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OPTIMAL INVESTMENT WITH TRANSACTION COSTS
AND WITHOUT SEMIMARTINGALES
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Università di Pisa

We consider a general class of optimization problems in financial
markets with incomplete information and transaction costs. Under a no-
arbitrage condition strictly weaker than the existence of a martingale
measure, and when asset prices are quasi-left-continuous processes, we show
the existence of optimal strategies.

Applications include maximization of expected utility, minimization of
coherent risk measures and hedging of contingent claims.

1. Introduction. One of the oldest results in Mathematical Finance, due to
Kreps and Yan [16, 20] (but see also Delbaen and Schachermayer [4] for a more
general version), states that in a frictionless market where free lunches are not
allowed, all assets must be semimartingales. Since the gain of a trading strategy
is given by its integral with respect to the asset process, this result legitimates
the use of the heavy machinery of stochastic integration, with all its far-reaching
consequences.

In presence of proportional transaction costs, semimartingales are not the only
arbitrage-free assets anymore. At the same time, not all strategies are permitted
(or meaningful), as trading volume must remain finite. In other words, as the class
of reasonable integrators enlarges, the set of admissible integrands shrinks, and
it turns out that integration can still be defined consistently. Indeed, this can be
done in an elementary way, path by path. Of course, all the powerful results on
semimartingales and stochastic integration cannot be applied to this setting, but the
General Theory of Processes still provides a lot of information on these integrals.

We consider a market with one riskless asset (used as numeraire) and d risky
assets. In this market, an economic agent is endowed with some initial capital c,
faces a liability (e.g., a contingent claim to hedge) H at time T , and trades in the
available assets to optimize some objective function ρ (which can be an expected
utility, a risk measure, etc.). For each unit of numeraire (e.g., euro) traded into or
out of the ith risky asset, the agent is charged a fee of kit units. One can also think
of this setting as a model convention under which the reference asset price Xit is
chosen so that the bid and ask prices are respectively (1 − kit )Xit and (1 + kit )Xit .
This optimization problem can be written as

min
θ∈Ak

c

ρ
(
V cT (θ)−H

)
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where Ak
c is the set of admissible strategies and V cT is the liquidation value of the

agent portfolio at time T .
The above settings provide a convenient framework for different problems, such

as utility maximization and hedging of contingent claims. In the frictionless case,
the utility maximization problem goes back to Merton [17] and has been studied
by a number of different authors, among whom we mention Karatzas, Lehoczky,
Shreve and Xu [13], the first to solve this problem in an incomplete market setting,
and Kramkov and Schachermayer [15], who provide a necessary and sufficient
condition for the existence of solutions in the semimartingale case.

More work in this area stems from the problem of hedging contingent claims in
incomplete markets, where utility maximization is replaced by risk minimization.
For instance, Cvitanić [1] has studied the shortfall minimization problem for
incomplete frictionless markets, while Cvitanić and Karatzas [2] have considered
the problem of hedging in presence of transaction costs.

In the main result of this paper, we show the existence of optimal strategies
when asset prices are quasi-left-continuous, under a suitable no-arbitrage condi-
tion. Of course, this condition is strictly weaker than the existence of an equivalent
martingale measure, which would force us to the semimartingale case.

As in [8], the existence of solutions is obtained with a direct method technique,
finding a convergence where optimizing sequences are relatively compact, and the
risk functional is lower semicontinuous. In particular, we exploit the additional
compactness introduced by transaction costs in the set of admissible strategies,
which is stable under small perturbations of asset processes, and hence does not
depend on the semimartingale property (as opposed to [8], where compactness
results for classes of integrable martingales are used).

The quasi-left-continuity assumption is required only in the proof of the
semicontinuity of the risk functional. For continuous processes, this easily
follows from duality arguments, which hold path by path regardless of the
probabilistic context of the problem. On the contrary, the extension to the quasi-
left-continuous case requires some extra effort, as we show that the functional is
lower semicontinuous almost surely, relying on the representation of jumps for
cadlag processes.

The paper is organized as follows: in Section 2 we describe the model of
a financial market with frictions, and show how integration can be defined
consistently. Section 3 contains the compactness theorem for admissible strategies,
which holds under a no-arbitrage condition. In Section 4 we show that the
existence of optimal strategies follows from the semicontinuity of the portfolio
value. We show the case of continuous processes separately, as the proofs are
considerably simpler. In Section 5 we discuss how the utility maximization
problem can be embedded in this framework, and show with a counterexample
that the compactness result may not hold for some degenerate but still arbitrage-
free markets.
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2. The market model. We consider a standard model for a financial market,
with a filtered probability space (�,F , (Ft )0≤t≤T ,P ), where the filtration Ft
satisfies the usual assumptions. In this market there is a riskless asset, used as
numeraire, and hence assumed identically equal to 1.

We have d risky assets, given by an Rd -valued process X = ((Xit )
d
i=1)t∈[0,T ],

adapted to the filtration Ft . Transaction costs are proportional, and we denote by
k = ((kit )di=1)t∈[0,T ] the cost for each unit transacted (hence the cost for a one-share
transaction on the ith asset at time t is kit X

i
t ).

For vector-valued processes, we shall use the upper index to denote the
component, and the usual lower index to denote time. When we consider sequences
of processes, we shall use the upper index to denote the position in the sequence,
using the lower position for both the component and time.

In general, we can expect k to depend both on t and ω, reflecting changing
liquidity conditions at different times and circumstances. Hence, we will allow k to
be an adapted, strictly positive stochastic process, discussing further assumptions
when needed.

In frictionless markets, a self-financed strategy is uniquely defined by the
number of shares θ = ((θ it )

d
i=1)t∈[0,T ] held in each risky asset at each time.

Therefore, starting from an initial capital c, the portfolio value at time t is given
by

c+
∫
(0,t]

θs dXs

with the integral representing the gain up to time t . In the presence of trans-
action costs, in general we have two processes L = ((Lit )

d
i=1)t∈[0,T ] and M =

((Mi
t )
d
i=1)t∈[0,T ] representing respectively the cumulative number of shares pur-

chased and sold up to time t , with the obvious relation θt = Lt −Mt . Hence the
liquidation value of a portfolio at time t can be written as

V ct (θ)= c+
∫
(0,t]

θs dXs −
d∑
i=1

(∫
[0,t]

kisX
i
s d(L

i +Mi)s + kit |θit |Xit
)
,

where the last two terms represent respectively the cost of the trading strategy
and the final cost of liquidation. This expression can be further simplified, under
the additional (financially sound) assumption that purchases and sales should not
overlap, to avoid dissipation of wealth.

To translate this requirement in mathematical terms, we need some notation.
Given a function of bounded variation θ , we denote by Dθ its derivative in the
sense of distributions, by |Dθ | the total variation measure associated with Dθ
and by |Dθ |t = |Dθ |[0, t]. These definitions trivially extend componentwise to
vector-valued strategies θ = ((θ it )

d
i=1)t∈[0,T ] as Dθ = ((Dθit )

d
i=1)t∈[0,T ], |Dθ | =
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((|Dθ |it )di=1)t∈[0,T ]. Denote also ‖Dθ‖t =∑d
i=1 |Dθi |t . The no-dissipation condi-

tion above then translates into Lt +Mt = |Dθ |t , and we have that

V ct (θ)= c+
∫
(0,t]

θs dXs −
d∑
i=1

(∫
[0,t]

kisX
i
s d|Dθi |s + kit |θit |Xit

)
.(1)

With an abuse of notation, we identify the vector k with the d × d diagonal
matrix with elements (k1, . . . , kd) so that we can rewrite the above expression as

V ct (θ)= c+
∫
(0,t]

θs dXs −
∫
[0,t]

ksXs · d|Dθ |s − ktXt · |θt |.

REMARK 2.1. In our model, only transactions between risky assets and cash
are permitted, and all transaction costs are charged to the cash account. Hence,
this choice is appropriate whenever these features are present, most notably in
stock markets, but also in bond and commodity markets. By contrast, in foreign
exchange markets all assets can be indifferently exchanged, and in this case the
approach of Kabanov et al. [10, 12, 11] should rather be employed.

Now it remains to give a meaning to the gain process
∫
[0,t] θs dXs , since

we consider asset processes which are not necessarily semimartingales. The
Bichteler–Dellacherie theorem characterizes semimartingales as the largest class
of integrators for general predictable strategies, therefore we will have to restrict
the class of integrands. In fact, in our setting of a market with frictions, we already
consider only strategies of finite variation, and stochastic integrals for this class
can be defined path by path.

DEFINITION 2.2. Let θ : R+ → R be a left-continuous function of finite
variation, and X a cadlag function. Then we define the integral of θ with respect
to X as (Dellacherie and Meyer [6], 8.1)∫

(0,t]
θs dXs = θt+Xt − θ0+X0 −

∫
(0,t]

Xs dDθs+.(2)

For a general function θ of finite variation, we define:∫
(0,t]

θs dXs =
∫
(0,t]

θs− dXs + ∑
s≤t

θ
s− �=θs

(θs − θs−)�Xs,(3)

where the first term in the right is defined by (2). To denote these integrals we shall
indifferently use the notation

∫
(0,t] θs dXs or (θ ·X)t .

REMARK 2.3. The integral defined above trivially extends path by path
to finite variation processes θ = ((θ it )

d
i=1)t∈[0,T ] and cadlag processes X =

((Xit )
d
i=1)t∈[0,T ]. In addition, when X is a semimartingale, the integral in (2)

coincides with the usual stochastic integral (see Dellacherie and Meyer [6], 8.1).
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The definition in (3) is given for completeness, since for predictable θ it
provides the financially natural extension of the gain process. However, we shall
soon show that in our setting of quasi-left-continuous X we may simply consider
left continuous θ , since the extra term in (3) disappears.

To verify the good definition of (3) one should check that the series in the right-
hand side converges. Indeed, since θ has bounded variation we have that (recall
that X∗

t = sups≤t |Xs |)∑
s≤t

θ
s− �=θs

(θs − θs−)�Xs ≤ 2X∗
t

∑
s≤t

|θs − θs−| ≤ 2X∗
t |Dθ |t

as needed. Finally, we stick to the usual convention that θ0− = 0, so that (2) can be
written as ∫

(0,t]
θs dXs = θt+ ·Xt −

∫
[0,t]

Xs · dDθs+ .
In this paper we consider asset processes X with the following properties:

ASSUMPTION 2.4. We assume the following:

(i) X is a cadlag process, adapted to the filtration Ft ;
(ii) Xt > 0 a.s. for all t ∈ [0, T ];

(iii) X is quasi-left-continuous; that is, Xτ = Xτ− a.s. for all predictable
stopping times τ .

The next proposition shows that for these processes we only need to consider
left-continuous strategies.

PROPOSITION 2.5. LetX be a quasi-left-continuous process, and θ a predict-
able, finite variation process. Then we have that:∫

[0,t]
θs dXs =

∫
[0,t]

θs− dXs a.s.

PROOF. Since X is a cadlag adapted process, {�X �= 0} =⋃
k[[τk]], where τk

is a sequence of stopping times with disjoint graphs, and each of them is either
predictable or totally inaccessible (see, e.g., Dellacherie and Meyer [5]). When
X is quasi-left-continuous, up to a null set we can assume that all τk are totally
inaccessible. It follows that∫

[0,t]
θs dXs −

∫
[0,t]

θs− dXs =∑
τk

(
θτk − θτ−

k

) ·�Xτk .
Since θ is a predictable process of finite variation, we can define

Jt =
∑
s≤t
(θs − θs−)
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which is a predictable, cadlag process. Hence it follows (see Dellacherie and
Meyer [5], Chapter IV, Theorem 88B) that the set {(t,ω) : θt − θt− �= 0} =
{�J �= 0} =⋃

k[[σk]] where σk is a sequence of predictable stopping times.
However, this means that θτk − θτ−

k
is indistinguishable from the null process

for all k, and the proof is complete. �

In the context of transaction costs, we can easily generalize the definition of
admissible strategy as follows:

DEFINITION 2.6. A predictable finite variation process θ is called c-admis-
sible if for all t we have that V ct (θ)≥ 0 a.e.

We denote by Ak
c the class of c-admissible strategies with transaction costs k.

Accordingly we give a definition of arbitrage strategy.

DEFINITION 2.7. An admissible strategy θ is an arbitrage opportunity if, for
some t , V 0

t (θ)≥ 0, P (V 0
t (θ) > 0) > 0.

REMARK 2.8. Kabanov and Stricker [12] distinguish two kinds of arbitrage
in the context of transaction costs. While a strong arbitrage offers the usual
opportunity of a riskless profit, a weak arbitrage merely allows one to build
a position in the risky asset, recovering all initial transaction costs. The above
definition corresponds to strong arbitrage, as it is given in terms of the liquidation
value V 0

t .

With transaction costs, the absence of arbitrage generally does not imply
the existence of a (local) martingale measure for X. In addition, since the
semimartingale property is preserved under a change to an equivalent measure,
such condition would force us to the semimartingale case.

In our setting the natural substitute for a martingale measure would be a
condition equivalent to no arbitrage in the presence of transaction costs, but
in continuous time this still seems an open problem, at least to the author’s
knowledge.

However, we can consider the following sufficient condition, which allows for
processes that are not semimartingales:

DEFINITION 2.9. Given an adapted, strictly positive process γ =
((γ it )

d
i=1)t∈[0,T ], a process X is γ -arbitrage free if there exists a process X̃ and

a probability Q equivalent to P such that (1 − γ it )Xit ≤ X̃it ≤ (1 + γ it )Xit almost
surely for all t, i and X̃ is a local martingale underQ.

We recall the following no-arbitrage criterion (see [7]):
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PROPOSITION 2.10. If X is γ -arbitrage free, and γ ≤ k (i.e., γ it ≤ kit a.s. for
all t, i), then X is arbitrage-free with transaction costs k.

In fact, our results will depend on the following slightly stronger condition:

DEFINITION 2.11. We say that a market with transaction costs k is compact
arbitrage free (CAF) if it is γ -arbitrage free and

min
1≤i≤d essinf

t∈[0,T ](k
i
t − γ it ) > 0 a.s.(4)

REMARK 2.12. Note that the γ -arbitrage free condition is trivially satisfied
with γ = 0 if there exists a martingale measure for X.

In the case of finite � the converse of Proposition 2.10 holds true (see Jouini
and Kallal [9] and Kabanov and Stricker [12]).

Very recently, Schachermayer [18] (see also Kabanov, Rasonyi and Stricker [11]
for an alternative proof) has shown that in discrete time with a general �, the
analogous of martingale measures with transaction costs are strictly consistent
price systems, and their existence is equivalent to the robust no-arbitrage property,
which guarantees compactness properties in L0 very similar to those established
in this paper.

3. Compactness of admissible strategies. In this section we show that
transaction costs, coupled with the admissibility and no-arbitrage conditions,
generate a strong compactness property for sequences of admissible strategies.

Roughly speaking, the idea is that any sequence of strategies should be
uniformly bounded in trading volume, otherwise the admissibility condition would
be violated. Such an estimate on volume will translate into one for the number of
shares at each instant, and compactness will follow.

Of course, the problem is to understand in which sense such boundedness holds,
and what kind of compactness it implies. One can reason as follows: we aim at
results independent of agent’s preferences and views or, in mathematical terms,
that are invariant under a change to an equivalent probability. As a result, we cannot
rely on integrability properties of asset prices, which depend on the particular
probability chosen by the agent.

On the contrary, boundedness in probability (or in L0) has the desired property.
This is easily seen by the following lemma, which must be well known, but since
we have no reference we report it along with its short proof.

LEMMA 3.1. Let X and {Yi}i∈I be strictly positive, finite-valued, random
variables. Then {Yi}i∈I is bounded in L0 if and only if {XYi}i∈I is bounded in L0.
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PROOF. Suppose that {Yi}i∈I is bounded in L0. We obviously have

P (XYi >M)= P (XYi >M,X ≤N)+ P (XYi >M,X >N)
≤ P

(
Yi >

M

N

)
+ P (X >N).

With a suitable choice of M and N , both these terms are arbitrarily small, as X is
finite valued, and {Yi}i∈I is bounded in L0. The reverse implication follows from
the first one, denoting X′ = 1

X
and Y ′

i =XYi . �

We now give the compactness result: note that it generally does not hold in the
frictionless case. In this sense, the existence of solutions to optimization problems
with transaction costs may actually be easier than their frictionless counterparts,
as admissibility becomes a more binding condition.

PROPOSITION 3.2. Let X satisfy Assumption 2.4 and the (CAF) condition
(Definition 2.11). If θn ∈ Ak

c is a sequence of finite variation processes, then there
exists a sequence ηn ∈ conv(θn, θn+1, . . .) such that ηn converges a.s. in dt dP (ω)
to a finite variation process θ ∈ Ak

c .

We break the proof of Proposition 3.2 into three parts. First we recall the
following lemma from Delbaen and Schachermayer [4]:

LEMMA 3.3 ([4], Lemma A1.1). Let (fn)n≥1 be a sequence of [0,∞) valued
measurable functions on a probability space (�,F ,P ). There exists a sequence
gn ∈ conv(fn, fn+1, . . .) such that (gn)n≥1 converges almost surely to a [0,∞]
valued function g.

If conv(fn, fn+1, . . .) is bounded in L0, then g is finite almost surely. If there
are α > 0 and δ > 0 such that for all n: P (fn > α) > δ, then P (g > 0) > 0.

The next lemma can be seen as a compactness result for Fatou convergence
(see Kramkov [14], Lemma 4.2) but here convergence is sought within the class
of predictable processes (see also Kabanov and Last [10], Lemma 3.4 for a similar
result in the context of transaction costs):

LEMMA 3.4. Let θn be a sequence of processes of finite variation, such that
the set conv({‖Dθn‖T }n∈N) is bounded in L0(�).

Then there is a sequence ηn ∈ conv(θn, θn+1, . . .) such that ηn converges a.s. in
dt dP (ω) to a finite variation process θ .

PROOF. By the Hahn decomposition, a function of bounded variation is a
difference of two monotone functions. Hence we can write θnt = Lnt −Mn

t , where
Ln and Mn are increasing processes which are essentially unique under the
condition that |Dθn|t =Lnt +Mn

t .
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Given a convex combination (αk)∞k=n, we have that:∑
k≥n

αkL
k
t ≤ ∑

k≥n
αk|Dθk|t ≤

∑
k≥n

αk|Dθk|T a.e.

therefore conv(Lnt ,L
n+1
t , . . .) is bounded in L0. By Lemma 3.3, up to a sequence

of convex combinations we can assume that Lnt converges almost surely to some
Rd -valued variable Lt .

By a diagonalization argument, up to a sequence of convex combinations we
can assume that, for all t ∈ D = {0, T }∪ (Q∩ (0, T )), Lnt converges almost surely
to a process (Lt )t∈D . Clearly, Lt is an increasing process.

We define L̃t = sups∈Q∩(0,t) Ls . Since L̃ is left-continuous, it is obviously

predictable. We now show that, for each ω, Lnt → L̃t everywhere but in the
discontinuity points of L̃(ω), which are at most a countable set. In fact, if L(ω)
is continuous in t , for any ε > 0 we can find p,q ∈ D such that p < t < q and
Lp(ω)≤ Lq(ω)≤ Lp(ω)+ ε. Passing to the limit, we get

Lp(ω)≤ lim inf
n→∞ Lnt (ω)≤ lim sup

n→∞
Lnt (ω)≤ Lp(ω)+ ε.

Since ε is arbitrary, it follows that Lnt converges to L̃t .
Repeating the same argument forM , we obtain that, up to a sequence of convex

combinations, Ln and Mn respectively converge a.s. in dt dP (ω) to increasing
processes L̃ and M̃ . As a result, Lnt −Mn

t converges to θt = L̃t − M̃t , which is a
finite variation process. �

REMARK 3.5. Note that the proof of Lemma 3.4 provides a stronger result
than the one stated. In fact, is shows that for almost everyω there exists a countable
set N(ω)⊂ [0, T ] such that θn(ω)→ θ(ω) for all t /∈N(ω).

So far no reference to the asset process is present. The assumptions on X in
Proposition 3.2 will now be needed to link the admissibility of trading strategies
to the boundedness condition in Lemma 3.4.

PROOF OF PROPOSITION 3.2. For any θ ∈ Ak
c , we have

−c ≤ (θ ·X)T −
∫
[0,T ]

ksXs · d|Dθ |s − kT XT · |θT |

= (θ ·X)T −
(∫

[0,T ]
γsXs · d|Dθ |s + γTXT · |θT |

)
(5)

−
(∫

[0,T ]
(ks − γs)Xs · d|Dθ |s + (kT − γT )XT · |θT |

)
.

Now, we claim that

(θ ·X)T −
(∫

[0,T ]
γsXs · d|Dθ |s + γT XT · |θT |

)
≤ (θ · X̃)T ,(6)
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where X̃ satisfies the properties in Definition 2.9. In fact, recall that X is γ -
arbitrage free, and denote by εt = X̃t − Xt . By assumption we have that |εit | ≤
γ it Xt and integrating by parts, we obtain

(θ · X̃)T = (θ · (X+ ε))T = (θ ·X)T + θT · εT − θ0+ · ε0 −
∫
(0,T ]

εs · dDθs
= (θ ·X)T + θT · εT −

∫
[0,T ]

εs · dDθs

≥ (θ ·X)T −
∫
[0,T ]

γsXs · d|Dθ |s − γT XT · |θT |

which proves the claim. From (5) and (6) it follows that

−c≤ (θ · X̃)T − δT (ξT · |Dθ |T +XT · |θT |),
where δt = min1≤i≤d essinfs∈[0,t](kis − γ is ) and ξt = infs∈[0,t]Xs . Under the
measure Q, the stochastic integral (θ · X̃)T is a local martingale bounded from
below, thus a supermartingale. Taking expectations, we have

E[δT ξT · |Dθ |T + δT XT · |θT |] ≤ c.
This inequality is clearly stable under convex combinations of strategies, and
therefore the closed convex hull of the set {δT ξT · |Dθ |T : θ ∈ Ak

c} is bounded
in L1(Q) and hence in L0(Q).

By the (CAF) assumption, δT > 0 a.s. Also, note that ξT > 0 a.e.: to see this,
denote by τ = inf{t :Xt = 0 or Xt− = 0}. Since X is γ -arbitrage free, we have that
τ = inf{t : X̃t = 0 or X̃t− = 0}. However, then we obtain that τ > T a.s., as X̃ is a
strictly positive martingale underQ.

This implies that we can apply Lemma 3.1, and we obtain that the closed convex
hull of {‖Dθ‖T : θ ∈ Ak

c} is bounded in L0(P ).
Now, let θn ∈ Ak

c be a sequence of finite variation processes. From the above
discussion it follows that the assumptions of Lemma 3.4 are satisfied; therefore
we can assume, up to a sequence of convex combinations, that θn converges a.s.
in dt dP (ω) to some finite variation process θ . The admissibility of θ will follow
from Proposition 4.7 (or Proposition 4.4, if X is continuous). �

REMARK 3.6. The (CAF) condition in Lemma 3.4 cannot be relaxed to allow
for γ i = ki for some i. Indeed, in the last section we show with a counterexample
that in this case, which represents the edge of the no-arbitrage condition, the above
compactness properties may break down. Of course, this does not exclude the
existence of solutions, but requires arguments different from those shown here.

4. Existence of optimal strategies. We start by defining the class of risk
functionals used in this paper.
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DEFINITION 4.1. A lower semicontinuous convex decreasing functional is a
function ρ :L0 → R ∪ {+∞}, with the following properties:

(i) ρ is convex;
(ii) if X ≤ Y almost surely, then ρ(X)≥ ρ(Y );

(iii) ρ has the Fatou property. If Xn → X a.e., and Xn ≥ −a a.e. for some
a > 0, then

ρ(X)≤ lim inf
n→∞ ρ(Xn).

REMARK 4.2. Definition 4.1 is a natural modification of the analogous
definition in [8] to the present setting, where no integrability conditions are present.
In particular, here the Fatou property is only required for sequences uniformly
bounded from below. This means that the above definition includes all σ -additive
coherent risk measures as defined by Delbaen [3].

The rest of this section deals with the lower semicontinuity of the above
functionals with respect to a.s. convergence in dt dP (ω). For these functionals,
it will be enough to check that the portfolio value V ct is upper semicontinuous, and
here we shall need the quasi left-continuity of X.

We begin with a lemma which links the pointwise convergence of θnt (ω) to the
weak star convergence of the measures Dθn(ω).

LEMMA 4.3. If conv({‖Dθn‖T }n∈N) is bounded in L0 and θnt → θt a.s.
in dt dP (ω), then up to a sequence of convex combinations Dθnt ⇀ Dθt
for a.e. ω.

PROOF. By Lemma 3.3, up to a sequence of convex combinations we can
assume that limn→∞ ‖Dθn‖T = V (ω), with V <∞ a.e.

We have{
lim sup
n→∞

‖Dθn‖T >M
}

=
{

lim inf
n→∞ ‖Dθn‖T >M

}
=⋃

k

⋂
n≥k

{‖Dθn‖T >M}

and hence, since ‖Dθn‖T is bounded in L0,

P

(
lim sup
n→∞

‖Dθn‖T >M
)

= P
(⋃
k

⋂
n≥k

{‖Dθn‖T >M}
)

≤ sup
n
P (‖Dθn‖T >M)≤ ε.

It follows that lim supn→∞ ‖Dθn‖T <∞ a.e. and hence supn ‖Dθn‖T <∞ a.e.
Since θnt → θt a.e., the thesis follows by the Lebesgue dominated convergence
theorem. �
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4.1. The case of continuous processes. Here we consider the case where X is
a continuous process. In this setting, the semicontinuity of V ct can be shown using
only arguments of duality between continuous functions and Radon measures.

PROPOSITION 4.4. If θn ∈ Ak
c , conv({‖Dθn‖T }n∈N) is bounded in L0 and

θnt → θt a.s. in dt dP (ω), then we have

V cT (θ)≥ lim sup
n→∞

V cT (θ
n) for a.e. ω.(7)

PROOF. By Lemma 4.3, we have that Dθnt ⇀Dθt , and hence, integrating by
parts,

(θ ·X)T =XT · θT −
∫
[0,T ]

Xt · dDθt

= lim
n→∞

(
XT · θnT −

∫
[0,T ]

Xt · dDθnt
)

= lim
n→∞(θ

n ·X)T
and, by the semicontinuity of the variation, we have∫

[0,T ]
Xt · d|Dθ |t ≤ lim inf

n→∞

∫
[0,T ]

Xt · d|Dθn|t ,
which completes the proof. �

From the upper semicontinuity of V cT we easily obtain the lower semicontinuity
of our functional:

LEMMA 4.5. Let ρ be a functional as in Definition 4.1,H an FT -measurable
random variable and c > 0. Denoting by F : θ → ρ(V cT (θ)−H), we have:

(i) F is convex;
(ii) F is lower semicontinuous with respect to dt dP (ω)-a.s. convergence.

PROOF. Follows by a convexity argument and by Fatou’s lemma, exactly as
in [8], lemma 4.3. �

The existence result is then an easy corollary:

PROPOSITION 4.6. Let X be a continuous process satisfying Assumption 2.4
and the (CAF) condition. If ρ has the properties in Definition 4.1, then the problem

min
θ∈Ak

c

ρ
(
V cT (θ)−H

)
admits a solution.

PROOF. Let θn ∈ Ak
c be a minimizing sequence. From Proposition 3.2 we

obtain a sequence ηn ∈ conv(θn, θn+1, . . .) such that ηn → θ ∈ Ak
c a.s. in

dt dP (ω). By the semicontinuity of ρ (Lemma 4.5), it follows that θ is a
minimizer. �
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4.2. The quasi-left-continuous case. We now come to the more general case
where X is a quasi-left-continuous process on the whole interval [0, T ]. Note that
this assumption implies the continuity of X at T .

In this setting, arguments of duality between continuous functions and signed
measures cannot be applied directly to show that the portfolio value is lower
semicontinuous, as the discontinuities of X may be relevant for the limit
measure Dθ . A simple example is given by a limit strategy which changes
immediately after a jump has occurred.

Nevertheless, if the jumps of X are totally inaccessible, the cases where
convergence fails are negligible, as admissible strategies must be predictable. This
is the main idea of the next proof, though somewhat hidden in the inevitable
technical details.

PROPOSITION 4.7. If θn ∈ Ak
c , θnt → θt a.s. in dt dP (ω) and

conv({‖Dθn‖T }n∈N) is bounded in L0, then up to a subsequence

V cT (θ)≥ lim sup
n→∞

V cT (θ
n) for a.e. ω.(8)

We break the proof of Proposition 4.7 into two lemmas.

LEMMA 4.8. If Dθn ⇀Dθ a.s., then we have∫
[0,T ]

Xs · d|Dθ |s ≤ lim inf
n→∞

∫
[0,T ]

Xs · d|Dθn|s for a.e. ω.(9)

In addition, if ‖Dθn‖T → ‖Dθ‖T a.s. (i.e., Dθn converges to Dθ in variation),
then we obtain∫

[0,T ]
Xs · d|Dθ |s = lim

n→∞

∫
[0,T ]

Xs · d|Dθn|s for a.e. ω.(10)

PROOF. By a change of variable, we have∫
[0,T ]

Xs · d|Dθ |s =
∫ ∞

0
|Dθ |T (X > x)dx;

therefore it is sufficient to check that

|Dθ |(X > x)≤ lim inf
n→∞ |Dθn|(X > x).(11)

Of course, the problem here is that the set {X > x} is not necessarily open, as
X may have discontinuities. However, X has only totally inaccessible jumps,
therefore {�X �= 0} =⋃

k[[σk]] a.s., where σk is a sequence of totally inaccessible
stopping times.

We denote by τk = inf{t ≥ σk :Xt ≤ x}, and define recursively

σ̃1 = σ1, A1 = [[σ1, τ1[[,
σ̃k = σk

∣∣{σk /∈Ak−1}, Ak =Ak−1 ∪ [[σk, τk[[,
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where τ |A = τ1A + ∞1�\A for any stopping time τ . It is easy to see that the set
{σk /∈Ak−1} is Fσk -measurable, and hence σ̃k is a stopping time for all k.

We denote by

Bx = {X > x}\( ⋃
k∈N

[[σ̃k, τk[[
)

σ̃k and αk,βk (we stick to the convention that [a, b) is empty if b ≤ a). and
observe that Bx is open a.s., as the process X is continuous outside the random
set A∞ =⋃

k≥1Ak . It follows that:

|Dθ |(Bx)≤ lim inf
n→∞ |Dθn|(Bx) for a.e. ω(12)

so it suffices to show that the same property holds for the stochastic intervals
[[σ̃k, τk[[.

Up to a subsequence, we can assume that |Dθn| ⇀ µ, where µ ≥ |Dθ |. We
define the predictable process

δt = lim inf
n→∞ |Dθn|(0, t)−µ(0, t).

Since we have that

µ[0, t] ≥ lim sup
n→∞

|Dθn|[0, t] ≥ lim inf
n→∞ |Dθn|(0, t)≥ µ(0, t)

it follows that 0 ≤ δt ≤µ{t} and hence δt > 0 for at most countably many t .
As a result (see [5], Chapter IV, Theorem 88), {(t,ω) : δt > 0} = ⋃

k[[πk]],
where {πk}k∈N is a sequence of predictable stopping times. It follows that
P (πj = σ̃k)= 0 for all j, k, and hence limn→∞ |Dθn|(]]0, σ̃k[[)=µ(]]0, σ̃k[[) a.s.

We have that

µ(]]0, τk[[) ≤ lim inf
n→∞ |Dθn|(]]0, τk[[)

= lim
n→∞|Dθn|(]]0, σ̃k[[)+ lim inf

n→∞ |Dθn|([[σ̃k, τk[[)
= µ(]]0, σ̃k[[)+ lim inf

n→∞ |Dθn|([[σ̃k, τk[[),
whence

µ([[σ̃k, τk[[)≤ lim
n→∞|Dθn|([[σ̃k , τk[[),(13)

which completes the proof of (9).
The proof of (10) is analogous, and will be omitted. �

LEMMA 4.9. If θnt → θt a.s. in dt dP (ω) and conv({‖Dθn‖T }n∈N) is
bounded in L0, then up to a subsequence (θn · X)T converges in probability
to (θ ·X)T .
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PROOF. We have that

(θn ·X)T =XT · θnT −
∫
[0,T ]

Xt · dDθnt

=XT · θnT −
∫
[0,T ]

Xt · d(Dθn)+t −
∫
[0,T ]

Xt · d(Dθn)−t ,
where (Dθn)+ and (Dθn)− denote respectively the positive and negative parts in
the Hahn decomposition ofDθn. Up to subsequences, we can assume that |Dθn|T
converges a.s. and hence that (Dθn)+ ⇀ν+ and (Dθn)− ⇀ν−, where ν+ and ν−
are positive vector measures. Applying Lemma 4.8 to the last two integrals above,
we obtain that

lim
n→∞(θ

n ·X)T =XT · θT −
∫
[0,T ]

Xt · dν+
t −

∫
[0,T ]

Xtd · ν−
t

=XT · θT −
∫
[0,T ]

Xt · dDθt = (θ ·X)T . �

PROOF OF PROPOSITION 4.7. The thesis follows from Lemmas 4.3, 4.9
and 4.8. �

As in the continuous case, the existence of minimizers is easily obtained:

PROPOSITION 4.10. Let X be a quasi-left-continuous process satisfying
Assumption 2.4 and the (CAF) condition. If ρ has the properties in Definition 4.1,
then the problem

min
θ∈Ak

c

ρ
(
V cT (θ)−H

)
admits a solution.

PROOF. As in Proposition 4.6, it follows from Proposition 3.2 and 4.7. �

5. Examples and counterexamples.

5.1. Utility maximization. It is natural to embed the utility maximization
problem in the framework of Proposition 4.6 by choosing ρ(X) = E[−U(X)].
However, while conditions (i) and (ii) in Definition 4.1 are trivially satisfied for
any utility function U , the Fatou property (iii) generally does not hold, unless U is
bounded.

However, the existence of an optimal solution requires that only maximizing
sequences satisfy the Fatou property. In fact, in the frictionless case, Kramkov and
Schachermayer [15] have shown with convex duality arguments that a necessary
and sufficient condition for existence is that U has reasonable asymptotic
elasticity, defined as follows:
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DEFINITION 5.1. The asymptotic elasticity of an increasing concave function
U is defined by

AE+∞(U)= lim sup
x→∞

xU ′(x)
U(x)

and U has reasonable asymptotic elasticity if AE+∞(U) < 1.

Here we show that an alternative proof of this result, due to Schachermayer [19],
can easily be adapted to the case of transaction costs.

THEOREM 5.2. Let X be a quasi-left-continuous process satisfying Assump-
tion 2.4 and the (CAF) condition. Let U : R+ → R be an increasing concave func-
tion, such that AE+∞(U) < 1.

If maxθ∈Ak
c
E[U(V cT (θ))]<∞, then the problem

max
θ∈Ak

c

E
[
U
(
V cT (θ)

)]
(14)

admits a solution.

We need the following lemma of Schachermayer [19]:

LEMMA 5.3 [19]. Let (fn)∞n=1 ≥ 0 be random variables on (�,F ,P )
converging a.s. to f0. Suppose that limn→∞E[fn] = E[f0] + α, for some α > 0.
Then for all ε > 0 there exist n,m > ε−1 and disjoint sets An,Am such that the
following conditions are satisfied:

(i) fn ≥ ε−1 on An and fm ≥ ε−1 on Am;
(ii) E[fn1An]> α − ε and E[fm1Am]> α − ε;

(iii) E[fn1�\(An∪Am)]>E[f0] − ε and E[fm1�\(An∪Am)]>E[f0] − ε.

PROOF OF THEOREM 5.2. Let θk be a maximizing sequence for (14).
Since AE+∞(U) < 1, by Lemma 6.3 in [15] there exists some β > 1 such that
U(x2 ) >

β
2U(x) for all x ≥ x0.

Since X satisfies the (CAF) condition, by Proposition 3.2 we can assume
up to a sequence of convex combinations that θk → θ ∈ Ak

c a.s. in dt dP . By
Proposition 4.7, we have that

V cT (θ)≥ lim sup
k→∞

V cT (θ
k) a.s. in P.

We need to show that limk→∞E[U(V cT (θk))] ≤ E[U(V cT (θ))]. By contradiction,
suppose that, up to a subsequence:

lim
n→∞E

[
U
(
V cT (θ

n)
)]−E[U (V cT (θ))]= α > 0.
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Then, by Lemma 5.3 we could find n,m arbitrarily large and An,Am such that

E

[(
V cT (θ

n)+ V cT (θm)
2

)]
= E

[
U

(
V cT (θ

n)+ V cT (θm)
2

)
1�\(An∪Am)

]

+E
[
U

(
V cT (θ

n)+ V cT (θm)
2

)
1An∪Am

]
.

By the condition AE+∞(U) < 1, for the second term in the right we have

E

[
U

(
V cT (θ

n)+ V cT (θm)
2

)
1An∪Am

]
≥ βE

[
U(V cT (θ

n)+ V cT (θm))
2

1An∪Am
]

≥ β

2

(
E
[
U
(
V cT (θ

n)
)
1An

]+E[U (V cT (θm))1Am])≥ β(α − ε)
while for the first term

E

[
U

(
V cT (θ

n)+ V cT (θm)
2

)
1�\(An∪Am)

]

≥ 1

2

(
E
[
U
(
V cT (θ

n)
)
1�\(An∪Am)

]+E[U (V cT (θm))1�\(An∪Am)
])

≥E[U (V cT (θ))]− ε,
and hence

E

[
U

(
V cT (θ

n)+ V cT (θm)
2

)]
≥E[U (V cT (θ))]+ α + (

(β − 1)α− ε(β + 1)
)
.

Since ε can be chosen arbitrarily small, we can assume that the last term on the
right-hand side is positive, but this leads to a contradiction, sinceE[U(V cT (θ))]+α
is the supremum. �

5.2. Shortfall minimization. The problem of shortfall hedging is obtained
choosing ρ(X) = E[l(X−)], where the loss function l : R+ → R+ is increasing
and convex.

In this case, all the conditions in Definition 4.1 are satisfied, since X− ≥ 0 for
all X and hence the Fatou property (iii) always holds. The existence result then
sounds as follows:

COROLLARY 5.4. Let X be a quasi-left-continuous process satisfying As-
sumption 2.4 and the (CAF) condition. Then the problem

max
θ∈Ak

c

[
l
((
V cT (θ)−H

)−)]

admits a solution.
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5.3. The edge of the no-arbitrage condition. As mentioned in Section 3, the
compactness result of Proposition 3.2 may fail when γ i = ki for some i, despite
the market remains free of strong arbitrage opportunities. This phenomenon is best
illustrated by the next counterexample.

EXAMPLE 5.5. Let Rt be a Brownian motion started in 1 and reflected
between 1

1+ε and 1
1−ε , and consider a market with only one risky assetXt =R t

T−t .

Note that 1 − ε ≤ 1
Xt

≤ 1 + ε, and by Proposition 2.10 the asset X is arbitrage

free for k ≥ ε (since X̃t ≡ 1 is obviously a martingale underQ= P ).
Consider the stopping times {τi}i≥1 and {σi}i≥0 defined as follows:



σ0 = 0,

τi+1 = inf
{
s > σi :Xs = 1

1 + ε
}
,

σi = inf
{
s > τi :Xs = 1

1 − ε
}
,

and the strategy θ defined by

θt =
{

0 for t ∈ (σk, τk+1],
δ for t ∈ (τk, σk].

Note that by construction σi, τi <∞ a.e. for all i.
For k = ε, it is easy to see that V ct (θ) ∈ [c − δ k

1+ε , c + δ k
1−ε ], and hence θ is

admissible for some small δ > 0. Also, |Dθ |σi = 2δi, hence |Dθ |T = ∞ a.e.
Defining θn = θσn (i.e., θ stopped at σn), we obtain that |Dθn|T = 2δn and

hence {|Dθn|T }n is not bounded in L0. Also, all sequences of convex combinations
of θn converge to θ a.s., hence there is no hope that one of them converges to a
function of finite variation.

In practice, the asset X in the above example allows a trivial arbitrage strategy:
buy at 1

1+ε ; sell at 1
1−ε . However, with transaction costs, this strategy remains

an arbitrage depending on the cost size: for k < ε, it still delivers a profit, while
for k > ε it leads to a net loss (hence θ is not admissible). At the critical value
k = ε, the trading gain is exactly offset by the transaction cost, and the portfolio
value remains bounded though the trading strategy becomes more and more hectic
as t → T .

However, note that in the above example the market is not free of weak arbitrage
opportunities, as there exist strategies θ such that V 0

t (θ) ≥ 0 a.s., and θt �= 0. In
other words, agents cannot expect riskless profits with positive probability, but
may well expect to build a position at no charge, thus circumventing transaction
costs.
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