of Step 1 is tight enough and it allows us to make this control uniform over
all parameters such as d,
 and δ.
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Step 1. Let 1 ≤ d ≤ n. Denote

εn(d; δ;
) :=
[
d

n

(
log

1

δ
+ log

ne2

d

)
+

(



δ

)2α/(α+2)

n−2/(α+2)

]
∨ 2 logn

n
.

We start by proving (with some constants A,B > 0) the inequality

P

{
∃f ∈ Fd,
 :Pn{f ≤ δ} ≤ εn(d; δ;
) and P

{
f ≤ δ

2

}
≥ Aεn(d; δ;
)

}

≤ B

(
δd

n

)d/4

exp
{
−1

4

(√
n



δ

)2α/(α+2)}
.

(3.16)

Clearly we can and do assume that εn(d; δ;
) ≤ 1. To prove (3.16), we bound the
random entropy HdPn,2(Fd,
; ε) of the class Fd,
 in the manner

HdPn,2(Fd,
; ε) ≤ K(1 + PnH
2)

[
d log

e

ε
+

(



ε

)α]
for ε ≤ 1(3.17)

with some constant K > 0. The last bound follows from the observation that each
function f ∈ Fd,
 can be represented as f = f1 + f2, where

f1 ∈ Fd := convd(H) =
{

d∑
j=1

λjhj :λj ∈ R,

d∑
j=1

|λj | ≤ 1, hj ∈ H

}

and

f2 ∈ F
 := 
 conv(H).

Hence, by simple combining of ε-coverings for the classes Fd and F
, we get

HdPn,2(Fd,
; ε) ≤ HdPn,2(Fd; ε/2) + HdPn,2(F
; ε/2).

Then, a routine application of Lemma 2 and (2.11) implies

HdPn,2(Fd ; ε/2) ≤ Kd log
e(1 + PnH

2)

ε
for ε ≤ 2(PnH

2)1/2.

[Note that for ε > 2(PnH
2)1/2 we easily get HdPn,2(Fd; ε/2) = 0.] For ε ≤ 1 this

implies

HdPn,2

(
Fd; ε

2

)
≤ Kd

[
log

e

ε
+ log(1 + PnH

2)

]

≤ Kd

[
log

e

ε
+ PnH

2
]

≤ Kd(1 + PnH
2) log

e

ε
.

By the bound on the entropy of the symmetric convex hull (see [26]),

HdPn,2

(
F
; ε

2

)
= HdPn,2

(
F ; ε

2


)
≤ K(1 + PnH

2)α/4
(




ε

)α

≤ K(1 + PnH
2)

(



ε

)α

,

which implies (3.17).
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Next we are using margin type bounds on generalization error under random
entropy conditions (see Section 2, Theorem 2). Clearly, from (3.17), we get the
bound on Dudley’s entropy integral,∫ x

0
H

1/2
dPn,2

(F ; ε) dε ≤ K(1 + PnH
2)1/2ψ̄(x),

where ψ̄ is a concave nondecreasing function such that for x ∈ [0,1],

ψ̄(x) =
(
x

(
d log

e

x

)1/2

+ 
α/2x1−α/2
)

with some constant K > 0. Let

ψ1(x) := x

(
d log

e

x

)1/2

, ψ2(x) := 
α/2x1−α/2,

ψ(x) := ψ1(x) + ψ2(x)

2
.

Let us first consider the equation ε = ψ1(δ
√

ε)/(δ
√

n), which can be written as
ε = d

n
log e

δ
√

ε
. If ε = d

n
x2, then

xex2 =
(

n

d

)1/2
e

δ
.

For d ≤ n and δ ≤ 1, it means that xex2 ≥ 1, and, therefore,

ex2−1 ≤
(

n

d

)1/2
e

δ

or

ε = d

n
x2 ≤ d

n

[
1 + log

((
n

d

)1/2
e

δ

)]
≤ d

n
log

ne2

dδ
≤ εn(d; δ;
) ≤ 1.

[Notice that in the case when d becomes significantly greater than n, e.g., if
(nd−1)1/2δ−1 ≤ 1, then x ≤ 1 and xex2 ≤ ex, which implies that ε ≥ δ−2 and
the bound of the theorem becomes useless. This explains why in the definition of
εn(f ; δ) we minimize over d(f,
) ≤ n.]

The solution of the equation ε = ψ2(δ
√

ε)/(δ
√

n) is

ε(2) :=
(




δ

)2α/(α+2)

n−2/(α+2).
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Finally, it is easy to bound the solution of the equation ε = ψ(δ
√

ε)/(δ
√

n) from
above by ε(1) + ε(2). Therefore, the solution of the last equation is also bounded
from above by εn(d; δ;
). This allows us to use the bound of Theorem 2 to get
the inequality

P

{
∃f ∈ Fd,
 :Pn{f ≤ δ} ≤ εn(d; δ;
) and P

{
f ≤ δ

2

}
≥ Aεn(d; δ;
)

}

≤ B log2 log2 εn(d; δ;
)−1 exp
{
−nεn(d; δ;
)

2

}
.

Since, for ε := εn(d; δ;
), we have ε ≥ 2 logn
n

, it follows that for n ≥ 3,

1

ε
log log2 log2

1

ε
≤ n

4
,

which implies

B log2 log2 εn(d; δ;
)−1 exp
{
−nεn(d; δ;
)

2

}
(3.18)

≤ B exp
{
−nεn(d; δ;
)

4

}
.

A simple computation shows that

exp
{
−nεn(d; δ;
)

4

}
≤

(
δd

n

)d/4

exp
{
−1

4

(√
n



δ

)2α/(α+2)}
,

which implies (3.16)
It remains to eliminate the dependence of the bound on d,
 and δ.

Step 2. Next we show that with some constants A,B ≥ 1, δ ≤ 1/2 and

 ≥ δn−1/2,

P

{
∃f ∈ F δ

2 :Pn{f ≤ δ} ≤ εn

(
d(f ;
); δ;


)
and

P

{
f ≤ δ

2

}
≥ Aεn

(
d(f ;
); δ;


)}
(3.19)

≤ Bδ1/8
1/8 exp
{
−1

4

(√
n



δ

)2α/(α+2)}
,
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where it is understood that if d = d(f ;
) > n, then εn(d; δ;
) = 1. Indeed, using
(3.16), we have for δ ≤ 1/2,

P

{
∃f ∈ F δ

2 :Pn{f ≤ δ} ≤ εn

(
d(f ;
); δ;


)
and

P

{
f ≤ δ

2

}
≥ Aεn

(
d(f ;
); δ;


)}

≤ P

{
∃d ≤ n ∃f ∈ F δ

2 :d(f ;
) = d,Pn{f ≤ δ} ≤ εn(d; δ;
) and

P

{
f ≤ δ

2

}
≥ Aεn(d; δ;
)

}

≤
n∑

d=1

P

{
∃f ∈ Fd,
 :Pn{f ≤ δ} ≤ εn(d; δ;
) and

P

{
f ≤ δ

2

}
≥ Aεn(d; δ;
)

}

≤ B

n∑
d=1

(
δd

n

)d/4

exp
{
−1

4

(√
n



δ

)2α/(α+2)}
.

One can easily check that for d ≤ n/(eδ) (increasing A we can assume that it
holds) the expression (δd/n)d/4 is decreasing in d and, therefore, for any k ≤ n/e,

n∑
d=1

(
δd

n

)d/4

≤ k

(
δ

n

)1/4

+
n∑

d=k+1

(
δd

n

)d/4

≤ k

(
δ

n

)1/4

+ δk/4.

Optimizing over k we take k = logn/ log δ−1 + 1 to get

k

(
δ

n

)1/4

+ δk/4 ≤ 2
(

log n

log δ−1
+ 1

)(
δ

n

)1/4

≤ δ1/8
1/8,

where the last inequality holds under the assumption that 
 ≥ δn−1/2.

Step 3. Our next goal is to prove that with some constants A,B > 1 and for
0 < t < nα/(2+α),

P

{
∃f ∈ F δ

2 :Pn{f ≤ δ} ≤ εn(f ; δ) and

P

{
f ≤ δ

2

}
≥ A inf


≥δn−1/2t1/α+1/2
εn

(
d(f ;
); δ;


)}
.(3.20)

≤ Bδ1/8e−t/4.
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Let 
j := 2−j , j ≥ 0. Let J = {j :
j ≥ δn−1/2t1/α+1/2}. Note that the condition
t < nα/(2+α) guarantees that J �= ∅. Using (3.19), we get

P

{
∃f ∈ F δ

2 :Pn{f ≤ δ} ≤ εn(f ; δ) and

P

{
f ≤ δ

2

}
≥ A inf

J
εn

(
d(f ;
j); δ;
j

)}

≤ P

{
∃f ∈ F δ

2 ∃ j ∈ J :Pn{f ≤ δ} ≤ εn(f ; δ) and

P

{
f ≤ δ

2

}
≥ Aεn

(
d(f ;
j); δ;
j

)}

≤ ∑
J

P

{
∃f ∈ F δ

2 :Pn{f ≤ δ} ≤ εn(f ; δ) and

P

{
f ≤ δ

2

}
≥ Aεn

(
d(f ;
j); δ;
j

)}

≤ B
∑
J

δ1/8

1/8
j exp

{
−1

4

(√
n

j

δ

)2α/(α+2)}
≤ B ′δ1/8e−t/4.

To complete the proof of (3.20), note that for 
 ∈ (
j+1,
j ] we have

d(f ;
j)

n

(
log

1

δ
+ log

ne

d(f ;
j)

)
≤ d(f ;
)

n

(
log

1

δ
+ log

ne

d(f ;
)

)
,

(

j

δ

)2α/(α+2)

n−2/(α+2) ≤ 22α/(α+2)

(



δ

)2α/(α+2)

n−2/(α+2),

log log
2


j

≤ log log
2



,

which implies εn(f ;
j ; δ) ≤ 22α/(α+2)εn(f ;
; δ) and, therefore,

inf
J

εn

(
d(f ;
j); δ;
j

) ≤ 22α/(α+2) inf

≥δn−1/2t1/α+1/2

εn

(
d(f ;
); δ;


)
and (3.20) follows.

Step 4. Now we prove that for some constants A,B > 1 and for all 0 < t <

nα/2+α ,

P

{
∃f ∈ F δ

2 :Pn{f ≤ δ} ≤ εn(f ; δ) and P

{
f ≤ δ

2

}
≥ A

(
εn(f ; δ) + t

n

)}
≤ Bδ1/8e−t/4.

(3.21)
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Because of (3.20), it is enough to show that

inf

≥δn−1/2t1/α+1/2


∈
f

εn

(
d(f ;
); δ;


) ≤ εn(f ; δ) + t

n
.(3.22)

Since d(f ;
) is a decreasing function of 
, the set 
f is an interval of the
form [c,1] for some c ≤ 1. Let 
0 := δn−1/2t1/α+1/2. If 
0 �∈ 
f , then (3.22)
clearly holds. Otherwise, suppose that the infimum in the definition of εn(f ; δ)

is attained at 
 = 
̄. If 
̄ ≥ 
0, then (3.22) is also obvious. In the case when

̄ < 
0, note that

(

0

δ

)2α/(α+2)

n−2/(α+2) = t

n

and the function d(f ;
)
n

(log 1
δ
+ log(ne2/(d(f ;
))) is decreasing in 
. Therefore,

inf

≥δn−1/2 t1/α+1/2


∈
f

εn

(
d(f ;
); δ;


) ≤ εn

(
d(f ;
0); δ;
0

)

≤ d(f ; 
̄)

n

(
log

1

δ
+ log

ne2

d(f ; 
̄)

)
+ t

n

≤ εn

(
d(f ; 
̄); δ; 
̄

) + t

n
≤ εn(f ; δ) + t

n
,

which proves (3.22).

Step 5. To complete the proof of the theorem, define the event

E :=
{
∃f ∈ F ∃ δ ∈ (0,1) :Pn{f ≤ δ} ≤ εn(f ; δ)

and P

{
f ≤ δ

4

}
≥ A

(
εn

(
f ; δ

2

)
+ t

n

)}
.

Obviously, E = E1 ∪ E2, where

E1 :=
{
∃ δ ∈ (0,1) ∃f ∈ F δ

1 :Pn{f ≤ δ} ≤ εn(f ; δ)

and P

{
f ≤ δ

4

}
≥ A

(
εn

(
f ; δ

2

)
+ t

n

)}
,

E2 :=
{
∃ δ ∈ (0,1) ∃f ∈ F δ

2 :Pn{f ≤ δ} ≤ εn(f ; δ)

and P

{
f ≤ δ

4

}
≥ A

(
εn

(
f ; δ

2

)
+ t

n

)}
.
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We set δj := 2−j , j ≥ 0, and

Ē2 :=
{
∃ j ≥ 0 ∃f ∈ F

δj

2 :Pn{f ≤ δj } ≤ εn(f ; δj )

and P

{
f ≤ δj

2

}
≥ A

(
εn(f ; δj ) + t

n

)}
.

It is easily seen that E2 ⊂ Ē2. It follows from (3.21) that

P(E2) ≤ P(Ē2) ≤
∞∑

j=0

P

{
∃f ∈ F

δj

2 :Pn{f ≤ δj } ≤ εn(f ; δj )

and P

{
f ≤ δj

2

}
≥ A

(
εn(f ; δj ) + t

n

)}

≤
∞∑

j=0

Bδ
1/8
j e−t/4 ≤ B ′e−t/4.

If f = ∑
λihi ∈ F δ

1 for some δ, then

εn(f, δ) =
(


(f )

δ

)2α/(2+α)

n−2/(2+α) ∨ 2 logn

n
,

where 
(f ) := ∑ |λi |. Therefore, with some constant A′,

E1 ⊆ E′
1 :=

{
∃ δ ∈ (0,1) ∃f ∈ F :

Pn{f ≤ δ} ≤
(

2
(f )

δ

)2α/(2+α)

n−2/(2+α) ∨ 2 logn

n

and P

{
f ≤ δ

4

}
≥ A′

((

(f )

δ

)2α/(2+α)

n−2/(2+α) ∨ 2 logn

n
+ t

n

)}
.

Let us first consider the case when the class H is uniformly bounded (say, by
constant 1). One can observe that F ′ = {f/
(f ) :f ∈ F } ⊂ {f ∈ conv(H) :

(f ) = 1}. For any function f and any δ ≥ 
(f ), P (f ≤ δ) = 1, which means
that on the event E′

1 one has to take into account only values of δ ≤ 
(f ) or,
equivalently, δ/
(f ) ≤ 1. Therefore, a simple rescaling δ′ = δ/
(f ) < 1 shows
that

E′
1 =

{
∃ δ ∈ (0,1) ∃f ∈ F ′ :Pn{f ≤ δ} ≤

(
2

δ

)2α/(2+α)

n−2/(2+α) ∨ 2 logn

n

and P

{
f ≤ δ

4

}
≥ A

((
1

δ

)2α/(2+α)

n−2/(2+α) ∨ 2 logn

n
+ t

n

)}
.
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As to the second condition on F , in this case, 
(f ) = 1 for any f by definition
and the above equivalent representation of the event E′

1 holds automatically.
Let δj = 2−j , j ≥ 0. Theorem 2 (see also Example 1) and a bound similar to

(3.18) immediately imply that for some A and B ,

P

{
∃ j ∃f ∈ F ′ :Pn{f ≤ δj } ≤

(
1

δj

)2α/(2+α)

n−2/(2+α) ∨ 2 logn

n

and P

{
f ≤ δj

2

}
≥ A

((
1

δj

)2α/(2+α)

n−2/(2+α) ∨ 2 logn

n
+ t

n

)}

≤ ∑
j≥0

B exp
{
−1

4

(√
n

δj

)2α/(2+α)}
e−t/2 ≤ B ′e−t/2.

The same argument as before yields P(E′
1) ≤ Be−t/2. Therefore, combining

previous bounds, we get P(E) ≤ Be−t/4, which completes the proof of the
theorem. �

4. Some experiments with learning algorithms. In this section we present
some results of the experiments we conducted to test the ability of the new
bounds to predict the value of the generalization error of combined classifiers.
Unfortunately, the constants in the bounds of Section 2 are not known. More
precisely, using the results of the recent work of Massart [22] one can calculate
the constants involved in the bounds, but their current values are rather large
and, most likely, not optimal. However, many important learning algorithms
(such as boosting and bagging) that combine simple classifiers are iterative in
nature and it is important to see whether the bounds allow one to predict the
shape of the learning curves (the dependence of the generalization error on the
number of iterations) correctly. To this end, we just ignore the constants and
use in the experiments the quantities (n1−γ /2δ̂n(γ ;f )γ )−1 (see Example 1) and
εn(f ; δ̂n(f )) [see Theorem 3. Actually, the quantity εn(f ; δ̂n(f )/2) is involved
in this bound, but it is easy to see that it is within a constant from εn(f ; δ̂n(f )).]
instead of the upper bounds we proved. We will refer to these quantities as the
γ -bound and the 
-bound, respectively. Incidentally, these quantities did provide
upper bounds on the generalization error (or on the test error) in most of our
experiments. This suggests that the values of the constants involved in the bounds
of Section 2 might actually be moderate (at least in the case when the bounds
are applied to several well-known learning algorithms; see also the remark after
Corollary 1).

4.1. Bagging and boosting. We begin by describing the experiments with two
of the most popular techniques for combining the classifiers, namely bagging [5]
and the Adaboost algorithm [10]. In both of these methods, there is access to
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a learning algorithm called a base learner. The base learner is given a training
sample (Xi, Yi), i = 1, . . . , n, and it returns a classifier h from a base class H
that “approximately minimizes” the empirical error Pn{yh(x) ≤ 0} (or properly
weighted empirical error).

In the case of bagging, the base learner receives at each iteration t , t = 1, . . . , T ,
an independent bootstrap sample (X̂

(t)
i , Ŷ

(t)
i ), i = 1, . . . , n, and returns a classifier

ht ∈ H . The output of bagging is the combined classifier f := T −1 ∑T
t=1 ht (in

other words, bagging makes a decision by majority vote).
In the case of Adaboost, the algorithm assigns at the beginning equal weights

D1(i) = n−1, i = 1, . . . , n, to all the training examples and then updates the
weights iteratively. Namely, at the t th iteration (t = 1, . . . , T ) the algorithm calls
the base learner that attempts to minimize approximately the weighted training
error

εt (h) := ∑
i:h(Xi) �=Yi

Dt(i), h ∈ H .

The base learner returns a classifier ht ∈ H and its weighted training error ε̂t :=
εt (ht ). The weights are then updated according to the formula

Dt+1(i) := Dt(i)

Zt

(
1 + (βt − 1)I{h(Xi)=Yi}

)
,

where βt := ε̂t /(1 − ε̂t ) and Zt is the normalizing factor such that
∑t

i=1 Dt+1(i)

= 1. After T iterations, Adaboost outputs a combined classifier

f :=
(

T∑
t=1

log
1

βt

)−1 T∑
t=1

log
1

βt

ht .

In all the experiments, we used the set of indicator functions (actually, these
functions are rescaled so that they take values in {−1,1}) of axis oriented
hyperplanes (also known as decision stumps) as base classifiers. That is, S := R

d

and

H = {
I{x∈Rd :xi≤c}, c ∈ R, i = 1, . . . , d

} ∪ {
I{x∈Rd :xi≥c}, c ∈ R, i = 1, . . . , d

}
,

where x = (x1, . . . , xd) ∈ R
d .

4.2. Experiments with real and simulated data. We first describe the experi-
ments with a “toy” problem which is simple enough to allow one to compute ex-
actly the generalization error and other quantities such as the γ -margins. Namely,
we consider a one-dimensional classification problem in which S = [0,1] and,
given a set (or a concept, using the terminology of computer learning) C0 ⊂ S

which is a finite union of disjoint intervals, the label y is assigned to a point
x ∈ S according to the rule y = f0(x), where f0 is equal to +1 on C0 and to −1
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FIG. 2. Comparison of the generalization error (thicker line) with (n1−γ /2δ̂n(γ ;f )γ )−1 for
γ = 1, 0.8 and 2/3 (thinner lines, top to bottom).

on S \ C0. We refer to this problem as the intervals problem (see also [13]).
Note that for the class of decision stumps we have in this case V (H) = 2 (since
H = {I[0,b] :b ∈ [0,1]}∪{I[b,1] :b ∈ [0,1]}), and according to the results above the
values of γ in [2/3,1) provide valid bounds on the generalization error in terms
of γ -margins. In our experiments, the set C0 was formed by 20 equally spaced
intervals and we generated a uniformly distributed sample on [0,1] of size 1000.
We ran Adaboost for 500 rounds (bagging does not work well for this problem)
and computed at each round the generalization error of the combined classifier and
the quantity (n1−γ /2δ̂n(γ ;f )γ )−1 for different values of γ .

In Figure 2 we plot the generalization error and the bounds for γ = 1, 0.8 and
2/3 against the iteration of Adaboost. As expected, for γ = 1 (which corresponds
roughly to the bounds in [24]) the bound is very loose and, as γ decreases, the
bound gets closer to the generalization error. In Figure 3 we show that by reducing
further the value of γ we get a curve that is even closer to the actual generalization
error (although, for γ = 0.2, it does not provide an upper bound for some of the
rounds of Adaboost). This seems to support the conjecture that Adaboost actually
generates combined classifiers that belong to a subset of the convex hull of H with
a smaller random entropy than of the whole convex hull. In Figure 4 we plot the
ratio δ̂n(γ ;f )/δn(γ ;f ) for γ = 0.4, 2/3 and 0.8 against the boosting iteration.
We can see that the ratio is close to 1 in different examples (for a small number
of iterations of Adaboost in the first example, the ratio is actually close to 0),
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FIG. 3. Comparison of the generalization error (thicker line) with (n1−γ /2δ̂n(γ ;f )γ )−1 for
γ = 0.5, 0.4 and 0.2 (thinner lines, top to bottom).

FIG. 4. Ratio δ̂n(γ ;f )/δn(γ ;f ) vs. boosting round for γ = 0.4, 2/3 and 0.8 (top to bottom).
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FIG. 5. Generalization error and bounds vs. number of classifiers for the intervals problem for
sample sizes of 1000. Test error (dashed lines), γ -margin bound with γ = 2/3 (dot-dashed line) and

-bound (solid line).

indicating that the value of the constant Ā in the bound (2.7) might be close to 1
(at least, this seems to be true in the case of classifiers produced by Adaboost for
large sample sizes).

In Figure 5 we compare the γ -bound and the 
-bound obtained for this problem
for a sample size of 1000. We can see that the 
-bound has two regimes. In the
first regime, the effect of the 
-dimension is dominant and the bound tracks almost
exactly the generalization error, giving a definite improvement over the γ -bound.
In the second regime, the bound starts increasing until it reaches the curve of
the γ -bound. This behavior can be explained by examining the expression being
minimized in the computation of the bound:

d(f ;
)

n

(
log

1

δ
+ log

ne2

d(f ;
)

)
︸ ︷︷ ︸

I

+
(




δ

)2α/(α+2)

n−2/(α+2)

︸ ︷︷ ︸
II

.(4.1)

It is easy to see that this expression will be close to the γ -bound when the
second term is dominant and, in fact, becomes the γ -bound when 
 = 1 (which,
apparently, is the case in our experiments when the number of classifiers in the
convex combination becomes large).

We also computed the bounds for more complex simulated data sets as well as
for real data sets in which the same type of behavior was observed. We show the
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Adaboost Bagging

Twonorm

King Rook vs. King Pawn

FIG. 6. Test error and bounds vs. number of classifiers. Test error (dot-dashed lines), γ -margin
bound with γ = 1 (dotted lines), γ = γmin (dashed lines) and the 
-bound (solid lines).

results for the so-called Twonorm data set and the King Rook vs. King Pawn data
set (Figure 6), which are well-known examples in computer learning literature.
The Twonorm data set (taken from [6]) is a simulated 20-dimensional data set
in which positive and negative training examples are drawn from the multivariate
normal distributions with unit covariance matrix centered at (2/

√
20, . . . ,2/

√
20)

and (−2/
√

20, . . . ,−2/
√

20), respectively. The King Rook vs. King Pawn data set
is a real data set from the UCI Irvine repository [4]). It is a 36-dimensional data
set with a sample size of 3196.

As before, we used the decision stumps as base classifiers. An upper bound
on V (H) for the class H of decision stumps in R

d is given by the smallest n

such that 2n−1 ≥ (n − 1)d + 1. We computed the 
-bound and the γ -bounds for
γ = 1 and for the smallest γ allowed in Example 1 (γmin). For the Twonorm data
set, we estimated the generalization error by computing the empirical error on an
indepedently generated set of 20,000 observations. For the King Rook vs. King
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Pawn data set, we randomly selected 90% of the data for training and used the
remaining 10% to compute the test error. The experiments were averaged over 10
repetitions.

4.3. Toward algorithms balancing the dimensionality and the margins. The
connection between increasing the margins and reducing the generalization error
has led to the development of several algorithms for designing and improving
combined classifiers based on optimizing margin cost functions. The examples
include DOOM [20], DOOM2 [21], DOOM-LP [19], GeoLev [9] and LP-
Adaboost [11]. The results in this paper motivate the development of algorithms
that take into account the approximate dimensions of combined classifiers along
with their margins.

We discuss below the algorithm DOOM-LP, which was designed to optimize
a piecewise linear cost function of the margins by solving a sequence of linear
programs. Incidentally, this algorithm also tends to reduce the dimension of
the combined classifier. To describe the algorithm, define ϕ(u) := I(−∞,0](u) +
(1 − u)I(0,1](u) and let ϕδ(u) := ϕ(u/δ). Let H be a base class and let F :=
conv(H). It was proved in Koltchinskii and Panchenko [17] that with probability
at least 1 − 2 exp{−2t2} the quantity

inf
δ∈[0,1]

[
Pnϕδ(yf (x)) + 8

δ
ER̂n(H) +

(
log log2(2δ−1)

n

)1/2]
+ t√

n

is an upper bound on the generalization error P {yf (x) ≤ 0} of any classifier
f ∈ F . Recall that R̂n(H) is the Rademacher complexity of the class H . If
H is a VC-class, then ER̂n(H) ≤ Cn−1/2 with a constant C depending on the
VC-dimension of H . The idea of the algorithm DOOM-LP is to minimize the
above bound with respect to f ∈ F and δ ∈ [0,1] to find a classifier f̂ with a
reasonably small generalization error. More precisely, the algorithm receives a
finite number of base classifiers h1, . . . , hT along with their weights and attempts
to redistribute the weights to minimize the bound.

For a fixed value of δ and fixed classifiers h1, . . . , hT , the minimization with
respect to f = ∑T

k=1 wkhk ∈ F consists of finding the weights wk ,
∑T

k=1 wk = 1,
that minimize the quantity

Pnϕδ(yf (x)) = 1

n

n∑
i=1

ϕδ

(
Yi

T∑
k=1

wkhk(Xi)

)
.(4.2)

For a given combined classifier f = ∑T
k=1 wkhk ∈ F , define sets S−, Sl and S0 as

S− = {
i :Yif (Xi) ≤ 0

}
,

Sl = {
i : 0 ≤ Yif (Xi) ≤ δ

}
,

S0 = {
i :Yif (Xi) ≥ δ

}
.
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TABLE 1
DOOM-LP algorithm

Require: Initial weight vector w, margins {Mi}ni=1
{Initialize the partition}

S− = {i : Mi ≤ 0}
Sl = {i : 0 ≤ Mi ≤ δ}
S0 = {i : Mi ≥ δ}
repeat

Cmin = ∑T
k=1 bkwk

if |Sl | ≥ 1 then

{Compute optimal solution for a new partition}

w = LPSolve(w, S−, Sl , S0)

Compute new margins {Mi}ni=1

{Update sets}

S− = S− ∪ {i : i ∈ Sl,Mi = 0} − {i : i ∈ S−,Mi = 0}
Sl = Sl ∪ {i : i ∈ S−,Mi = 0} ∪ {i : i ∈ S0,Mi = δ}

− {i : i ∈ Sl,Mi = 0 or Mi = δ}
S0 = S0 ∪ {i : i ∈ Sl,Mi = δ} − {i : i ∈ S0,Mi = δ}
C = ∑T

k=1 bkwk

else

Terminate and return current w

end if

until C ≥ Cmin

Finding the weight vector that approximately minimizes Pnϕδ(yf (x)) for a fixed
current partition (S−, Sl, S0) can be easily posed as a linear programming problem.
DOOM-LP searches for an approximate local minimum of Pnϕδ(yf (x)) by
solving this linear program and moving to a neighboring partition by “flipping”
the margins that fall in the intersection of two of the sets S−, Sl or S0 from
the set to which they currently belong to another one in the hope that with the
constraints determined by the new partition the objective function can be reduced.
The idea is similar in spirit to the sweeping hinge algorithm proposed by Hush
and Horne [12]. The algorithm converges when the value of the minimum in two
neighboring partitions is the same (see Table 1). We use the following notations
in the description of the algorithm: bk = −∑

i∈Sl
Yihk(Xi) and Mi = Yif (Xi),

where f = ∑
k wkhk .

Written in a standard form, the linear program solved by DOOM-LP at each
iteration involves T + n + |Sl| + 1 variables (T weights plus slack and surplus
variables) and n+|Sl|+ 1 equality constraints. It follows from the basic results on
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(a) (b)

(c) (d)

FIG. 7. Results of running DOOM-LP on the classifier produced by Adaboost for the King
Rook vs. King Pawn data set. (a) Adaboost sorted coefficients; (b) DOOM-LP sorted coefficients;
(c) approximate 
-dimensions; (d) cumulative margin distributions.

linear programming that if there is an optimal feasible solution and the constraint
matrix is full rank, then there exists an optimal feasible solution with at most
n+|Sl |+1 nonzero variables. Furthermore, if the simplex method is used to solve
the linear program, a solution of this type is always found. We have observed
in experiments that many of the variables that are set to zero in the solution are
weights and that DOOM-LP tends to reduce the 
-dimension of the classifier.

We have used DOOM-LP to improve the generalization error of combined
classifiers produced by Adaboost by redistributing the weights of the base
classifiers in a convex combination. An example of dimensionality reduction by
DOOM-LP is illustrated in Figure 7.

It might be interesting to design new algorithms with explicit penalization for
high dimensionality in the optimization procedure. For instance, assuming that the
initial weights w

(0)
t , t = 1, . . . , T , are arranged in decreasing order, one can add

to the target function of the linear program a term
∑T

t=1 atwt , where {at , t ≥ 1} is
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an increasing sequence of positive numbers. One can also consider entropy type
penalties of the form

∑T
t=1 wt log(1/wt) (in this case, of course, the optimization

is no longer a linear programming problem).
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