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How should we invest capital into a sequence of investment opportuni-
ties, if, for reasons of external competition, our interest focuses on trying to
invest in the very best opportunity? We introduce new models to answer such
questions. Our objective is to formulate them in a way that makes results high-
risk specific in order to present true alternatives to other models. At the same
time we try to keep them applicable in quite some generality, also for different
utility functions. Viewing high-risk situations we assume that an investment
on the very best opportunity yields a lucrative, possibly time-dependent, rate
of return, that uninvested capital keeps its risk-free value, whereas “wrong”
investments lose their value. Several models are presented, mainly for the
so-called rank-based case. Optimal strategies and values are found, also for
different utility functions, and several examples are explicitly solved. We also
include results for the so-called full-information case, where, in addition, the
quality distribution of investment opportunities is supposed to be known. In
addition we present tractable models for an unknown number of opportuni-
ties in terms of Pascal arrival processes. Effort is made throughout the article
to justify assumptions in the view of applicability.

1. Introduction. In the classical secretary problem, the selection of a secre-
tary is a yes-or-no choice. We cannot hedge our selection by selecting half of a
secretary. In an attempt to make the selection process smoother, we may consider
the following scheme which we view as a suitable model for investment.

Each occasion for an investment will be called opportunity. Unless stated
otherwise we make no assumptions about the distribution of the value (or
measurable quality) of opportunities; indeed, we only suppose that we can rank
opportunities with respect to those observed before. In this case we speak of a
rank-based model, and we will first confine our interest to such models.

1.1. The model. The basic model is as follows: Our initial fortune is x0. We are
going to observe a known number, n > 0, of rankable opportunities sequentially in
a completely random order. At the first stage after observing the first opportunity,
we may invest any amount b1, 0 ≤ b1 ≤ x0, in that opportunity, leaving fortune
x1 = x0−b1 for future investments. If, after all n opportunities have been observed,
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this opportunity is best overall, then the return on our investment is y1 = β1b1
where β1 ≥ 1 is a known rate of return available at stage 1. If it is not best overall,
we suppose we lose our investment.

Similarly, at stage k = 2,3, . . . , n, if the kth opportunity is relatively best
and our remaining (uninvested) fortune is xk−1, we may invest any amount bk ,
0 ≤ bk ≤ xk−1, in the kth opportunity and the return on the investment will be
yk = βkbk if the kth opportunity is best overall (= 0 otherwise), where βk ≥ 1. Our
problem is to choose a sequence of investments to maximize the expected value of
our total fortune after the proceedings have concluded. No interest accumulates on
uninvested capital or on lost capital.

More generally, we may have a utility function defined on fortunes, and we may
wish to maximize the expected value of the utility of our total fortune at the end of
the proceedings. Typical utility functions for such investment problems are

uα(x) = (xα − 1)/α for α �= 0,

u0(x) = log(x) corresponding to α = 0.
(1.1)

This form of the utility functions is chosen because it is continuous in α at α = 0.
The case α = 1 corresponds to the linear utility of the description above. The use
of these utility functions for sequential investment problems goes back to Bellman
and Kalaba in the late 1950s. [See Bellman and Kalaba (1965).]

Variations of this basic model will be defined and studied in Sections 5 and 6.

1.2. Model characteristics and comparisons. A typical feature of portfolio
selection problems is that investments are spread over a set of stocks or assets
which jointly contribute to the global objective which is usually the rate of return
on all investments. [For the objective of avoiding bankruptcy see, e.g., the model
by Assaf, Baryshnikov and Stadje (2000).]

These contrast to the model we consider. Our model becomes an interesting
alternative in those cases where the investment has a specific target and where
the best opportunity is essentially the only one which is a winner. Here we want
to invest in the one which turns out best, or, alternatively, not to invest at all. In
particular, we do not try to measure risk coherently [see, e.g., Artzner, Delbaen,
Eber and Heath (1999)], but we just concentrate on the optimization problem to
select the best opportunity among those we consider as belonging to the high-risk
class.

The high risk is reflected in our assumption that wrong investments are lost (or,
in reality, essentially lost). Since an opportunity cannot be best of all unless it is
the relative best of those observed so far, we can limit our interest to investment
decisions for relative-best opportunities. A relative-best opportunity will be called
record opportunity, or simply record, throughout the article.

We think here mainly of that kind of risk in investments which is linked
to competition, be it among those who provide investment opportunities to the
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investor, or else, be it simply among investors themselves. As an example for
the first case, we may think of several ventures which follow one specific goal,
as, for example, the development of a new technology, and the best will get the
whole market. The high risk for the investor stems here from the competition
among those who provide investment opportunities. The second case, which is
competition among investors, is not uncommon either. Some investors, as, for
example, investment funds, like to attract attention of the public by a high return
(compared with competitors) in order to attract more foreign capital in the future.
Hence they typically specialize in high risk investments, though not necessarily in
targeted venture investments in order to outperform competitors. We also mention
that if, unlike in our present model, uninvested capital is supposed to be lost,
then some such problems become equivalent to the problem of stopping (investing
everything) on the last record. This problem is conceptually easier. In the case
of a record arrival process with independent increments, for instance, the odds-
algorithm [Bruss (2000), Theorems 1 and 2.1], gives at once the form of the
optimal strategy and its value.

Since our present model is different from the above models, the methods
we apply are also quite different. Honoring the relationship in some of the
assumptions with those in the classical secretary problem we may name these
models “secretarial investment models.” However, the chosen title indicates the
goal of these models and is thus more informative.

Despite some relationship with the secretary problem (best-choice problem)
it should also be pointed out that this relationship has its limits. In particular,
investment strategies in our model cannot be seen as versions of randomized
strategies for secretary problems. So, for example, if investing, at a certain stage,
50 percent say, of the available capital in an opportunity is an optimal decision (i.e.,
this decision maximizes the expected reward), then flipping a fair coin to decide
whether to invest all or nothing, and to go on optimally thereafter, is in general not
optimal. Thus “hedging” by a partial investment has a real meaning in this context.

1.3. The choice of the payoff structure. The payoff structure we propose raises
some questions and we should justify our choice.

We do realize that this choice may have disadvantages. In particular, it may seem
somewhat naive that we do not try to link the payoffs βk to the probability of the
kth opportunity being a record. Indeed, one feels that an investor would evaluate
an opportunity as being a record more likely if its rate β is itself a record compared
with preceding observed rates. This argument seems then to imply that it would be
better to confine our interest to full information models and to try to link the rate β

with the observed value (i.e., quality of rating or with another measure) under the
hypothesis of a known quality distribution of opportunities.

However, there are several major reasons why this is not an adequate idea. The
first important reason is that for (targeted) venture capital investments in new
technologies, a technological breakthrough of the chosen company is frequently
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the main ingredient of success. History shows that small companies are often
more flexible and inventive and compete well with large companies, even without
adjustment for size. But their rate of return would normally still be relatively
modest by comparison since their marketing and sales capacities are usually less
developed than those of larger companies. Thus the rate of return βk is linked
with factors others than just the degree of a technological advantage. Time is
clearly an important such factor so that we should and do allow for the dependence
on k.

The second reason for our preference for the proposed model is that full-
information models may not only be mathematically more difficult than rank-based
models but, as we think, hard to implement. It is clearly not obvious to estimate in
practice the function which determines the relationship between the return rate and
the probability of success of an opportunity. Moreover, this difficulty is enhanced
by barriers of secrecy which are typically present in a competitive environment.
Consequently, given that full-information models are, in general, more sensitive to
errors in the hypotheses than rank-based models, this is a strong support for the
latter.

The βk’s are, as we pointed out already, usually supposed to depend on
time. In some continuous-time models we denote the corresponding function
accordingly β(t). Of course it is understood, that the choice of βk or β(t) depends
also intrinsically on the specific problem. If the βk are chosen to be constant then
we see them as average return rate per monetary unit. Often the choice of monotone
βk’s is the most natural one, and we will treat several such examples. But for the
sake of generality we keep results in a form which is independent of monotonicity
assumptions.

Before summarizing our results we first derive the basic recursion equations for
the fixed-n problem, which is our basic model.

1.4. The recursion equations. Let Vk(x, y) represent the expected utility of
the final fortune using an optimal strategy, when at stage k, 1 ≤ k ≤ n, before we
observe the kth opportunity, we have an amount x available for future investments,
and a preceding investment that will return y if the present record is best overall.
We first note that we would invest in an opportunity only if it is a record because
otherwise it cannot be best of all. We now show that the initial (backward)
condition and recursion equations are

Vn(x, y) = n− 1

n
uα(x + y) + 1

n
uα(βnx) and

(1.2)
Vk(x, y) = k − 1

k
Vk+1(x, y) + 1

k
max

0≤b≤x
Vk+1(x − b,βkb)

for k = 1, . . . , n− 1.
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Indeed, if at the kth stage, the kth opportunity is not a record, which happens with
probability (k − 1)/k, we proceed to the next stage with the same x and y; if the
kth opportunity is a record (with probability 1/k), the investment y is lost, but we
now choose to invest b in the kth opportunity to maximize our expected utility.
This explains the second line equations in (1.2). The first line (k = n) is just a
special case: At the nth stage, if the nth opportunity is a record, it is certain to be
best overall, so we must invest all our remaining fortune.

1.5. Summary of results. In this paper, we find the solution of the recursion
equations (1.2) for arbitrary α ≤ 1. Two cases, α = 1 and α = 0, are somewhat
special so we treat them first separately. The log utility is a central case. The
resulting optimal rule, which may be seen as a Kelly betting system, has been
studied extensively and shown to have various optimality properties in standard
investment problems for fixed n, independent of the choice of a utility function.
See, among others, Breiman (1961), Bell and Cover (1980), Algoet and Cover
(1988) and Browne and Whitt (1996).

We find that, in all cases, the optimal investment policy is a proportional
investment system, that is to say that if a record appears at stage k, it is optimal
to invest some proportion 0 ≤ ak ≤ 1, of the remaining fortune in this opportunity.
Proportional investment systems in standard investment problems have also been
studied extensively. See, for example, Ethier and Tavaré (1983) and also the
surprising universal portfolio of Cover (1991).

We find the asymptotic form of the optimal rules and payoff, for large
horizon, n. We also discuss briefly the so-called full-information risk investment
problem. Borrowing again from the terminology of secretary problems [see
Samuels (1991) for a survey], we use this name for those models where, in contrast
to the rank-based case, the distribution of the qualities of opportunities is known.
In our final section we drop the fixed-n hypothesis and study the case where the
number of opportunities may be unknown with some hypotheses about the process
of arriving opportunities.

2. Linear utility. Let us first consider the case α = 1 of linear utility. For
simplicity, we take u1(x) = x instead of u1(x) = x − 1 as defined in (1.1), because
the optimization problem is clearly equivalent. Then, according to the first equation
in (1.2),

Vn(x, y) = n− 1

n
(x + y) + βn

x

n
.

To compute Vn−1, we need to find max0≤b≤x Vn(x − b,βn−1b). But according
to (1.2) with uα(x) = x, this is linear in b and so its maximum occurs at either
b = 0 or at b = x. Hence

max
0≤b≤x

Vn(x − b,βn−1b) = max{Vn(x,0),Vn(0, βn−1x)}.
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Therefore, from the second equation in (1.2),

Vn−1(x, y) = n − 2

n − 1

[
n− 1

n
(x + y) + βn

x

n

]

+ 1

n− 1

n− 1

n
max

{
1 + βn

n − 1
, βn−1

}
x

= n − 2

n
(x + y) +

[
n− 2

n− 1
βn + max

{
1 + βn

n− 1
, βn−1

}]
x

n

and the optimal investment at stage n − 1 is to invest everything on a record
opportunity if n − 1 ≥ βn/(βn−1 − 1) and nothing otherwise. We see that the
optimal return at stage n− 1 has the same form as it does at stage n.

Using backward induction we arrive at the following theorem.

THEOREM 1. In the case α = 1, we have

Vk(x, y) = k − 1

n
[x + y + ckx](2.1)

for k = 2, . . . , n, and

V1(x, y) = 1

n
max{1 + c2, β1}x,

where cn = βn/(n− 1) and for k = n − 1, . . . ,2,

ck = ck+1 + 1

k − 1
max{1 + ck+1, βk}.(2.2)

An optimal investment policy is to invest everything in the first record, with arrival
number k, for which βk > ck+1 + 1.

PROOF. We have seen that (2.1) holds for k = n. Suppose that (2.1) holds for
k + 1. Then from (1.2),

Vk(x, y) = k − 1

k

[
k

n
(x + y + ck+1x)

]
+ 1

k
max

0≤b≤x

k

n
[x − b + βkb + ck+1(x − b)]

= k − 1

n
[x + y + ck+1x] + x

n
max{1 + ck+1, βk}

= k − 1

n

[
x + y +

(
ck+1 + 1

k − 1
max{1 + ck+1, βk}

)
x

]

completing the induction. �

Note that it is impossible to have anything invested when entering the first stage.
This is reflected in the fact that V1(x, y) does not depend on y anyway.
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2.1. Asymptotic form. We allow the βk and the ck to depend on n, say βk,n

and ck,n. We assume there is a continuous function, β(t) ≥ 1 on (0,1], such that
βk = β(k/n). We write the recursion (2.2) as

ck+1,n − ck,n

1/n
= − n

k − 1
max{1 + ck,n, β(k/n)}.(2.3)

This shows that the ck,n are monotone decreasing. If we define monotone functions
fn(t) on [0,1] that interpolate the points (k/n, ck,n), then (2.3) becomes

fn((k + 1)/n) − fn(k/n)

1/n
= − n

k − 1
max{1 + fn(k/n),β(k/n)}.(2.4)

We will use (2.4) to derive a differential equation which will yield a useful
limiting optimal solution. To make precise what we understand here by “limiting
optimal” we need the following definition.

DEFINITION 2.1. Let β be a real-valued function defined on [0,1], and let
Sβ be the set of all return sequences ((β1,n, β2,n, . . . , βn,n))n=1,2,... satisfying
βk(n),n → β(t) whenever k(n)/n → t as n → ∞. For s ∈ Sβ let ρn(s) be the
optimal expected utility for the corresponding reward vector (βs

1,n, β
s
2,n, . . . , β

s
n,n).

We say that an investment policy is limiting optimal on Sβ with reward ρ(β), if
limn→∞ ρn(s) exists for all s ∈ Sβ and satisfies

lim
n→∞ρn(s) = ρ(β).

THEOREM 2. If β is continuous on [0,1] and β(t) > 1 on [0,1[, then a
limiting optimal policy exists and is of the following form: invest all available
capital in the first record opportunity whose arrival time t satisfies

β(t) ≥ 1 + f (t),(2.5)

where f (t) is the solution of the differential equation

f ′(t) = −1

t
max{1 + f (t), β(t)}(2.6)

with boundary condition limt→0+ f (t) = ∞.

PROOF. Let t ∈]0,1[ and (k(n)) be a sequence such that k(n)/n → t as
n → ∞. For n fixed, we define k(n)/n as the arrival time of the k(n)th opportunity
on the interval [0,1]. Fix t with 0 < t < 1. Then the policy of investing in the
first record after time t , satisfying a certain condition, is defined as the policy of
investing at the earliest record time k/n with k/n ≥ t (and satisfying the same
condition), if such a k exists, and not to invest at all after t , otherwise. Let us call
this policy “n-policy (for t).” Each reward vector of length n may have a different
n-policy.
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Our attack of embedding a t-policy in a sequence of n-policies is as follows.
We first show that, as n → ∞, n-policies for t allow, for each s ∈ Sβ , for a well-
defined limiting object (“t-policy”) in the sense that the instruction of investing in
the first record after t stays well-defined. This requires only showing that the first
record (if any) does not appear (a.s.) in a point of accumulation of records. We
then show that, for some t∗, the limiting optimal reward for n-policies does exist
and that it is also achieved by the t∗-policy, which we then can determine via the
differential equation given in the theorem.

For fixed n, let Ik be the indicator of the kth opportunity being a record. Let
Rk,n = Ik+1 + Ik+2 + · · · + In; that is, Rk,n denotes the number of records among
the n − k last opportunities. It is well known that the Ij are independent with
E(Ij ) = 1/j . It is easy to see from the generating function of Rk,n (and well
known) that, as k(n)/n → t , Rk,n converges in law to a Poisson random variable,
R[t,1], say, with parameter

∫ 1
t (1/s) ds = − log(t). Hence, for t > 0, the variable

R[t,1] is finite with probability 1, so that, for n = ∞, there is a.s. no accumulation
point of records after time t . Hence, in particular, there is no accumulation point
t > 0 satisfying the investment condition β(t) > 1 + f (t).

To see that we can ignore the point t = 0, we show now that the investment
condition β(t) > 1 + f (t) cannot hold unless t > 0. According to (2.3), we have
for all k ≥ 2 the inequality −ck+1,n + ck,n ≥ 1/(k − 1). Thus, as n → ∞,

c2,n − cn,n =
n−1∑
k=2

(ck,n − ck+1,n) → ∞,

and so, since cn,n → 0 by definition,

lim
n→∞ c2,n = lim

n→∞fn

(
2

n

)
= lim

t→0+f (t) = ∞.

Further, since the function β is continuous on [0,1] it is also bounded, and hence
β(t) > 1 + f (t) implies that t > 0.

Now for t > 0 the recursion equations (2.4) are just Euler–Cauchy approx-
imations to the differential equation (2.6). Since β is continuous, this holds
for any s ∈ Sβ . Hence fn(t) → f (t) for t ∈ (0,1] by standard arguments. See
Henrici (1962), for example. Again, since β is continuous, β(k(n)/n) → β(t) as
k(n)/n → t , and hence from (2.1),

Vt(x, y) = lim
k(n)/n→t

Vk(n)(x, y) = t
(
x + y + f (t)x

)
.

Consequently

ρ = lim
t→0+Vt(x, y) = lim

t→0+ tf (t)x.

This completes the proof. �
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2.2. Computing the value. It is of interest to find the overall value of the
investment model, limt→0 Vt(x, y), for reasonable rate functions, β(t). Note that
f (t) → ∞ as t → 0. If β(t) is bounded on the interval (0,1), then there is an
interval 0 < t < t0 in which β(t) ≤ 1 + f (t), and equation (2.6), f ′(t) = −(1 +
f (t))/t , has the solution, f (t) = c/t − 1 where the constant, c, of integration
satisfies f (t0) = c/t0 − 1. Thus f (t) = (1 + f (t0))t0/t − 1 for 0 < t < t0, and so

V0(x, y) = lim
t→0

Vt(x, y) = x
(
1 + f (t0)

)
t0.(2.7)

Any t0 such that β(t) ≤ 1+f (t) for 0 < t < t0 may be used in this equation. Some
examples will make this procedure clear.

2.3. Examples.

2.3.1. Constant return. As a first example, consider the constant return
function, β(t) ≡ β > 1. Equation (2.6) becomes for 0 < t ≤ 1,

f ′(t) = −1

t

{
β, if 1 + f (t) ≤ β,

1 + f (t), if 1 + f (t) > β,

with boundary condition f (1) = 0. Since f (t) is decreasing, there is a unique
point t0 such that 1 + f (t0) = β . We then have

f (t) =
{−β ln(t), if t0 < t ≤ 1,

(t0β/t) − 1, if 0 < t ≤ t0,

where

t0 = e−(β−1)/β.(2.8)

The optimal final expected fortune is the limit of Vt(x, y) as t tends to zero as
in (2.7), namely,

Vt(x, y) = t
[
x + y + (

(t0β/t) − 1
)
x
] → t0βx.(2.9)

For β = 2, this is essentially the three-value secretary problem of Sakaguchi
(1984), where our respective rewards 0,1,2 are replaced by −1,0,1. According
to (2.8) we obtain t0 = e−1/2 and hence, from (2.9), a total optimal expected reward
of 2e−1/2x for an initial capital x.

2.3.2. Time-proportional total return. As another example, consider β(t) =
c(1− t) where c is a positive constant. Clearly, we would not invest if c(1− t) < 1,
that is, we can limit our interest, without further mentioning, to c > 1 and t <

1 − 1/c. Equation (2.6) becomes

f ′(t) = −1

t

{
1 + f (t), if f (t) ≥ c(1 − t) − 1,

c(1 − t), if f (t) < c(1 − t),

with boundary condition f (1) = 0. For t close to 1, the upper inequality is satisfied
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and the differential equation f ′(t) = −(1 + f (t))/t has solution log(1 + f (t)) =
− log(t)+ a0 for some constant of integration, a0. By the boundary condition, the
constant must be 0, and we have

f (t) = 1

t
− 1 for t1 < t ≤ 1.

This holds for t from 1 down until 1 + f (t) = c(1 − t). This quadratic equation
has two roots t = (1 ± √

1 − (4/c))/2. We see that if c ≤ 4, then t1 = 0. Assume
then that c > 4. The two roots are in the interval (0,1) and straddle 1/2. Let
t1 = (1 + √

1 − (4/c))/2 denote the larger root. Immediately to the left of t1, the
differential equation becomes f ′(t) = −c(1 − t)/t , with solution

f (t) = −c log(t) + ct + a1 for t0 < t ≤ t1,

where a1 = (1/t1)− 1 + c log(t1)− ct1. This holds for t down to the root t0 of the
equation, 1 + f (t) = c(1 − t).

This equation has no simple solution, so we consider a specific value of c as
an example. Suppose c = 16/3. Then t1 = 3/4, a1 = −5.20097 and t0 = 0.31289.
For t < t0, f ′(t) = −(1 + f (t))/t again, and

f (t) = 1/t − a2 for 0 < t ≤ t0,

for some constant a2. In conclusion, the optimal strategy is to invest everything in
the first record that appears between t0 = 0.31289 and t1 = 0.75. The overall value
of the investment model is V0(x,0) = xc(1 − t0)t0 = 1.1466x.

2.3.3. Principal and interest for the best. Take β(t) = 1 + (1 − t)p where
p > 0 represents an interest rate. Here interest means simple interest.

Equation (2.6) becomes

f ′(t) = −1

t

{
1 + (1 − t)p, if (1 − t)p ≥ f (t),

1 + f (t), if (1 − t)p < f (t),

with boundary condition f (1) = 0. If p ≤ 1, then f (t), being convex with slope 1
at t = 1, is greater than (1 − t)p for all t ∈ (0,1); so f (t) = (1/t) − 1 and it is
optimal never to invest. Assume p > 1. Then to the immediate left of 1, we have
f ′(t) = −(1/t)(1 + (1 − t)p), and

f (t) = −(1 + p) log(t) − p(1 − t) for t0 ≤ t ≤ 1,

where t0 is the root of the equation f (t) = (1 − t)p below 1. Below t0, we have
f (t) > (1 − t)p so that

f (t) = 1

t
− a1 for 0 < t < t0,

where a1 is a constant that makes f (t) continuous at t = t0. The optimal strategy
for p > 1, is to invest in the first record, if any, to appear after t0, where t0 satisfies

−(1 + p) log(t0) = 2(1 − t0)p, 0 < t0 < 1.
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For example, if p = e/(e − 2) = 3.7844 . . . , then t0 = 1/e. We note that if p does
not exceed 1 (i.e., 100 percent interest rate for the horizon [0,1]) it is optimal to
never invest. Indeed, if we see a record at time t then this record is best overall
with probability t . In this case we obtain 1 + (1 − t)p per unit of investment (and
zero otherwise) whereas we can keep the unit uninvested until the end and hence
keep 1. But t (1 + (1 − t)p) > 1 implies p > 1/t ≥ 1.

Compound interest. Similarly, if we want to model compound interest with
interest rate p percent per capitalization time unit on some horizon T , we simply
adapt β(t) on the horizon. For continuous capitalization, for instance, we define
β(t) as the limit of βk(n),n = (1 + p′/n)(n−k)T as n → ∞ with k(n)/n → t and
p′ = log(1 + p). We then obtain

βk(n),n =
(

1 + p′

n

)(n−k)T

=
(

1 + p′

n

)(n(n−k)/n)T

→ ep
′(1−t)T =: β(t).

Hence β(t) = (1 +p)(1−t)T , as desired, and the procedure to compute the optimal
strategy and value is similar to above. Other capitalization periods can be handled
similarly.

3. Log utility. Now we look at the case α = 0 of log utility linear, which
may be considered as the most important utility function after linear utility. The
recursion equations (1.2) become now

Vn(x, y) = n− 1

n
log(x + y) + 1

n
log(βnx) and

(3.1)
Vk(x, y) = k − 1

k
Vk+1(x, y)+ 1

k
max

0≤b≤x
Vk+1(x − b,βkb)

for k = n−1, . . . ,1.

Solving the recursion we see that, in contrast to Theorem 1, we do not invest all or
nothing in a record opportunity. Rather the optimal investment is a proportion, ak,
of our fortune, where

ak =
(

kβk − n

n(βk − 1)

)+
.(3.2)

It is to be understood that ak = 0 if βk ≤ 1.
Interestingly, this is just the Kelly betting system applied to the sequence

of record opportunities. See Kelly (1956). For log utility, with an investment
opportunity affording a return of β > 1 per unit invested with probability p and
loss of the investment with probability 1 − p, the optimal proportion of fortune
to invest is a = (pβ − 1)+/(β − 1). Here, if the kth opportunity is a record, its
probability of being absolutely best, and so returning the reward βk, is p = k/n,
leading to (3.2).
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The remarkable feature of (3.2) is that, in contrast to the α �= 0 case, no
backward computation needs to be done to find the optimal investment policy.

THEOREM 3. For k = 1,2, . . . , n,

Vk(x, y) = k − 1

n
log(x + y) + n− k + 1

n
log(x) + ck,(3.3)

where cn = (1/n) logβn, and for k = n − 1, n − 2, . . . ,1,

ck = ck+1 + 1

k

[
k

n
log

(
1 + (βk − 1)ak

) + n− k

n
log(1 − ak)

]
,(3.4)

where the ak are given by (3.2).
It is optimal at a record stage k to invest the proportion ak of the remaining

fortune into the present record opportunity.

PROOF. The proof is by backward induction.
From (3.1), the result is true for k = n. Suppose it is true for k + 1; that is,

Vk+1(x, y) = k

n
log(x + y) + n − k

n
log(x) + ck+1.(3.5)

Then

max
0≤b≤x

Vk+1(x − b,βkb)

= max
0≤b≤x

[
k

n
log

(
x + (βk − 1)b

) + n− k

n
log(x − b)+ ck+1

]
.

(3.6)

It is easy to check that the maximum occurs at b = akx. Thus the optimal
investment in a record at stage k is akx. Substituting this in (3.6), we find

max
0≤b≤x

Vk+1(x − b,βkb)

= k

n
log

(
x
(
1 + (βk − 1)ak

)) + n − k

n
log

(
x(1 − ak)

) + ck+1

= log(x) + k

n
log

(
1 + (βk − 1)ak

) + n− k

n
log(1 − ak) + ck+1.

Substituting this and (3.5) into (3.1) completes the proof. �

3.1. Asymptotic form. The asymptotic form of the optimal investment policy
is easy to find. We assume there is a continuous function, β(t) ≥ 1 on (0,1], such
that βk = β(k/n) and pass to the limit in (10) as n → ∞ and k/n → t . Writing
ak,n for ak in (3.2), we find

ak,n → a(t) :=
{(

tβ(t) − 1
)
/
(
β(t) − 1

)
, if tβ(t) > 1,

0, if tβ(t) ≤ 1.

We then have the following theorem analogous to Theorem 2 for linear utility.
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THEOREM 4. The limiting optimal expected fortune is

Vt(x, y) = lim
n→∞
k/n→t

Vk(x, y) = t log(x + y) + (1 − t) log(x) + f (t),(3.7)

where f (t) satisfies the differential equation

f ′(t) =




0, for tβ(t) ≤ 1,

−1

t

[
logβ(t) − (1 − t) log

(
β(t) − 1

)
+ t log(t) + (1 − t) log(1 − t)

]
, for tβ(t) > 1,

(3.8)

for t ∈ (0,1], with boundary condition f (1) = 0. The limiting optimal policy is to
invest proportion a(t) of the remaining fortune in a record that appears at time t .

EXAMPLE 3.2. As an example, consider the constant return function, β(t) ≡
β > 1. The optimal investment policy is to invest proportion

a(t) =
{
(tβ − 1)/(β − 1), if t > 1/β,

0, if t ≤ 1/β

of the remaining fortune on a record appearing at time t .

For β(t) = c(1 − t), the set of t on which investment is made is {t : t (1 − t) >

1/c}. For c ≤ 4, this is empty, while for c > 4, it is an interval symmetric about 1/2.
For β(t) = 1 + (1 − t)p, the investment set is empty if p < 1, while if p > 1, the
investment set is an interval (1/p,1), and the proportion of fortune invested at an
opportunity occurring at time t is a(t) = t − (1/p).

4. Arbitrary α. Let us consider the case α < 1, α �= 0. For simplicity, we take

uα(x) = xα/α.

This differs from the utility of (1.1) only by a change of location. Then

Vn(x, y) = n− 1

n
uα(x + y) + 1

n
uα(βnx) = n− 1

n

[
uα(x + y)+ βα

n

n − 1
uα(x)

]
.

THEOREM 5. In the case α < 1, α �= 0, we have

Vk(x, y) = k − 1

n
[uα(x + y) + ckuα(x)](4.1)

for k = 2, . . . , n, and

V1(x, y) = uα(x)

n

{
1 + c2, if β1 − 1 ≤ c2,

βα
1

(
1 + (β1 − 1)θ1

)1−α
, if β1 − 1 > c2,

(4.2)
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where cn = βα
n /(n− 1) and for k = n − 1, . . . ,2,

ck = ck+1 + 1

k − 1

{
1 + ck+1, if βk − 1 ≤ ck+1,

βα
k

(
1 + (βk − 1)θk

)1−α
, if βk − 1 > ck+1,

(4.3)

where θk = (ck+1/(βk − 1))1/(1−α). The optimal investment policy is the propor-
tional investment system, that is to invest a proportion, (1−θk)/(1+ (βk −1)θk) of
the remaining fortune in the kth opportunity, if it is a record and if βk > ck+1 + 1.
Otherwise it is optimal not to invest.

PROOF. We first show (4.1) by backward induction. Equation (1.2) shows that
(4.1) holds for k = n with cn = βα

n /(n−1) > 0. Suppose (4.1) holds down to k+1.
To show it holds for k, we need to find

max
0≤b≤x

Vk+1(x − b,βkb) = max
0≤b≤x

k

n

[
uα

(
x + (βk − 1)

) + ck+1uα(x − b)
]
.

Let φ(b) = uα(x + (βk − 1)b)+ ck+1uα(x − b). Then

φ′(b) =
[

βk − 1

(x + (βk − 1))1−α
− ck+1

(x − b)1−α

]
.(4.4)

From (4.3) and the induction hypothesis, we see that ck+1 > 0. We note that
φ′′(b) < 0 so that φ(b) is concave on (0, x). If βk − 1 ≤ ck+1, then φ′(0) ≤ 0
so that φ(b) is decreasing and takes its maximum value over 0 ≤ b ≤ x at b = 0.
Otherwise, φ(b) has a unique maximum in the interval (0, x) at the root of φ′(b)
in that interval. Thus the optimal investment in a record opportunity is b∗ where

b∗ =



0, if βk − 1 ≤ ck+1,

1 − θk

1 + (βk − 1)θk
x, if βk − 1 > ck+1,

(4.5)

where θk = (ck+1/(βk − 1))1/(1−α). Noting that 1 + ck+1θ
α
k = 1 + (βk − 1)θk, we

find

max
0≤b≤x

Vk+1(x − b,βkb)

= k

n
φ(b∗) = k

n
uα(x)

{
1 + ck+1, if βk − 1 ≤ ck+1,

βα
k

(
1 + (βk − 1)θk

)1−α
, if βk − 1 > ck+1.

Finally we have

Vk(x, y) = k − 1

k

k

n
[uα(x + y) + ck+1uα(x)] + 1

k

k

n
φ(b∗)

= k − 1

n
[uα(x + y) + ckuα(x)]

for k = n, . . . ,2, while for k = 1 the first term disappears and we have (4.2). In
both cases the ck are determined by (4.3) and the proof is complete. �
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REMARK. The fact that the optimal investment policy is a proportional
investment system follows from a general theorem in an unpublished paper of
Ferguson and Gilstein (1985). It depends strongly on the assumed form of the
utility functions.

4.1. Asymptotic forms. We allow the βk and the ck to depend on n, and we
assume there is a continuous function, β(t) ≥ 1 on [0,1], such that βk = β(k/n).
We see from (4) that the ck are monotone decreasing. We rewrite the recursion (4.3)
as

ck+1 − ck

1/n
= − n

k + 1




1 + ck+1, if ck+1 ≥ βk − 1,

βα
k

(
1 + (βk − 1)

(
ck+1

(βk − 1)

)1/(1−α))1−α

,

if ck+1 < βk − 1.

(4.6)

The corresponding limiting result is given by the following theorem.

THEOREM 6. As n tends to ∞ and k/n → t , then ck,n → f (t) where f (t)

satisfies the differential equation,

f ′(t) = −1

t




1 + f (t), if f (t) ≥ β(t) − 1,

β(t)α
(
1 + f (t)1/(1−α)

(
β(t) − 1

)−α/(1−α))1−α
,

if f (t) < β(t) − 1

(4.7)

on (0,1] with boundary condition f (1) = 0. The optimal investment policy is the
proportional investment system, to invest a proportion,(

1 − θ(t)
)
/
(
1 + (

β(t) − 1
)
θ(t)

)
(4.8)

of the remaining fortune in a record opportunity appearing at time t if β(t) >

f (t) + 1, where

θ(t) = (
f (t)/

(
β(t) − 1

))1/(1−α)
.(4.9)

The optimal expected fortune is

Vt(x, y) = t[uα(x + y) + f (t)uα(x)].(4.10)

4.2. Dependence on α. It is of interest to compare how the optimal investment
policy changes with changing α. We take the case of constant β(t) ≡ 2 as an
example. For α = 1, the optimal policy is a threshold policy that invests everything
in the first record after time t = e−1/2 = 0.6065 . . . . For α = 0, it is the Kelly
betting system that invests proportion 2t −1 of the fortune on a record opportunity
that appears at time t > 1/2.
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α = 1 α = 0.5 α = 0 α = −1

FIG. 1.

For β(t) ≡ 2, the differential equation (4.7) becomes, for t in a neighborhood
of 1,

f ′(t) = −2α

t

(
1 + f (t)1/(1−α))1−α

.

This is a variables-separable equation, easily solvable by numerical methods. We
plot in Figure 1 the optimal investment proportions for α = 1, 0.5, 0 and −1. As
α decreases from 1, the investment proportion is continuous in α, but the investor
becomes more and more conservative, so much so that when α = −1, the investor
will even hedge by investing (very small amounts) at unfavorable odds (t < 0.5).

5. Full-information. In the full-information version of the problem, each
opportunity has an observable value that determines the rank, the larger the better.
The values are assumed to be i.i.d. from a known continuous distribution, which,
since we are interested only in the ranks, is assumed without loss of generality to
be uniform on (0,1).

When dealing with full-information problems, it is more convenient to let k

denote the number of stages to go rather than the number of stages from the
beginning. Let the values of the opportunities be . . . ,U2,U1 i.i.d. from a uniform
distribution on (0,1). Let Vk(x, y, z) represent the expected utility of the final
fortune using an optimal strategy, when there are k stages to go, k ≥ 1, before we
observe Uk , the kth from last opportunity, and we have an amount x available for
future investments, and a current investment that will return y if the current record
of value z is best overall. Then,

V0(x, y, z) = uα(x + y),

Vk(x, y, z) = zVk−1(x, y, z)(5.1)

+
∫ 1

z
max

0≤b≤x
Vk−1(x − b,βkb,u) du for k = 1,2,3, . . . ,

where βk ≥ 1 is the return on a successful investment on a record opportunity with
value Uk if it turns out to be absolutely best (largest). We can find useful formulas
for the optimal strategies for linear and log utilities.



1218 F. T. BRUSS AND T. S. FERGUSON

5.1. Linear utility. Let us first look at linear utility, α = 1, in which case the
initial equation is V0(x, y, z) = x + y. If U1 is a record, it is certain to be best
overall, and it is optimal to invest the whole amount x in it. This leads to

V1(x, y, z) = z(x + y) + (1 − z)β1x.(5.2)

Continuing, we find

V2(x, y, z) = z[z(x + y) + (1 − z)β1x]
+

∫ 1

z
max

0≤b≤x
[u(x − b + β2b)+ (1 − u)β1(x − b)]du

= z2(x + y) + z(1 − z)β1x + x

∫ 1

z
max{u+ (1 − u)β1, uβ2}du

= z2(x + y) + c2(z)x,

where

c2(z) =
[
z(1 − z)β1 +

∫ 1

z
max{u+ (1 − u)β1, uβ2}du

]
.

An optimal strategy with two stages to go is to invest everything on a record of
value U2 = u if u+ (1 − u)β1 < uβ2.

Continuing the backward induction, we can prove the following theorem.

THEOREM 7. In the full-information case with α = 1, we have

Vk(x, y, z) = zk(x + y) + xck(z) for k = 1,2, . . . ,(5.3)

where c0(z) = 0, and for k = 1,2,3, . . . ,

ck(z) = zck−1(z) +
∫ 1

z
max{uk−1 + ck−1(u), u

k−1βk}du.(5.4)

An optimal strategy with k stages to go is to invest everything in a record of value
Uk = u, if and only if ck−1(u) < uk−1(βk − 1).

5.2. The full-information three-value secretary problem. Consider the case
with constant return, βk = β > 1 for all k. This may be considered as an extension
to the full information case of the three-value secretary problem of Sakaguchi
(1984). On the last stage, it is optimal to invest in any record. On the next
to last stage, it is optimal to invest in a record if its value, U2 = u, satisfies
(1 −u)β/u< β − 1, or explicitly, u > z2 := β/(2β − 1). To go further, we need to
find ck(z) from (5.4). But since the ck(z)/z

k are increasing in k, each cutoff point
can be found from the previous one by replacing the maximum inside the integral
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sign by uk−1β . Thus, with k stages to go, we invest in a record opportunity with
value Uk = z provided ck−1(z) < zk−1(β − 1), where

ck(z) = zck−1(z) +
∫ 1

z
uk−1β du = zck−1(z)+ β(1 − zk)

k
.

For the purposes of finding the optimal strategy, we have

ck(z) = βzk
k∑

j=1

z−j − 1

j
.

Let z1 = 0 and for k > 1 let zk denote the root of ck−1(z) = zk−1(β − 1) in (0,1).
Then it is optimal, with k stages to go, to invest in a record of value Uk provided
Uk > zk , where z1 = 0 and for k > 1, zk satisfies

k−1∑
j=1

z
−j
k − 1

j
= β − 1

β
.

To get an idea of how much the information is worth to the investor, we may
compare return per unit available for investment of the full-information problem to
that of the rank-based problem when β = 2. In the rank-based problem with large
horizon, the optimal expected return per unit available for investment for large
horizon is approximately βe−(β−1)/β = 2e−1/2 = 1.21306, as found in the first
example of Section 2.2. In the full-information problem above, it is approximately
1.4276, essentially twice the rate of return.

5.3. Log utility. Consider now the case α = 0 of log utility. The initial
equation is V0(x, y, z) = log(x + y). If U1 is a record, it is certain to be best
overall, and it is optimal to invest the whole amount x in it. This leads to

V1(x, y, z) = z log(x + y) + (1 − z) log(β1x)

= z log(x + y) + (1 − z) log(x) + c1(z),

where c1(z) = (1 − z) log(β1). We can prove the following theorem.

THEOREM 8. In the full-information case with log utility, it is optimal at stage
k ≥ 1 from the end to invest proportion ak(u) in a record opportunity of value
Uk = u, where

ak(u) =
{
(uk−1βk − 1)/(βk − 1), if uk−1βk > 1,

0, if uk−1βk ≤ 1.

The value functions satisfy

Vk(x, y, z) = zk log(x + y) + (1 − zk) log(x) + ck(z),
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where c0(z) = 0 and for k = 1,2, . . .,

ck(z) = zck−1(z) +
∫ 1

z

[
uk−1 log

(
1 + (βk − 1)ak(u)

)
+ (1 − uk−1) log

(
1 − ak(u)

)]
du.

6. Unknown number of opportunities. We now turn to the problem of an
unknown number of opportunities. This case is harder than the fixed-n case or
the corresponding asymptotic case. Our interest will be confined to the rank-based
model with linear utility. We have given several reasons in the Introduction why
we think of rank-based models as usually being more adequate. Our preference for
linear utility is based on the facts that this utility function is commonly seen as a
reasonable utility function and that it presents, at the same time, the easiest case.

6.1. The all-or-nothing rule for linear utility. Similar to what we have seen in
Section 2, linear utility implies again that we need only consider those investment
strategies which invest either nothing or, alternatively, all available capital on a
record opportunity. To see this, suppose that it is optimal to invest the fraction a

with 0 < a < 1 in a present record opportunity. The principle of optimality requires
then that the contribution of each unit of money invested now is expected to
yield an at least as high contribution as using it for optimal investments later on.
But the expected contribution from the present amount of investment increases
proportional to a whereas the contribution of investments under an optimal
behavior in the future is proportional to 1 − a. Thus, since the model imposes
no constraint on the fraction of invested capital, we must, by the principle of
optimality, choose a = 1, if the expected present contribution is strictly higher,
and a = 0 if it is strictly lower. If the expected contribution from a unit of the
present investment is equal to the one reserved for future optimal investment then
we are indifferent to the choice of a; that is, a = 1 or a = 0 are also optimal.

6.2. Aspects of statistical inference in modelization. Suppose now that we
would like to invest in one from an unknown number of opportunities arriving
on some finite horizon, [0, T ], say. Let N(t) denote the number of opportunities
up to time t , 0 ≤ t ≤ T and let N = N(T ). We suppose that the value of N is
unknown and must be inferred from sequential observation.

There are several possibilities to model this situation. One is to suppose that
all opportunities have i.i.d. arrival times according to a known distribution F

on [0, T ]. As time progresses, one may update information about the value
of N . For example, we may estimate N by the maximum likelihood estimate,
N̂(t) = �N(t)/F (t)� [the greatest integer less than or equal to N(t)/F (t)]. We
may then replace the fixed number n (in Section 1.1) at each arrival time, tk ,
by N̂(tk) = �k/F (tk)� and use the corresponding optimal rule. However, this
procedure is not simple to use because the optimal thresholds must be recomputed
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each time a new record appears. Also, though we expect such procedures to be
reasonably good, we have no idea how close they are to optimal procedures.

Another way to model this situation is to assume that the counting process,
N(t), 0 ≤ t ≤ T , belongs to a certain class and to update the knowledge of its
parameters by sequential observation. Clearly, one would first try relatively simple
Poisson process. The fact that the posterior law of N must be recomputed in
general with the arrival of each new record leads in general to the same difficulty
in computation.

6.3. Pascal processes. For both classes of models, however, there exist some
special cases for which these computational problems dissolve. A particularly nice
case is the one where the record process stays unaffected by updating the arrival
process, N(t), or, in the first model, unaffected by updating the law of N . This is
the case of the Pascal processes of Bruss and Rogers (1991). These are processes
for which the distribution of N(t) given N(s) for fixed s < t is Pascal (negative
binomial). They can be obtained by either a geometric prior for N in the first
model, or by an exponential prior on the intensity rate of the Poisson process in
the second, or by limiting priors of these. Also, any strictly monotone time-scale
transformation of a Pascal process yields again a Pascal process.

A Pascal process has the remarkable property that the process of records forms
a Poisson process [see Bruss and Rogers (1991), page 333]. Note that the record
process is the only relevant process for decision-making in our model. Thus, from
the independent increments property, statistical inference from the past of the
process is redundant and the optimal policy (if it can be computed at time 0) will
be invariant on the whole investment interval.

If λ(t) denotes the intensity function of records and if ϕ(t) represents the
probability of no records in the interval (t, T ), then λ(t) and ϕ(t) are related by∫ T

t
λ(s) ds = − logϕ(t).(6.1)

We note that ϕ(t) is, by definition, nondecreasing in t . We also note that the class
of Pascal processes covers the arrival process which defines the infinite secretary
problem of Gianini and Samuels (1976) where the process of record arrivals is
Poisson with intensity rate 1/t . This is the case T = 1 and ϕ(t) = t , because in
the Gianini–Samuels model, arrival times of different ranks are uniform on [0,1]
and there is no record after time t iff rank 1 arrives in [0, t]. Thus, from (6.1),
λ(t) = 1/t for 0 ≤ t ≤ 1. In general we have ϕ(0) > 0, however, because a Pascal
process may show no arrivals at all, and thus no records.

The optimal rule and optimal reward for a Pascal process is given in the
following theorem.

THEOREM 9. Let ((t )0≤t≤T be a Pascal process with parameter function
ϕ(t) on some horizon [0, T ], and let β(t) be a continuous reward function on
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this horizon. Then, for linear utility, it is optimal to invest all capital in a record
opportunity that appears at time t if

β(t)ϕ(t) ≥ r(t),(6.2)

where r(t) satisfies the differential equation,

r ′(t) = −λ(t)
(
β(t)ϕ(t) − r(t)

)+
,(6.3)

subject to the boundary condition r(T ) = 1. If no such time exists, it is optimal not
to invest at all.

The optimal reward is given by r(0) per unit of initial capital.

PROOF. Let r(t) be the expected reward for one unit of available capital by
investing optimally after time t when t is not a record time, and let r̃(t) be the
corresponding optimal expected reward at time t if t is a record time. Note that
if t is not a record time, then we must pass over t so that r(t) is the same as
the expected reward for optimal investments after time t . If a record arriving at
time t is selected for investment, then the expected return is β(t)ϕ(t). Hence, by
the principle of optimality, for each record time t ,

r̃(t) = max{β(t)ϕ(t), r(t)}.
By the same principle, we must invest the given unit of capital if r̃(t) > r(t); that
is, if β(t)ϕ(t) > r(t). According to the all-or-nothing rule for linear utility, we
must then invest all capital (see Section 6.1), and we may do so if β(t)ϕ(t) ≥ r(t).
This implies the first statement of the theorem with inequality (6.2).

We now derive the differential equation for r(t). If we have for some t ′ ∈
(t, t +δt) a record time, then we obtain r̃(t ′) under optimal continuation; otherwise
we obtain r(t + δt). Using the Poisson property of the process of records, and its
intensity rate at time t , λ(t), given through (6.1), this argument yields

r(t) = (
λ(t)δt + o(δt)

)
r̃(t ′) + (

1 − λ(t)δt + o(δt)
)
r(t + δt).(6.4)

We note that t ′ → t as δt → 0 and recall that β(t) is continuous. Hence, subtracting
in (6.4) r(t + δt) from both sides, dividing by δt and taking the limit as δt → 0
yields the differential equation

r ′(t) = −λ(t)
(
β(t)ϕ(t) − r(t)

)+
.

This proves (6.3).
Finally, since we do not invest (a.s.) at time 0, r(0) is the optimal reward per

investment unit by definition of r(t), completing the proof. �
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6.4. Example. Suppose β(t) is a constant, β > 1. From (6.1) we have λ(t) =
ϕ′(t)/ϕ(t). Then (6.3) becomes, at least for t in a neighborhood of T ,

r ′(t) = −ϕ′(t)β + (
ϕ′(t)/ϕ(t)

)
r(t),

with solution, satisfying r(T ) = 1 (since ϕ(T ) = 1),

r(t) = (
1 − β logϕ(t)

)
ϕ(t)(6.5)

as is easily checked. This holds for t down until, if ever, r(t) > βϕ(t), or ϕ(t) <

e−(β−1)/β . From this point down to 0, r(t) stays constant. The optimal rule is to
invest all capital in the first record appearing after time

t∗ =
{
ϕ−1(e−(β−1)/β), if ϕ(0) < e−(β−1)/β,

0, otherwise.
(6.6)

If ϕ(0) < e−(β−1)/β , the optimal expected reward equals r(0) = r(t∗) =
βe−(β−1)/β , independent of ϕ(t).

6.5. Modeling investment problems with Pascal processes. The case of an
unknown number of opportunities is the most realistic one for applications, and, to
our knowledge, Pascal processes provide the easiest access with explicit solutions.
Therefore, we briefly show how to model problems with Pascal processes.

6.5.1. Very weak information. Suppose first that we have little information
about the dependence of arrival times of opportunities. We may have no idea about
the location of subintervals of [0, T ] where opportunities may be more likely,
nor about the distribution of the total number of opportunities. Due to the lack
of information it is then natural to model the arrival process by a homogeneous
Poisson process. Still, the question remains how to choose the rate, λ. If [0, T ]
represents one year, say, then a rate of 1 per two months, or, in contrast, 6 per
month, say, makes a huge difference for the distribution of N = N(T ). But
we would like to have a robust selection rule, one whose behavior is rather
independent of the choice of λ, if this is possible.

The central point here is that we frame our (weak) knowledge in a compatible
but suitable way. It is known [see Bruss (1987), page 924] that if the rate λ is
random with exponential density with parameter a (i.e., mean 1/a), then the arrival
process N(t) becomes a Pascal process with parameter function

ϕ(t) = (t + a)/(T + a).

[Here the Gianini–Samuels infinite secretary problem model (1976) corresponds
to the limiting parameter function ϕ(t) = t as a → 0 for T = 1.]

As an example, choose the horizon T to be one year, and the reward rate
(per unit of invested capital) β = 2 for the best opportunity. If we estimate λ

to be somewhere between 1/2 and 6 per month, say, then the choice ϕ(t) =
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FIG. 2.

(t + a)/(12 + a), with a somewhere between 1/6 and 2, would seem reasonable.
(We may be slightly more sophisticated by maximizing, as a function of a, the
probability of the rate λ falling between 1/2 and 6 per month, but, as we shall see,
it does not really matter.) We note that ϕ(t) is strictly increasing so that the inverse
function ϕ−1 exists. Now, with β = 2,

ϕ(t∗) = ϕ
(
ϕ−1(e−1/2)

) = e−1/2 if ϕ(0) < e−1/2.

The optimal reward r(t∗) = r(0) is thus independent of a for

0 ≤ a ≤ 12e−1/2/(1 − e−1/2) = 18.4979 . . . ,

since ϕ(0) = a/(12 + a). The optimal rule is not independent of a, however, since
t∗ of (6.6) depends on a in this range. Nevertheless, r(t∗) of (6.5) is not very
sensitive to a wrong choice of t∗ = t∗(a) as Figure 2 illustrates.

This graph shows for β = 2 and for various values of a, the reward rinv(t)

defined as the expected return if we invest in the first record which appears after
time t . The lowest curve on the LHS is the case a = 0, really the limit as a → 0,
and is practically indistinguishable from a = 1/6. (Recall that the smaller a, the
more opportunities we expect.) Also plotted are the cases a = 1, a = 2 and a = 6
(highest curve on LHS). The optimal reward r(t) is the maximum of the straight
line on top and the corresponding curve, each reaching its maximum value of
2e(1−β)/β = 1.213 . . . . Note that the optimal waiting times t∗ = t∗(a) are very
close to each other, ranging from 7.278 at a = 0 to 6.491 at a = 2. Similarly the
corresponding reward curves rinv are very flat in this region.

Only when a is large compared to T does t∗(a) become sensitive to the choice
of a. This contrasts a choice of large a compared to medium and smaller a (the
curve for a = 6 is the flattest curve). Then t∗(a) moves to the left as a increases
(very few expected arrivals).
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To summarize the solution of this example: observing the market for about 6 1
2

months and then investing all available capital in the next record opportunity (if
any), is an excellent strategy, for few as well as many expected opportunities, with
an expected return of over 20 percent (moreover, the money could be placed on a
fixed return contract for the first six months, of course).

6.5.2. Information on arrival time densities. Now suppose that we have some
prior information which enables us to say when opportunities are more likely to
arrive without necessarily knowing the distribution of the total number of arrivals
For instance, we may know patterns of seasonal variation in arrival times, but
we do not know yet whether it will be, generally, a good year. Here we need an
“inhomogeneous” version of a Pascal process.

A convenient way to model this situation is as follows. We draw a graph what
we think of as being the arrival time density f for opportunities on [0, T ]. Let
F(t) = ∫ t

0 f (s) ds, and let N be geometric with law P (N = n + 1) = qnp for
n = 1,2, . . . . Here we may choose p according to a prior belief on the size of
E(N) = 1 + 1/p. The arrival process N(t) is then Pascal with ϕ(t) = p + qF (t)

[Bruss and Rogers (1991), page 332], and the solution can again be derived
conveniently in the same way as in Example 6.5.1.

Again we can see that the solution is robust, both with respect to errors in p

and with respect to F . With this robustness in p and F , it is an excellent model
indeed, because the choice of F allows for a great deal of flexibility. However,
we need that the assumption of geometric prior is not unreasonable, because it is
exactly there that the flexibility stops. The geometric prior can be shown to be the
only prior with finite expectation, which generates in this model a Pascal arrival
process.
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