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ASYMPTOTIC BEHAVIOR FOR PARTIAL AUTOCORRELATION
FUNCTIONS OF FRACTIONAL ARIMA PROCESSES

BY AKIHIKO INOUE

Hokkaido University

We prove a simple asymptotic formula for partial autocorrelation
functions of fractional ARIMA processes.

1. Introduction. Let {Xn :n ∈ Z} be a real, zero-mean, weakly stationary
process, which we shall simply call a stationary process. We write γ (·) for the
autocovariance function of {Xn}:

γ (n) :=E[XnX0], n ∈ Z.

The partial autocorrelation α(k) of {Xn} is the correlation coefficient between
X0 and Xk eliminating linear regressions on X1, . . . ,Xk−1 [see (4.2) for precise
definition]. One can calculate the value of α(k) easily, at least numerically,
from the values of γ (0), γ (1), . . . , γ (k) via, for example, the Durbin–Levinson
algorithm [cf. Brockwell and Davis (1991), Sections 3.4 and 5.2]. The partial
autocorrelation function α(·) thus obtained is a real sequence of modulus less than
or equal to 1 which is free from restrictions such as nonnegative definiteness [see
Ramsey (1974)], unlike the autocovariance function. By virtue of their flexibility,
partial autocorrelation functions play a significant role in time series analysis.

The definition of α(k) says that it is a kind of “pure” correlation coefficient
between X0 and Xk . Thus we think that the partial autocorrelation function α(·)
closely reflects the dependence structure of {Xn}. However, in what concrete
sense does it do so? More specifically, what does α(n) look like for n large,
especially, when {Xn} is a long-memory process [cf. Brockwell and Davis (1991),
Section 13.2]? We dealt with this specific problem in Inoue (2000) and showed that
under appropriate conditions there exists a simple asymptotic formula for α(·).
However, the main results of Inoue (2000) do not cover an important class of
long-memory processes, that is, the fractional ARIMA (autoregressive integrated
moving-average) model. This model was independently introduced by Granger
and Joyeux (1980) and Hosking (1981) and has been widely used as a parametric
model describing long-memory processes. The purpose of this paper is to extend
the asymptotic formula to fractional ARIMA processes.
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We start by recalling the definition of the fractional ARIMA model. Let {Xn}
be a stationary process with autocovariance function γ (·). If there exists an even,
nonnegative, and integrable function �(·) on (−π,π) such that

γ (n)=
∫ π

−π
einλ�(λ)dλ, n ∈ Z,

then �(·) is called a spectral density of {Xn}. For d ∈ (−1/2,1/2) and p,q ∈
N ∪ {0}, {Xn} is said to be a fractional ARIMA(p, d, q) process if it has a spectral
density �(·) of the form

�(λ)= 1

2π

|θ(eiλ)|2
|φ(eiλ)|2 |1 − eiλ|−2d, −π < λ< π,(1.1)

where φ(z) and θ(z) are polynomials with real coefficients of degrees p and q ,
respectively. Throughout the paper we assume that

φ(z) and θ(z) have no common zeros and neither φ(z) nor θ(z)
(A1)

has zeros in the closed unit disk {z ∈ C : |z| ≤ 1}.
We also assume without loss of generality that

θ(0)/φ(0) > 0.(A2)

Note that (A1) and (A2) imply θ(1)/φ(1) > 0.
For a fractional ARIMA(p, d, q) process {Xn} with d ∈ (−1/2,1/2) \ {0}, the

asymptotic behavior of the autocovariance function γ (·) is given by

γ (n)∼Cn2d−1, n→ ∞,(1.2)

where

C = �(1 − 2d) sin(πd)

π

{
θ(1)

φ(1)

}2

(1.3)

(see Section 4). In particular, if 0 < d < 1/2, then {Xn} is a long-memory
process in the sense that

∑∞
n=0 |γ (n)| = ∞ holds. If d = 0, then {Xn} is also

an ARMA(p, q) process [see Brockwell and Davis (1991), Chapter 3], and the
sequence {γ (n)}∞n=0 decays exponentially; that is, there exist constants M > 0 and
s ∈ (0,1) such that

|γ (k)| ≤Msk, k = 0,1, . . .

[see Brockwell and Davis (1991), Problem 3.11].
As we stated above, our central concern in this paper is the asymptotic behavior

of the partial autocorrelation function α(·) of a fractional ARIMA(p, d, q) process
{Xn}. In this connection, it is instructive to look at the simplest case (p, q)= (0,0).
If (p, q)= (0,0) and −1/2< d < 1/2, then we have

α(n)= d

n− d
, n= 1,2, . . .(1.4)



FRACTIONAL ARIMA PROCESSES 1473

[Hosking (1981), Theorem 1; see also Brockwell and Davis (1991), (13.2.10)].
If we further assume d �= 0, then this expression implies the following simple
asymptotic behavior for α(·):

α(n)∼ d

n
, n→ ∞.(1.5)

Notice that the constant d , which is important in a fractional ARIMA process,
appears explicitly in (1.5).

If (p, q) �= (0,0), then there does not exist such an explicit expression as (1.4).
However, numerical calculation [cf. Hosking (1981), page 173] suggests that
the asymptotic formula (1.5) might still be valid even if (p, q) �= (0,0) and
d ∈ (−1/2,1/2) \ {0}. The main contribution of this paper is to show that, modulo
sign, this is indeed the case when 0< d < 1/2.

Here is the main theorem.

THEOREM 1.1. Let p,q ∈ N ∪ {0} and 0 < d < 1/2, and let {Xn} be a
fractional ARIMA(p, d, q) process with partial autocorrelation function α(·).
Then we have

|α(n)| ∼ d

n
, n→ ∞.(1.6)

We recall the results of Inoue (2000) that are closely related to Theorem 1.1.
Let −∞< d < 1/2 and �(·) be a slowly varying function at infinity [cf. Bingham,
Goldie and Teugels (1989), Chapter 1]. Then Theorem 2.1 of Inoue (2000) shows
that, under certain conditions on the MA(∞) coefficients cn and the AR(∞)

coefficients an (see Section 2) of a stationary process {Xn},
γ (n)∼ n2d−1�(n), n→ ∞,(1.7)

implies

|α(n)| ∼ γ (n)∑n
k=−n γ (k)

, n→ ∞.(1.8)

Now if 0< d < 1/2, then (1.2) implies

γ (n)∑n
k=−n γ (k)

∼ d

n
, n→ ∞.

Thus (1.6) also falls into (1.8). However, Theorem 2.1 of Inoue (2000) does
not include Theorem 1.1 because the MA(∞) coefficients cn of a fractional
ARIMA(p, d, q) process do not generally verify the following rather arbitrary
assumption of Inoue [(2000), Theorem 2.1]:

cn ≥ 0 for all n≥ 0.(C1)
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The rough line of the proof of Theorem 1.1 is close to that of Inoue [(2000),
Theorem 2.1] in two points: first, we deduce the desired asymptotic behavior (1.6)
from that of a relevant prediction error; and second, an explicit expression for the
prediction error in terms of cn and an plays an important role.

In the present paper, however, there arises an extra complication as we explain
now. When we deduce (1.6) from the asymptotic behavior of the prediction
error, we use a Tauberian argument. So naturally we need an adequate Tauberian
condition. Whereas we can use monotonicity as the necessary Tauberian condition
in Inoue (2000), it is difficult to verify it in the present paper because we are
lacking (C1). We overcome this trouble by verifying another Tauberian condition
(Proposition 4.4) which is weaker than monotonicity but enough for our purpose.
The verification, however, is not straightforward. In fact, the most of the proof of
Theorem 1.1 is devoted to this task. There, some estimates for sums involving cn
and an play an important role. These estimates, in turn, are obtained by using
the asymptotic behavior with remainder (Lemma 2.2), for {cn}, {an} and their
differences, extending Kokoszka and Taqqu [(1995), Corollary 3.1]. In a sense,
we compensate for the lack of (C1) with this type of asymptotics for {cn} and {an}
of a fractional ARIMA process.

The necessary results on the asymptotics for {cn} and {an} are given in Section 2,
followed by key estimates for sums involving cn and an in Section 3. We prove
Theorem 1.1 in Section 4, and close with some remarks in Section 5. Throughout
this paper, n and k designate nonnegative integers.

2. MA(∞) and AR(∞) coefficients. Let d ∈ (−1/2,1/2), and let {Xn} be a
fractional ARIMA(p, d, q) process with spectral density �(·) given by (1.1). This
section deals with the asymptotics for the MA(∞) coefficients cn and the AR(∞)

coefficients an of {Xn}.
First we recall some basic facts and notation. It is readily checked that∫ π

−π
| log�(λ)|dλ <∞;

in other words, {Xn} is a purely nondeterministic stationary process [cf. Brockwell
and Davis (1991), Section 5.7]. We define the outer function h(·) of {Xn} by

h(z) := √
2π exp

{
1

4π

∫ π

−π
eiλ + z

eiλ − z
log�(λ)dλ

}
, z ∈ C, |z|< 1.

The function h(·) is actually an outer function in the sense of Rudin [(1987),
Definition 17.14]. We have

h(z)= θ(z)

φ(z)
(1 − z)−d, |z|< 1.(2.1)

Indeed, the function on the right-hand side of (2.1) is an outer function
[cf. Rozanov (1967), Theorem 5.3] with modulus

√
2π�(λ) for z= eiλ and takes
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a positive value at z= 0 since we have assumed θ(0)/φ(0) > 0; hence it coincides
with h(z). Using h(·), we define the MA(∞) coefficients cn of {Xn} by

h(z)=
∞∑
n=0

cnz
n, |z|< 1(2.2)

and the AR(∞) coefficients an of {Xn} by

− 1

h(z)
=

∞∑
n=0

anz
n, |z|< 1.(2.3)

See Inoue [(2000), (4.7) and (4.9)] for background.
For δ ∈ R and a real sequence {λn}, we write λn(δ) for the power series

coefficients of (1 − z)δ
∑∞

n=0 λnz
n:

λn(δ)=
n∑

k=0

λk(−1)n−k
(

δ

n− k

)
, n≥ 0,

where we used binomial coefficients. It readily follows that

λn(δ)− λn−1(δ)= λn(δ + 1), δ ∈ R, n≥ 1.

The next lemma, which is essentially Kokoszka and Taqqu [(1995), Corol-
lary 3.1], plays an important role in this paper.

LEMMA 2.1. Suppose that δ ∈ (−1,∞) \ {0,1,2, . . .} and that a real
sequence {λn} decays exponentially. Then we have

λn(δ)

n−δ−1
=
∑∞

k=0 λk

�(−δ) +O(n−1), n→ ∞.(2.4)

For the proof of this lemma, see Kokoszka and Taqqu [(1995), Section 3].
We define a positive constant K1 by

K1 := θ(1)/φ(1).

LEMMA 2.2. Let d ∈ (−1/2,1/2) \ {0}. Then we have, as n→ ∞,

cn

nd−1 = K1

�(d)
+O(n−1),(2.5)

an

n−d−1 = − 1

�(−d)K1
+O(n−1),(2.6)

cn − cn−1

nd−2
= K1

�(d − 1)
+O(n−1),(2.7)
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an − an−1

n−d−2
= − 1

�(−d − 1)K1
+O(n−1),(2.8)

(an − an−1)− (an−1 − an−2)

n−d−3 = − 1

�(−d − 2)K1
+O(n−1).(2.9)

PROOF. [Note that (2.5) and (2.6) are direct consequences of Kokoszka and
Taqqu (1995), Corollary 3.1.] Let λn be the power series coefficients of the rational
function −φ(z)/θ(z):

−φ(z)

θ(z)
=

∞∑
n=0

λnz
n.

Since we have assumed that θ(z) has no zeros in |z| ≤ 1, the sequence {λn} decays
exponentially. By (2.1) and (2.3), we have

∞∑
n=0

anz
n = (1 − z)d

∞∑
n=0

λnz
n.

This implies

an = λn(d), n≥ 0,

so that

an − an−1 = λn(d + 1), n≥ 1,

(an − an−1)− (an−1 − an−2)= λn(d + 2), n≥ 2.

Since
∑∞

k=0 λk = −1/K1, Lemma 2.1 yields (2.6), (2.8) and (2.9).
If we define µn (n≥ 0) by

θ(z)

φ(z)
=

∞∑
n=0

µnz
n,

then the sequence {µn} also has exponential decay since φ(z) has no zeros in
|z| ≤ 1. Thus, we get (2.5) and (2.7) in a similar fashion. �

We show some consequences of Lemma 2.2. We write [·] for the integer part.

LEMMA 2.3. Let d ∈ (−1/2,1/2)\{0} and r > 1. Then there exists an N ∈ N

such that the following inequalities hold for n≥N , v ≥ 0, s ≥ 0 and u≥ 0:

|cn| ≤ 1

(n+ 1)1−d · rK1

|�(d)|,(2.10)

|a[nv]+[ns]+[nu]+n+2| ≤ 1

(v + s + u+ 1)1+d · r

|�(−d)|K1n
1+d ,(2.11)
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|a[nv]+[ns]+[nu]+n+3| ≤ 1

(v + s + u+ 1)1+d · r

|�(−d)|K1n1+d ,(2.12)

|a[nv]+[ns]+[nu]+n+2 − a[nv]+[ns]+[nu]+n+3|
(2.13)

≤ 1

(v + s + u+ 1)2+d · r

|�(−d − 1)|K1n2+d .

PROOF. We restrict attention to (2.13); we can handle (2.10)–(2.12) in like
manner. By (2.8), we may choose N ∈ N such that the following inequality holds
for n≥N :

|an+2 − an+3| ≤ (n+ 3)−d−2 r

|�(−d − 1)|K1
.

Since

[nv] + [ns] + [nu] + n+ 3 > nv + ns + nu+ n,

(2.13) follows. �

3. Estimates. The purpose of this section is to derive some estimates needed
in the proof of Theorem 1.1. Let d be a constant in (0,1/2) and let {Xn} be a
fractional ARIMA(p, d, q) process with spectral density �(·) given by (1.1). As
in Section 2, we write cn and an for the MA(∞) and AR(∞) coefficients of {Xn},
respectively. Throughout this section, we fix a constant r ∈ (1,∞).

By Lemmas 2.2 and 2.3, we may take N1 ∈ N such that (2.10) as well as cn ≥ 0
holds for n≥N1. We define

c0
n :=

{
0, if 0 ≤ n≤N1 − 1,

cn, if n≥N1,

and

c1
n :=

{
cn, if 0 ≤ n≤N1 − 1,

0, if n≥N1.

Recall K1 from Section 2. We define K2 =K2(r) by

K2 := �(d + 1)N1

rK1
max

0≤j≤N1−1
|cj |.

LEMMA 3.1. For n≥ 1, x ≥ 1 and i = 0,1, the following inequality holds:

∫ ∞
0

|ci[nv]|
1

(v + x)1+d dv ≤
(
K2

nd

)i
rK1

�(d + 1)n1−dx
.(3.1)
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PROOF. By (2.10), we have

0 ≤ c0[nv] ≤ 1

(nv)1−d · rK1

�(d)
, v > 0, n≥ 1.(3.2)

This and the identity∫ ∞
0

dv

v1−d(v + y)1+d = 1

yd
, y > 0,(3.3)

show that if i = 0, then the integral on the left-hand side of (3.1) is at most

rK1

�(d)n1−d
∫ ∞

0

dv

v1−d(v + x)1+d = rK1

�(d + 1)n1−dx
.

This proves (3.1) for i = 0.
If i = 1, then, using

(v + x)−1−d ≤ x−1, x ≥ 1, v > 0,

we see that the integral on the left-hand side of (3.1) is at most

x−1 max
0≤j≤N1−1

|cj |
∫ N1/n

0
dv = N1

nx
max

0≤j≤N1−1
|cj |.

This proves (3.1) for i = 1. �

We introduce some notation. For u > 0 and k ≥ 1, we define fk(u) by

f1(u) := 1

π(1 + u)
,

f2(u) := 1

π2

∫ ∞
0

ds1

(s1 + 1 + u)(s1 + 1)
,

fk(u) := 1

πk

∫ ∞
0

dsk−1 · · ·
∫ ∞

0
ds1

1

(sk−1 + 1 + u)

×
{
k−2∏
m=1

1

(sm+1 + sm + 1)

}
1

(s1 + 1)
, k ≥ 3.

As in Inoue [(2000), Section 6], we set

Ak :=
∫ ∞

0
fk(u)

2 du, k ≥ 1.

Then we know [Inoue (2000), Lemma 6.5] that
∞∑
k=1

Akx
2k = π−2 arcsin2 x, |x|< 1(3.4)
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or

Ak = 1

π2 · (2k − 2)!!
(2k − 1)!!k , k ≥ 1.

For I = (i1, . . . , ik) ∈ {0,1}k, we write |I | for the sum i1 + · · · + ik .
We choose N2 = N2(r) ∈ N such that the inequalities (2.11)–(2.13) hold for

n≥N2, v ≥ 0, s ≥ 0 and u≥ 0. For n≥N2 and p ∈ N ∪ {0}, we define

d1(n,p; I ) :=
∞∑

v1=0

civ1
av1+n+2+p, I = i ∈ {0,1},(3.5)

d2(n,p; I ) :=
∞∑

v2=0

ci2v2

∞∑
v1=0

ci1v1

∞∑
m=0

av2+m+n+2+pav1+m+n+2,

(3.6)
I = (i1, i2) ∈ {0,1}2.

We also define, for k ≥ 3, n≥N2, p ∈ N ∪ {0} and I = (i1, . . . , ik) ∈ {0,1}k,

dk(n,p; I ) :=
∞∑

vk=0

cikvk · · ·
∞∑

v1=0

ci1v1

∞∑
mk−1=0

avk+mk−1+n+2+p

×
∞∑

mk−2=0

avk−1+mk−1+mk−2+n+2 · · ·
∞∑

m2=0

av3+m3+m2+n+2(3.7)

×
∞∑

m1=0

av2+m2+m1+n+2av1+m1+n+2.

By the next lemma, we see that these sums converge absolutely, so that dk(n,p; I )
are well defined.

LEMMA 3.2. Let k ≥ 1, p ∈ N ∪ {0} and I ∈ {0,1}k. Then for n≥N2 all the
sums on the right-hand sides of (3.5)–(3.7) converge absolutely. Moreover, for
n≥N2, u > 0, and m= n,n+ 1, the following inequality holds:

∣∣dk(m, [nu]; I )∣∣≤ n−1{r2 sin(dπ)}k
(
K2

nd

)|I |
fk(u).(3.8)

PROOF. We prove only (3.8), assuming the assertion on absolute convergence;
the proof of the latter is similar. We also restrict attention to the case k ≥ 3.
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Let I = (i1, . . . , ik) ∈ {0,1}k. Expressing sums using integrals and applying
change of variable, we get

dk(n, [nu]; I ) := n2k−1
∫ ∞

0
dvk c

ik[nvk] · · ·
∫ ∞

0
dv1c

i1[nv1]

×
∫ ∞

0
dsk−1 a[nvk]+[nsk−1]+n+2+[nu]

×
∫ ∞

0
dsk−2 a[nvk−1]+[nsk−1]+[nsk−2]+n+2(3.9)

× · · · ×
∫ ∞

0
ds2 a[nv3]+[ns3]+[ns2]+n+2

×
∫ ∞

0
a[nv2]+[ns2]+[ns1]+n+2a[nv1]+[ns1]+n+2 ds1.

Therefore, by (2.11), |dk(n, [nu]; I )| is at most

n2k−1
(

r

|�(−d)|K1n
1+d

)k ∫ ∞
0

dvk
∣∣cik[nvk]∣∣ · · ·

∫ ∞
0

dv1
∣∣ci1[nv1]

∣∣

×
∫ ∞

0
dsk−1

1

(vk + sk−1 + 1 + u)1+d

×
∫ ∞

0
dsk−2

1

(vk−1 + sk−1 + sk−2 + 1)1+d

× · · · ×
∫ ∞

0
ds2

1

(v3 + s3 + s2 + 1)1+d

×
∫ ∞

0

1

(v2 + s2 + s1 + 1)1+d(v1 + s1 + 1)1+d ds1,

which, by Lemma 3.1, is at most

n2k−1
(

r

|�(−d)|K1n1+d
)k(

rK1

�(d + 1)n1−d
)k(

K2

nd

)|I |
πkfk(u)

= n−1{r2 sin(dπ)}k
(
K2

nd

)|I |
fk(u).

This proves (3.8) for m = n. The result for m = n+ 1 follows in the same way if
we use (2.12) instead of (2.11). �
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LEMMA 3.3. Let k ≥ 1, n ≥ N2, u > 0 and I ∈ {0,1}k. Then the following
inequality holds:

|dk(n, [nu]; I )− dk(n+ 1, [nu]; I )|
(3.10)

≤ n−2(d + 1)k{r2 sin(dπ)}k
(
K2

nd

)|I |
fk(u).

PROOF. For simplicity, we restrict attention to the case k = 4 but the method
of proof also applies to the general case.

For I = (i1, . . . , i4) ∈ {0,1}4, we have, as in the previous proof,

d4(n, [nu]; I )− d4(n+ 1, [nu]; I )=
4∑

j=1

D
j
4 (n,u; I ),

where

D1
4(n,u; I ) := n2·4−1

∫ ∞
0

dv4 c
i4[nv4] · · ·

∫ ∞
0

dv1 c
i1[nv1]

×
∫ ∞

0
ds3(a[nv4]+[ns3]+n+2+[nu] − a[nv4]+[ns3]+n+3+[nu])

×
∫ ∞

0
ds2 a[nv3]+[ns3]+[ns2]+n+2

×
∫ ∞

0
a[nv2]+[ns2]+[ns1]+n+2a[nv1]+[ns1]+n+2 ds1,

D2
4(n,u; I ) := n2·4−1

∫ ∞
0

dv4 c
i4[nv4] · · ·

∫ ∞
0

dv1 c
i1[nv1]

×
∫ ∞

0
ds3 a[nv4]+[ns3]+n+3+[nu]

×
∫ ∞

0
ds2(a[nv3]+[ns3]+[ns2]+n+2 − a[nv3]+[ns3]+[ns2]+n+3)

×
∫ ∞

0
a[nv2]+[ns2]+[ns1]+n+2a[nv1]+[ns1]+n+2 ds1,

D3
4(n,u; I ) := n2·4−1

∫ ∞
0

dv4 c
i4[nv4] · · ·

∫ ∞
0

dv1 c
i1[nv1]

×
∫ ∞

0
ds3 a[nv4]+[ns3]+n+3+[nu]

∫ ∞
0

ds2 a[nv3]+[ns3]+[ns2]+n+3

×
∫ ∞

0
(a[nv2]+[ns2]+[ns1]+n+2 − a[nv2]+[ns2]+[ns1]+n+3)

× a[nv1]+[ns1]+n+2 ds1,
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D4
4(n,u; I ) := n2·4−1

∫ ∞
0

dv4 c
i4[nv4] · · ·

∫ ∞
0

dv1 c
i1[nv1]

×
∫ ∞

0
ds3 a[nv4]+[ns3]+n+3+[nu]

∫ ∞
0

ds2 a[nv3]+[ns3]+[ns2]+n+3

×
∫ ∞

0
a[nv2]+[ns2]+[ns1]+n+3

× (a[nv1]+[ns1]+n+2 − a[nv1]+[ns1]+n+3) ds1.

We observe that �(−d − 1)= −�(−d)/(d + 1) and that

(x + 1)−d−2 ≤ (x + 1)−d−1, x > 0.

Then it follows from (2.11)–(2.13) and Lemma 3.1 that |D1
4(n,u; I )| is at most

n2·4−2(d + 1)
(

r

|�(−d)|K1n1+d
)4

×
∫ ∞

0
dv4

∣∣ci4[nv4]
∣∣ · · ·∫ ∞

0
dv1

∣∣ci1[nv1]
∣∣ ∫ ∞

0
ds3

1

(v4 + s3 + 1 + u)1+d

×
∫ ∞

0
ds2

1

(v3 + s3 + s2 + 1)1+d

×
∫ ∞

0

1

(v2 + s2 + s1 + 1)1+d(v1 + s1 + 1)1+d ds1

≤ n−2(d + 1){r2 sin(dπ)}4
(
K2

nd

)|I |
f4(u).

Similarly, we have

|Dj
4 (n,u; I )| ≤ n−2(d + 1){r2 sin(dπ)}4

(
K2

nd

)|I |
f4(u), j = 2,3,4.

In summary,

|d4(n, [nu]; I )− d4(n+ 1, [nu]; I )| ≤ n−24(d + 1){r2 sin(dπ)}4
(
K2

nd

)|I |
f4(u).

This proves (3.10) for k = 4. �

For k ≥ 1, n≥N2, and p ∈ N ∪ {0}, we set

gk(n,p) := dk(n,p; I ) with I = (0, . . . ,0),

ek(n,p) :=∑′
I
dk(n,p; I ),

where
∑′

I stands for the sum ∑
I∈{0,1}k\{(0,...,0)}

.
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For n≥N2 and p ∈ N ∪ {0}, we define

d1(n,p) :=
∞∑

v1=0

cv1av1+n+2+p,(3.11)

d2(n,p) :=
∞∑

v2=0

cv2

∞∑
v1=0

cv1

∞∑
m=0

av2+m+n+2+pav1+m+n+2(3.12)

and, for k ≥ 3,

dk(n,p) :=
∞∑

vk=0

cvk · · ·
∞∑

v1=0

cv1

∞∑
mk−1=0

avk+mk−1+n+2+p

×
∞∑

mk−2=0

avk−1+mk−1+mk−2+n+2 · · ·
∞∑

m2=0

av3+m3+m2+n+2(3.13)

×
∞∑

m1=0

av2+m2+m1+n+2av1+m1+n+2.

Clearly we have, for k ≥ 1, n≥N2 and p ∈ N ∪ {0},
dk(n,p)=∑

I
dk(n,p; I )= gk(n,p)+ ek(n,p),(3.14)

where
∑

I stands for the sum
∑

I∈{0,1}k . In the sequel, we shall show that we may
regard gk(n,p) as the main part [hence ek(n,p) as the negligible one] of dk(n,p)
in an adequate sense.

We choose N3 =N3(r) ∈ N such that

N3 ≥ max

{
N2,

(
K2

r − 1

)1/d}
.

Notice that 1 + (K2/n
d)≤ r for n≥N3.

PROPOSITION 3.4. For k ≥ 1, n≥N3, u > 0 and m= n,n+ 1, the following
inequalities hold:

|gk(m, [nu])| ≤ n−1{r2 sin(dπ)}kfk(u),(3.15)

|ek(m, [nu])| ≤ n−1−dkK2{r3 sin(dπ)}kfk(u),(3.16)

|dk(m, [nu])| ≤ n−1{r3 sin(dπ)}kfk(u).(3.17)

PROOF. Inequality (3.15) immediately follows if we put I = (0, . . . ,0) in (3.8).
Using (3.8) and

(1 + x)k − 1 ≤ kx(1 + x)k, x ≥ 0,
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we get

|ek(m, [nu])| ≤∑′
I
|dk(m, [nu]; I )|

≤ n−1{r2 sin(dπ)}kfk(u)
∑′

I
(K2/n

d)|I |

= n−1{r2 sin(dπ)}kfk(u)[{1 + (K2/n
d)}k − 1

]
≤ n−1−dkK2{r2 sin(dπ)}k{1 + (K2/n

d)}kfk(u)
≤ n−1−dkK2{r3 sin(dπ)}kfk(u).

This proves (3.16).
Similarly,

|dk(m, [nu])| ≤∑
I
|dk(m, [nu]; I )|

≤ n−1{r2 sin(dπ)}kfk(u)
∑

I
(K2/n

d)|I |

= n−1{r2 sin(dπ)}kfk(u){1 + (K2/n
d)}k

≤ n−1{r3 sin(dπ)}kfk(u),
whence (3.17). �

PROPOSITION 3.5. For k ≥ 1, n ≥ N3 and u > 0, the following inequalities
hold:

|gk(n, [nu])− gk(n+ 1, [nu])| ≤ n−2(d + 1)k{r2 sin(dπ)}kfk(u),(3.18)

|ek(n, [nu])−ek(n+1, [nu])| ≤ n−2−d(d+1)K2k
2{r3 sin(dπ)}kfk(u).(3.19)

PROOF. Inequality (3.18) is nothing but (3.10) with I = (0, . . . ,0).
A further application of (3.10) shows that∣∣ek(n, [nu])− ek(n+ 1, [nu])∣∣

≤∑′
I

∣∣dk(n, [nu]; I )− dk(n+ 1, [nu]; I )∣∣
≤ n−2(d + 1)k{r2 sin(dπ)}kfk(u)

∑′
I
(K2/n

d)|I |

= n−2(d + 1)k{r2 sin(dπ)}kfk(u)[{1 + (K2/n
d)}k − 1

]
≤ n−2−d(d + 1)K2k

2{r3 sin(dπ)}kfk(u).
Thus (3.19) follows. �
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4. Proof of Theorem 1.1. Let d , {Xn}, cn and an be as in Section 3. In this
section, r is a fixed constant such that

1< r < {sin(πd)}−1/3.(4.1)

Notice that 0 < r5/2 sin(dπ) < r3 sin(dπ) < 1. We shall continue to use the
notation of Section 3.

We write H for the real Hilbert space spanned by {Xk :k ∈ Z} in L2(4,F ,P ),
with inner product

(Y1, Y2) := E[Y1Y2]
and norm

‖Y‖ := (Y,Y )1/2.

For I ⊂ Z, denote by HI the closed real linear hull of {Xk :k ∈ I } in H . In
particular, for m ∈ Z and n ∈ Z with m ≤ n, we write H(−∞,m] and H[m,n] for
HI with I = {k ∈ Z :−∞ < k ≤ m} and {k ∈ Z :m ≤ k ≤ n}, respectively. For
I ⊂ Z, we denote by PI the orthogonal projection operator of H onto HI . We
write P⊥

I := IH −PI , where IH is the identity map of H . So P⊥
I is the orthogonal

projection operator of H onto H⊥
I . For Y ∈ H , we may think of PIY as the best

linear predictor of Y on the observations {Xk :k ∈ I }, whence PIY = Y − PIY as
its prediction error.

The partial autocorrelation function α(·) of {Xn} is defined by

α(n) := E[Z+
n Z

−
n ]

E[(Z+
n )2]1/2 ·E[(Z−

n )2]1/2
, n≥ 2,(4.2)

where

Z+
n :=Xn − P[1,n−1]Xn, Z−

n :=X0 − P[1,n−1]X0.(4.3)

Furthermore, α(1) is defined by α(1) := γ (1)/γ (0). See Brockwell and Davis
[(1991), Section 3.4].

As in Inoue (2000), we set

ε(n) := ‖P⊥[−n,0]X1‖2 − ‖P⊥
(−∞,0]X1‖2

‖P⊥
(−∞,0]X1‖2

, n= 0,1, . . . .

Recall N2 and dk(n,p) from Section 3. Here is the expression of ε(·) in terms of
cn and an [cf. Inoue (2000), Theorems 4.5 and 4.6].

THEOREM 4.1. For n≥N2, we have

ε(n)=
∞∑
k=1

∞∑
p=0

dk(n,p)
2.(4.4)
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PROOF. We define, for n≥ 1 and p ∈ N ∪ {0},
D1(n,p) := d1(n,p),

Dk(n,p) :=
∞∑

m1=1

an+1+m1

∞∑
m2=1

b
m1
n+m2

· · ·
∞∑

mk−1=1

b
mk−2
n+mk−1

∞∑
mk=1

b
mk−1
n+p+mk

cmk−1,

k ≥ 2,

where

bmj :=
m∑
k=1

cm−kak+j , m≥ 1, j ≥ 0.

Then, since (2.6) implies
∑∞

k=0 |ak| < ∞, it follows from Inoue [(2000),
Theorem 4.5] that

ε(n)=
∞∑
k=1

∞∑
p=0

Dk(n,p)
2, n≥ 1.

Now Lemma 3.2 allows us to apply Fubini’s theorem to exchange the order of
sums [cf. the proof of Inoue (2000), Theorem 4.6] to obtain

Dk(n,p)= dk(n,p), k ≥ 1, n≥N2, p ∈ N ∪ {0}.
Thus (4.4) follows. �

We need the next lemma to derive the asymptotic behavior of ε(·).
LEMMA 4.2. For k ≥ 1 and u > 0, we have

dk(n, [nu])∼ n−1 sink(dπ)fk(u), n→ ∞.(4.5)

PROOF. We restrict attention to the case k ≥ 3; the proofs of the cases k = 1,2
are similar. By (3.14) and (3.16), it suffices to show that

lim
n→∞ngk(n, [nu])= sink(dπ)fk(u), n→ ∞.(4.6)

Using (3.9) with I = (0, . . . ,0), we see that ngk(n, [nu]) is equal to∫ ∞
0

dvk · · ·
∫ ∞

0
dv1

∫ ∞
0

dsk−1 · · ·
∫ ∞

0
ds1Bk(n,u; v1, . . . , vk; s1, . . . , sk−1),

where

Bk(n,u; v1, . . . , vk; s1, . . . , sk−1)

:=
{

k∏
m=1

n1−dc0[nvm]

}
× n1+da[nvk]+[nsk−1]+n+2+[nu]

×
{
k−2∏
m=1

n1+da[nvm+1]+[nsm+1]+[nsm]+n+2

}
× n1+da[nv1]+[ns1]+n+2.
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Now (2.5) and (2.6) imply

cn ∼ nd−1 K1

�(d)
, n→ ∞(4.7)

and

an ∼ n−(d+1) �(d)

K1
· d sin(dπ)

π
, n→ ∞,(4.8)

respectively, so that

lim
n→∞Bk(n,u; v1, . . . , vk; s1, . . . , sk−1)

= {
π−1d sin(dπ)

}k
Ck(u; v1, . . . , vk; s1, . . . , sk−1),

where

Ck(u; v1, . . . , vk; s1, . . . , sk−1)

:=
{

k∏
m=1

1

(vm)1−d

}
1

(vk + sk−1 + 1 + u)1+d

×
{
k−2∏
m=1

1

(vm+1 + sm+1 + sm + 1)1+d

}
1

(v1 + s1 + 1)1+d .

On the other hand, it follows from (3.2) and (2.11) that, for n≥N2,

|Bk(n,u; v1, . . . , vk; s1, . . . , sk−1)|
≤ {π−1r2d sin(dπ)}kCk(u; v1, . . . , vk; s1, . . . , sk−1).

Using (3.3), we see that the integral∫ ∞
0

dvk · · ·
∫ ∞

0
dv1

∫ ∞
0

dsk−1 · · ·
∫ ∞

0
ds1Ck(u; v1, . . . , vk; s1, . . . , sk−1)

is equal to (π/d)kfk(u), hence in particular is finite. Therefore, the dominated
convergence theorem yields (4.6), and so (4.5). �

The next theorem gives the asymptotic behavior of ε(·). Compare Inoue [(2000),
Theorem 6.4]. See also Inoue and Kasahara (1999) and (2000) for relevant work
on prediction errors of continuous-time stationary processes.

THEOREM 4.3. We have

ε(n)∼ d2

n
, n→ ∞.(4.9)
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PROOF. Using Theorem 4.1, we obtain

nε(n)=
∞∑
k=1

∫ ∞
0

{ndk(n, [nu])}2 du, n≥N2.

By (3.4), we have

∞∑
k=1

∫ ∞
0

[{r3 sin(dπ)}kfk(u)]2 du=
∞∑
k=1

Ak{r3 sin(dπ)}2k <∞.

Therefore, using Lemma 4.2, (3.4), (3.17) and the dominated convergence
theorem, we let n→ ∞ to conclude

lim
n→∞nε(n)=

∞∑
k=1

Ak sin2k(dπ)= d2.

Thus the result follows. �

As in Inoue (2000), we define

δ(n) := ε(n)− ε(n+ 1), n≥ 1.

Then it readily follows that

∞∑
k=n

δ(k)= ε(n), n≥ 1.(4.10)

The next proposition, which serves as the necessary Tauberian condition to
deduce the asymptotic behavior of δ(·) from that of ε(·), is an essential ingredient
in the proof of Theorem 1.1.

PROPOSITION 4.4. For λ > 1, we have

lim sup
n→∞

sup
n≤m≤λn

n2{δ(m)− δ(n)} ≤ 0 (hence = 0).(4.11)

PROOF. From Theorem 4.1, we have, for n≥N2,

δ(n)=
∞∑
k=1

∞∑
p=0

{dk(n,p)2 − dk(n+ 1,p)2}

= I(n)+ 2II(n)+ 2III(n)+ IV(n),

where

I(n) :=
∞∑
k=1

∞∑
p=0

{gk(n,p)− gk(n+ 1,p)}{gk(n,p)+ gk(n+ 1,p)},
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II(n) :=
∞∑
k=1

∞∑
p=0

{gk(n,p)− gk(n+ 1,p)}ek(n,p),

III(n) :=
∞∑
k=1

∞∑
p=0

gk(n+ 1,p){ek(n,p)− ek(n+ 1,p)},

IV(n) :=
∞∑
k=1

∞∑
p=0

{ek(n,p)− ek(n+ 1,p)}{ek(n,p)+ ek(n+ 1,p)}.

First we consider I(·). In view of (2.6), (2.8) and (2.9), both {an} and {an−an+1}
are eventually decreasing to zero, while c0

n ≥ 0 for n ≥ 0; hence there exists an
N such that, for k ≥ 1 and p ∈ N ∪ {0}, both {gk(n,p)}∞n=N and {gk(n,p) −
gk(n + 1,p)}∞n=N are decreasing to zero. Therefore {I(n)} is also eventually
decreasing. Thus we have

∀λ > 1, lim sup
n→∞

sup
n≤m≤λn

n2{I(m)− I(n)} ≤ 0.

Next we consider II(·)–IV(·). We define a constant K3 by

K3 := (d + 1)K2

∞∑
k=1

k2Ak{r5/2 sin(dπ)}2k,

which is finite since (3.4) shows that the radius of convergence of
∑

k Akx
2k is

equal to 1. By Propositions 3.4 and 3.5, we have, for n ≥ N3 (recall N3 from
Section 3),

|II(n)| ≤
∞∑
k=1

∞∑
p=0

|gk(n,p)− gk(n+ 1,p)| · |ek(n,p)|

= n

∞∑
k=1

∫ ∞
0

|gk(n, [nu])− gk(n+ 1, [nu])| · |ek(n, [nu])|du(4.12)

≤ n−2−dK3.

In a similar fashion, we get, for n≥N3,

|III(n)| ≤ n−2−dK3,(4.13)

|IV(n)| ≤ n−2−2dK4,(4.14)

where the finite constant K4 is defined by

K4 := 2(d + 1)(K2)
2

∞∑
k=1

k3Ak{r3 sin(dπ)}2k.
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From (4.12)–(4.14), it follows that, for λ > 1,

lim sup
n→∞

sup
n≤m≤λn

n2{II(m)− II(n)} = 0,

lim sup
n→∞

sup
n≤m≤λn

n2{III(m)− III(n)} = 0,

lim sup
n→∞

sup
n≤m≤λn

n2{IV(m)− IV(n)} = 0.

Combining, we obtain (4.11). �

Now we are ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1. In view of (4.9)–(4.11), we can apply the
monotone density theorem [see Bingham, Goldie and Tengels (1989), Sec-
tion 1.7.6] to show that

δ(n)∼ d2

n2
, n→ ∞.

Since it follows from the Durbin–Levinson algorithm that

α(n)2 ∼ δ(n− 2), n→ ∞
[see the proof of Inoue (2000), Theorem 2.1] we obtain (1.6). �

5. Remarks.

REMARK 1. For completeness, we prove (1.2) with (1.3) for d ∈ (−1/2,0).
See Beran [(1994), page 63] for the case 0 < d < 1/2. Since the condition
−1/2 < d < 0 implies

∑∞
k=0 ck = 0, we have on summing by parts that

γ (n)=
∞∑
k=0

( ∞∑
m=k+1

cm

)
(cn+1+k − cn+k).

By (3.6),
∞∑

m=k+1

cm ∼ − K1

�(d + 1)
kd, k → ∞,

while, by (2.7),

cn+1 − cn ∼ − K1

�(d − 1)
nd−2, n→ ∞.

Therefore, using, for example, Inoue [(1997), Proposition 4.3], we conclude (1.2)
with

C = − K1

�(d + 1)

K1

�(d − 1)
B(1 − 2d,1 + d)= (K1)

2�(1 − 2d) sin(πd)

π
.
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REMARK 2. We suspect that, in Theorem 1.1 as well as in Inoue [(2000),
Theorem 2.1], the asymptotic formula (1.6) can possibly be improved as follows:

α(n)∼ γ (n)∑n
k=−n γ (k)

, n→ ∞.(5.1)

REMARK 3. It is perhaps worth remarking that the hypothesis (1.5) for the
fractional ARIMA(p, d, q) process is equivalent to (5.1) even if −1/2 < d < 0.
Indeed, in this case, we have

∑∞
k=−∞ γ (k) = 2π�(0) = 0, hence (1.2) with

−1/2 < d < 0 implies

γ (n)∑n
k=−n γ (k)

= − γ (n)

2
∑∞

k=n+1 γ (k)
∼ d

n
, n→ ∞.
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