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We investigate the duration of an elimination process for identifying
a winner by coin tossing or, equivalently, the height of a random incom-
plete trie. Applications of the process include the election of a leader in a
computer network. Using direct probabilistic arguments we obtain exact
expressions for the discrete distribution and the moments of the height.
Elementary approximation techniques then yield asymptotics for the dis-
tribution. We show that no limiting distribution exists, as the asymptotic
expressions exhibit periodic fluctuations.

In many similar problems associated with digital trees, no such exact
expressions can be derived. We therefore outline a powerful general ap-
proach, based on the analytic techniques of Mellin transforms, Poissoniza-
tion and de-Poissonization, from which distributional asymptotics for the
height can also be derived. In fact, it was this complex variables approach
that led to our original discovery of the exact distribution. Complex analy-
sis methods are indispensable for deriving asymptotic expressions for the
mean and variance, which also contain periodic terms of small magnitude.

1. Overview.

1.1. Introduction. The following elimination process has several applica-
tions, such as the election of a leader in a computer network. A group of n
people play a game to identify a winner by tossing fair coins. All players who
throw heads are losers; those who throw tails remain candidate winners and
flip their coins again. The process is repeated among candidate winners until
a single winner is identified. If at any stage all remaining candidate winners
throw heads, the tosses are deemed inconclusive and all remaining players
participate again as candidate winners in the next round of coin tossing.

We investigate the distribution of the height of a random incomplete trie,
the discrete structure that underlies the elimination process described above.
Height distributions of random digital trees have usually been attacked by
purely probabilistic methods that only identify the leading terms [cf. Devroye
(1992), Flajolet (1983), Mendelson (1982) and Pittel (1985, 1986)]. Our ap-
proach here is mainly analytic and provides a mechanical way of computing
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moments and the asymptotic distribution. Having found the asymptotic distri-
bution via this approach, we were able to go back and find a direct probabilistic
approach, also discussed in this paper. However, it appears that the analytic
approach must be used in order to find asymptotic moments, whose calculation
we also discuss.

The elimination process described above provides the foundation for an effi-
cient randomized distributed algorithm for leader election in a computer net-
work. A computer network comprising n identical processors needs to have
one of the processors acting as the leader to supervise communication and
synchronization in the network. Communication is accomplished by exchang-
ing messages and waiting an allotted amount of time for a response. Control
messages of a special kind (called tokens) are sometimes passed within the
network.

Because of routine hardware failures (such as the development of bad sec-
tors on disks) or software failures (such as losing the token or degradation of
synchronization), a leader may temporarily go out of service, in which case
the remaining active processors need to agree on a new leader. The processors
have identification numbers, say 1;2; : : : ; n. The failure of the leader may be
detected when some other processor j (say) sends a message to the leader but
receives no answer in the amount of time allotted for a response. Processor j
then initiates an election by sending a message to all the other processors. (It
is possible that several processors detect the leader’s failure simultaneously, in
which case all processors that encounter the failure initiate the election mes-
sage simultaneously.) Every active processor receiving the election message
suspends its routine computing and simulates the entire elimination process
locally by generating an unbiased Bernoulli random variable for each coin flip.
All the simulations are identical if all processors use the same random num-
ber generator and all start from the same seed value [see Devroye’s (1986)
encyclopedia on random number generation]. The winner broadcasts its suc-
cess by sending a message to all processors and rewrites the list of active
processors by including only those processors that send a congratulatory ac-
knowledgment. The updated list is sent to all processors along with the seed
of the random number generator, because it is possible that some processors
have come back into operation since the last election. Those processors have
lost track of the current seed and the current list of active processors.

The distributed algorithm discussed above determines a leader in average
time of logarithmic order in n, as implied in Prodinger (1993). Thus, the aver-
age duration of the distributed algorithm based on simulating the elimination
process is better than the usual linear-time deterministic algorithms currently
in use for leader election [see Brassard and Bratley (1988)]. Our results will
also reveal a sharp concentration around the average; the variance is only
of constant order, giving rise to a very narrow probability profile around the
mean.

Our algorithm (and any other leader election algorithm, for that matter) will
need also to resolve the situation where the elected leader itself goes down
during the election process. In this case a reelection must be held. Thus the
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algorithm discussed above is only the basic building block of a more elaborate
algorithm for leader election. This building block alone will handle the election
most of the time in a reliable network with low failure rates, that is, when
the average wait until the next failure of any computer is much larger than
the average time it takes to simulate the leader election algorithm. This is a
reasonable assumption in a modern computer network of moderate size, where
the average wait until the next failure is on the order of a few hours, whereas
the average time of local simulation is only a fraction of a second.

1.2. The height of a random incomplete trie. A binary tree structure un-
derlies the elimination process we have discussed. At the root of the tree we
have one node labelled with all participants. After all the participants flip their
coins for the first time, losers (if any) are placed in a leaf node that is attached
to the root as a right child and all candidate winners are placed in a nonleaf
node that is attached as a left child. Leaf nodes are terminal nodes that are
not developed any further. (If at some stage all remaining candidate winners
flip heads, they are all placed in a nonleaf node attached as a right child.)
The process repeats recursively on every nonleaf node until a single winner is
identified. The node containing the winner is also considered a leaf, as it is ter-
minal. Figure 1 illustrates the discrete structure underlying the elimination
process. In Figure 1, leaf nodes are represented as rectangles; all the other
nodes of the tree have an oval shape. An edge of the tree in Figure 1 leading
from a parent node to its child is labelled with H (head) or T (tail) according to
the result obtained by the group within the child node. This random discrete
structure is similar in some aspects to the random trie structure, a classical
data structure for digital data [see Knuth (1973b) or Mahmoud (1992)]. The
difference between the discrete structure of the elimination process and the

Fig. 1. An incomplete trie for the elimination process starting with 7 players.
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standard trie is that in the trie all the nodes are further developed if they
contain more than two data items so that each datum is eventually in a node
by itself. Thus, in a sense, the tree structure underlying the elimination pro-
cess is an incomplete trie and will be so called in this paper. The terminology
was coined by Prodinger (1993), who introduced this tree structure and found
the average behavior of several of its characteristic properties. Grabner (1993)
generalized the process to that of identifying several winners instead of only
one. Grabner (1993) also found the average behavior of some of the character-
istic properties of this more general incomplete trie.

The elimination process to identify a single or several winners also has the
spirit of a class of problems posed by Rényi (1961) in his lecture series at
Michigan State University. Pittel and Rubin (1992) find connections between
one of Rényi’s interesting questions and the notion of a PATRICIA (for Prac-
tical Algorithm To Retrieve Information Coded In Alphanumeric) tree, a kind
of trie with path compression for faster data retrieval [Knuth (1973b)].

The height of an incomplete trie is the length of the path from the root to the
winner, which is the longest root-to-leaf path in the tree. We shall denote the
height of an incomplete trie underlying the elimination process beginning with
n players by Hn. This quantity is the number of elimination rounds until the
winner is identified, which is a measure of the time duration of the elimination
process, if all the coin tosses at any stage are carried out simultaneously (as
is the case in the leader election distributed algorithm).

In this paper we investigate the asymptotic distribution of Hn. This ran-
dom variable has a very wide range. For n ≥ 2, it can assume any value in
�1;2; : : :�∪ �∞�. We shall develop asymptotics for the distribution function of
a centered version of Hn. Even with the proper centering, we shall see that
no limit distribution exists. However, the distribution function of the centered
Hn oscillates between well-defined extremes. More specifically, the periodic
function

α�n� x= lg n− �lg n�
appears in the distribution of the centered height Hn − �lg n�. (In this paper,
lg denotes logarithm with base 2; the natural logarithm is denoted, as usual,
by ln.) Corresponding to values of n that are integer powers of 2, the upper
extreme is a discrete distribution function that coincides at the integer points
with the continuous distribution function

2−x

exp�2−x� − 1
:

As n gradually increases, the periodic effect of α�n� on the distribution is to
lower the staircase distribution down (at any fixed argument) until it comes
very close to the other extreme discrete distribution function, which is also a
staircase that coincides at the integer points with the continuous distribution
function

21−x

exp�21−x� − 1
;
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before it “wraps around” to approach the upper continuous distribution func-
tion when n becomes a power of 2 again. This behavior is formally expressed
as a corollary to Theorem 2.

The plan of this paper is as follows. We present the main results of this
paper in Section 2. The results come in two flavors: exact (Theorem 1) and
asymptotic (Theorem 2). The rest of Section 2 discusses several ramifications
of the main results and connections to the digital tree structures used for
computer data storage.

In Section 3 the exact results and their proofs are fully developed. In Sec-
tion 3.1, the exact distribution and exact mean and variance are found. Then,
in Section 3.2, the exact distribution is manipulated by elementary asymptotic
techniques to yield an asymptotic approximation and tight rates of approach,
from which a Berry–Esseen type result follows.

The exact distribution was actually first obtained by an analytic method
based on a generating function approach. Once we had obtained the exact
distribution, we realized that it can also be derived by the directly probabilistic
arguments of Section 3.1.

The analytic formulation is the focus of Section 4. Moment calculations in
digital problems are known to be somewhat more tractable under Poissoniza-
tion, that is, when the number of relevant objects (the number of players,
in our case) is assumed to follow a Poisson distribution instead of being a
fixed number. A subsequent step of de-Poissonization transforms the results
back to the fixed-population model, the probability model of prime interest.
This method, requiring a foray into the complex domain, has been successfully
applied in average-case analyses, as well as for a few variance calculations,
in digital methods. We apply the method in Section 4.2 to derive asymptotic
expressions for the mean and variance of height. It is a main objective of
this paper to show (see Section 4.1) that the method extends beyond mean
and variance calculations to asymptotic distributions (in the context of order
statistics of dependent random variables).

2. Main results. In this section we present our main results for the
height Hn and conclude with some remarks. Our first main theorem is con-
cerned with exact values, which involve Bernoulli numbers. For background on
these numbers, see, for example, Knuth (1973a). In Section 3.1 [Lemma 2(ii)]
we shall in fact find exact expressions for all the moments.

Theorem 1. Consider an incomplete binary trie with n ≥ 1 and let Bj
denote the jth Bernoulli number.

(i) For any integer k ≥ 0,

Prob�Hn ≤ k� =
n

2kn

2k−1∑
j=0

jn−1 =
n−1∑
j=0

(
n

j

)
Bj

2kj
:(1)
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(ii) [Prodinger (1993).] The average height E�Hn� is given exactly by

E�Hn� = −
n−1∑
j=1

(
n

j

)
Bj

1− 2−j
:

(iii) The variance Var�Hn� of the height is given exactly by

Var�Hn� = −
n−1∑
j=1

(
n

j

)
Bj

1+ 2−j

�1− 2−j�2 −E2�Hn�:

Computationally, the formulas of Theorem 1(ii) and (iii) become unwieldy
as n becomes large. The Bernoulli numbers vanish for odd index greater than
or equal to 3, but for even index they increase in magnitude very rapidly
and alternate in sign. It is desirable then to have asymptotic approximations
involving only elementary functions. The next theorem gives such accurate
asymptotic approximations.

Theorem 2. Define L x= ln 2 and χk x= 2πik/L.

(i) Uniformly over all integers k,

Prob�Hn ≤ �lg n� + k� =
2α�n�−k

exp�2α�n�−k� − 1
+O

(
1√
n

)

as n→∞.
(ii) [Prodinger (1993).] The average height E�Hn� satisfies

E�Hn� = lg n+ 1
2
− δ1�lg n� +O

(
1
n

)
;

where δ1�·� is a periodic function of magnitude less than or equal to 2× 10−5

given by

δ1�x� x=
1
L

∑
−∞<k<∞

k6=0

ζ�1− χk�0�1− χk� exp�2πikx�;(2)

and ζ�·� and 0�·� denote Riemann’s zeta function and Euler’s gamma function,
respectively.

(iii) The variance Var�Hn� of the height satisfies

Var�Hn� =
π2

6L2
+ 1

12
− 2γ1

L2
− γ2

L2
+ δ2�lg n� +O

(
lnn
n

)

= 3:116695 · · · + δ2�lg n� +O
(

lnn
n

)
:

Here the constants �−1�kγk/k!, k ≥ 0, are the so-called Stieltjes constants, with

γk x= lim
m→∞

( m∑
i=1

lnk i
i
− lnk+1m

k+ 1

)
y
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in particular, γ0=γ=0:577215 : : : is Euler’s constant and γ1= −0:072815 : : : :
The periodic function δ2�·� has magnitude less than or equal to 2× 10−4.

Remark 1. (a) The function δ2�·� appearing in the asymptotic formula for
the variance is explicitly given by

δ2�x� x=
2
L2

∑
−∞<k<∞

k6=0

d2�χk� exp�2πikx� − δ2
1�x�;(3)

where

d2�s� x= ζ�1− s�0�−s� − ζ ′�1− s� s 0�−s� − s ζ�1− s�ψ�−s�0�−s�:

Here ψ�·� is the classical psi (or digamma) function ψ�s� x= 0′�s�/0�s�.
(b) The bound on δ1 was obtained by using

�δ1�x�� ≤
1
L

∑
−∞<k<∞

k6=0

�ζ�1− χk�0�1− χk��

and numerically evaluating the series on the right, which converges very
rapidly. The bound on δ2 was obtained in a similar fashion.

(c) While the function δ1�·� fluctuates symmetrically about 0, the same is
not quite true for δ2�·�. In fact, one sees from (2) and (3) that the fluctuations
of δ2�·� are symmetric about the constant

− 1
L2

∞∑
k=1

�ζ�1− χk�0�1− χk��2

whose value is approximately −10−10.
(d) A starting point for background on the zeta and gamma functions is

Abramowitz and Stegun (1972). The proof in Section 4.2 will show how these
arise naturally in our calculations. More information on the Stieltjes constants
can be found in Berndt [(1985), pages 164–165]. These arise in our calculations
as a result of the Laurent series expansion

ζ�s� = 1
s− 1

+
∞∑
k=0

�−1�kγk
k!

�s− 1�k;

valid for all complex s 6= 1.

The sequence α�n� appearing in Theorem 1 is dense on the interval �0;1�
(though not uniformly dense); see Kuipers and Niederreiter (1974). This con-
sideration leads us to conclude the following.
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Corollary 1. A limit distribution does not exist for Hn−�lg n�. However,
for each fixed integer k,

lim inf
n→∞

Prob�Hn ≤ �lg n� + k� =
2−k+1

exp�2−k+1� − 1
;

lim sup
n→∞

Prob�Hn ≤ �lg n� + k� =
2−k

exp�2−k� − 1
:

Now we are in a position to discuss some consequences of our main re-
sults and to offer some additional remarks. Corollary 1 indicates that the
asymptotic distribution of Hn−�lg n� lies between two well-defined extremes.
Each extreme is a discretized version of a simple continuous distribution func-
tion. That is, each extreme is a staircase that rises at the integer points to
agree with the corresponding continuous distribution function. The distribu-
tion function of H20 − �lg 20� is sketched in Figure 2 and illustrates the re-
lationship between a “typical” distribution and the two extreme continuous
distribution functions described in Section 1.2.

Observe that the asymptotic distribution [Theorem 2(i)] can be expanded
as a Taylor series involving doubly exponential terms which resemble the
extreme value distribution (i.e., exp�−e−x�) that often appears as the limiting
distribution of the maximum of n continuous i.i.d. random variables [see
Galambos (1987)]. However, Anderson (1970) observed that such a limiting
distribution may not exist for n discrete i.i.d. random variables; see also
D’Aristotile, Diaconis and Freedman [(1988), Section 5C]. That this phe-
nomenon occurs for the height of an incomplete trie should not be surprising,
since the height Hn can be represented as an extreme statistic [cf. Jacquet
and Szpankowski (1991) and Pittel (1986) for analogous connections between
order statistics and characteristics of digital tries]. To see this, let Lk be the
number of candidate winners after k rounds of elimination. Further, suppose
that the leaves are numbered 1;2; : : : ;K from right to left. Observe that K,

Fig. 2. The distribution function of H20 − �lg 20� and the two continuous extremes.
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the number of leaves, is a random variable. Let Cj be the length of the path
from the root to the lowest common ancestor (that is, the common ancestor
farthest from the root) of the jth leaf and the leaf containing the winner.
Clearly, 0 ≤ C1 ≤ C2 ≤ · · · ≤ CK and

Hn = 1+max�j ≥ 0x Lj > 1� = 1+ max
1≤j<K

�Cj� = 1+CK−1:

We can relate the above to properties of the standard trie (in the context
of identification by coin tossing, even those who tossed heads continue the
process until one player is left in each leaf). In such a standard digital tree,
let C̃ij be the length of a path from the root to the lowest common ancestor
of the ith and jth leaves. We denote by D̃n�i� the length of a path from the
root to the ith leaf and by H̃n the length of longest root-to-leaf path in such a
tree. It is an easy exercise [Jacquet and Szpankowski (1991)] to see that

D̃n�i� = 1+max
1≤j≤n
j6=i

�C̃ij�;

and

H̃n = 1+ max
1≤i<j≤n

�C̃ij�:

Observe that each C̃ij is geometrically distributed.
Had C̃ij been i.i.d. random variables, then from standard extreme distri-

bution theory we could immediately conclude that there exists a sequence ãn
of logarithmic order in n such that Prob�H̃n − ãn ≤ k� oscillates between
exp�−2−�k−1�� and exp�−2−k�. However, the C̃ij are not independent. Never-
theless D̃n�i� and H̃n still exhibit this sort of behavior [cf. Jacquet and Sz-
pankowski (1991), Pittel (1986)]. (The behavior of the depth is not robust: in
the case of biased coins the centered depth has a Gaussian limiting distribu-
tion.)

3. A probabilistic approach. In this section we prove all the exact re-
sults of Theorem 1 and derive from Theorem 1(i) the asymptotics of Theo-
rem 2(i). The arguments of this section have some resemblance to those used
in the analysis of probabilistic counting [Flajolet and Martin (1985)].

3.1. Exact distribution and moments by a probabilistic argument. We be-
gin by proving Theorem 1(i). The second equality in (1) follows from a standard
identity [e.g., Knuth (1973a), Exercise 1.2.11.2–4]:

n
J−1∑
j=0

jn−1 = Bn�J� −Bn =
n−1∑
j=0

(
n

j

)
BjJ

n−j;

where Bn denotes the nth Bernoulli polynomial. We shall prove the first equal-
ity in an alternative form. Let �k� x= �1; : : : ; k�. We first note the identity

1
2kn

2k−1∑
j=0

jn−1 = 1
2k

∑
S⊆�k�

(
1− 1

2k
−
∑
s∈S

1
2s

)n−1

:
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Indeed, by reversing the order of summation we establish the second equality
in

1
2kn

2k−1∑
j=0

jn−1 = 1
2k

2k−1∑
j=0

(
j

2k

)n−1

= 1
2k

2k−1∑
j=0

(
1− 1

2k
− j

2k

)n−1

:

Finally, by considering binary expansions, as S ranges over the subsets of �k�
the expression

∑
s∈S 2−s ranges over the dyadic rationals of rank k in �0;1�.

So we shall complete the proof of Theorem 1(i) by showing

Prob�Hn ≤ k� =
n

2k
∑
S⊆�k�

(
1− 1

2k
−
∑
s∈S

1
2s

)n−1

:

Arbitrarily identify the players with labels 1 through n. It is sufficient
to show that the probability that player 1 is chosen as the winner by the
completion of the kth round equals

1
2k

∑
S⊆�k�

(
1− 1

2k
−
∑
s∈S

1
2s

)n−1

:

We may imagine that every player continues tossing coins through the kth
round, even if that player has been eliminated or declared the winner in an
earlier round. Then it is enough to show that, through k rounds of play, the
conditional probability that player 1 wins, given that the set of rounds on
which player 1 flips heads is precisely S, equals �1−2−k−∑s∈S 2−s�n−1. Since
the various players’ flips are mutually independent, the following lemma is
sufficient.

Lemma 1. The conditional probability that player 2 is eliminated in the
course of the first k rounds, given that player 1 flips heads on rounds s ∈ S
and tails on rounds s ∈ �k� −S, equals

1− 2−k −
∑
s∈S

2−s:

Proof. All probabilities in this proof are computed conditionally given
that player 1 flips heads on rounds s ∈ S and tails on rounds s ∈ �k� − S.
Write S = �s1; : : : ; sr� with 0 ≤ r ≤ k and s1 < · · · < sr. For convenience, set
s0 x= 0 and sr+1 x= k + 1. Let E denote the event that player 2 is eliminated
in the course of the first k rounds. For i = 0; : : : ; r let Ei denote the event
that the round-by-round flips for player 2 agree with those of player 1 through
round si but not through round si+1 − 1. Then it is easy to see that E is the
disjoint union of E0; : : : ;Er, and that

Prob�Ei� = 2−si − 2−�si+1−1�:
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It follows that

Prob�E� =
r∑
i=0

[
2−si − 2−�si+1−1�] =

r∑
i=0

2−si − 2
r+1∑
i=1

2−si

= 2−s0 − 2−�sr+1−1� −
r∑
i=1

2−si = 1− 2−k −
∑
s∈S

2−s: 2

Remark 2. Suppose that our standard fair-coin game is modified by spec-
ifying that the probability of heads is p ∈ �0;1� and the probability of tails
is q = 1 − p. Thus when p 6= q we introduce bias. The argument used to
prove Theorem 1(i) leads to the following extension to incomplete binary tries
arising from flipping a biased coin.

Proposition 1. Consider a biased incomplete binary trie as discussed
above. Then for any integers n ≥ 1 and k ≥ 0,

Prob�Hn ≤ k� = n
k∑
r=0

prqk−r
∑

1≤s1<···<sr≤k

[
1− prqk−r −

r∑
j=1

pj−1qsj−�j−1�
]n−1

:

The asymptotic behavior of Hn in the biased-coin case is the subject of
ongoing research.

The probability mass function and (factorial) moments of Hn are easily
calculated from the exact distribution function in Theorem 1(i). The result is
stated in the next lemma, from which parts (ii) and (iii) of Theorem 1 follow
immediately.

Lemma 2. Consider an incomplete binary trie with n ≥ 2.

(i) We have Prob�Hn = 0� = 0 and

Prob�Hn = k� = −
n−1∑
j=1

(
n

j

)
2j − 1

2kj
Bj

for k ≥ 1.
(ii) For any integer r ≥ 1, the rth factorial moment of Hn is given by

E��Hn�r� x= E�Hn�Hn − 1� · · · �Hn − �r− 1��� = −r!
n−1∑
j=1

(
n

j

)
2j

�2j − 1�rBj:

3.2. Derivation of the asymptotic distribution from the exact. In this sec-
tion we use the rearrangement

Prob�Hn ≤ k� =
n

2k

2k∑
j=1

(
1− j

2k

)n−1

; k = 0;1; : : : ;(4)

of the first equality of (1) to prove the following quantified improvement to
Theorem 2(i).
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Proposition 2. For any integers n ≥ 1 and −∞ < k <∞,

− 9√
n
≤ Prob�Hn ≤ �lg n� + k� −

2α�n�−k

exp�2α�n�−k� − 1
≤ 8
n
:(5)

The proof of Proposition 2 will make use of the following two calculus facts.

Lemma 3. Given c ≥ 2/3, define

f�x� x= x2ex

�ecx − 1��ex − 1� ; x > 0:

Then f�x� < 8 for all x > 0.

Proof. For x ≤ 1 we have

f�x� ≤ x2ex

�cx�x =
ex

c
≤ e
c
≤ 3e

2
< 8:

For x ≥ 1 we have

f�x� = x2

�ecx − 1��1− e−x� ≤
x2

��1/2�c2x2��1− e−1� =
2e
e− 1

c−2 ≤ 9e
2�e− 1� < 8: 2

Lemma 4. For all 0 ≤ x ≤ c ≤ 3/5,

1− x ≥ exp�−�1+ c�x�:

Proof. It is sufficient to show that

g�x� x= 1− x− exp�−x�1+ x��; x ∈ �0;1�;
is nonnegative for x ∈ �0;3/5�. Indeed, it is straightforward to show that g is
unimodal (i.e., g′ switches sign once, from positive to negative) on �0;1�, and
g�3/5� > 0:01 > 0. 2

Proof of Proposition 2. Since the result is easily verified for n = 1;2;3,
we may suppose n ≥ 4 throughout.

Upper bound. To prove the upper bound, we may also suppose that k ≥
−�lg n�. In that case we may apply (4):

Prob�Hn ≤ �lg n� + k� = Prob�Hn ≤ lg n− α�n� + k�

= 2α�n�−k
n2k−α�n�∑
j=1

(
1− j

n2k−α�n�

)n−1

≤ 2α�n�−k
n2k−α�n�∑
j=1

exp
(
−j�n− 1�

n
2α�n�−k

)

≤ 2α�n�−k
∞∑
j=1

exp
(
−j�n− 1�

n
2α�n�−k

)
= 2α�n�−k

exp�2α�n�−k�n− 1�/n� − 1



1272 J. A. FILL, H. M. MAHMOUD AND W. SZPANKOWSKI

= 2α�n�−k
[

1
exp�2α�n�−k� − 1

+ 1
exp�2α�n�−k�n− 1�/n� − 1

− 1
exp�2α�n�−k� − 1

]

= 2α�n�−k
[

1
exp�2α�n�−k� − 1

+ exp�2α�n�−k� − exp�2α�n�−k�n− 1�/n�
�exp�2α�n�−k�n− 1�/n� − 1��exp�2α�n�−k� − 1�

]

≤ 2α�n�−k
[

1
exp�2α�n�−k� − 1

+ n−12α�n�−k exp�2α�n�−k�
�exp�2α�n�−k�n− 1�/n� − 1��exp�2α�n�−k� − 1�

]
;

where for the final inequality we have employed the mean value theorem. The
desired upper bound now follows from Lemma 3.

Lower bound. First, if k < α�n� + 1− 1
2 lg n, then

2α�n�−k

exp�2α�n�−k� − 1
≤ �1/2�√n

exp
(
�1/2�√n

)
− 1
≤ �1/2�√n
�1/2�√n+ �1/8�n ≤

4√
n
<

9√
n
;

whence the lower bound in (5) holds trivially. So we may assume k ≥ α�n� +
1− 1

2 lg n ≥ − lg n. Then we may again apply (4):

Prob�Hn ≤ �lg n� + k�

= 2α�n�−k
n2k−α�n�∑
j=1

(
1− j

n2k−α�n�

)n−1

≥ 2α�n�−k
�√n2k−α�n��∑

j=1

(
1− j

n2k−α�n�

)n

≥ 2α�n�−k
�√n2k−α�n��∑

j=1

exp�−j�1+ n−1/2�2α�n�−k� (by Lemma 4)

= 2α�n�−k
1− exp�−�1+ n−1/2��√n2k−α�n��2α�n�−k�

exp��1+ n−1/2�2α�n�−k� − 1
:

The exponential term appearing in the numerator of the last fraction is
bounded above by

exp�−�√n2k−α�n� − 1�2α�n�−k� = exp�−√n+ 2α�n�−k� ≤ exp
(
−1

2

√
n

)
≤ 2
e
√
n
;

and, proceeding as for the upper bound,

1
exp�2α�n�−k�1+ n−1/2�� − 1

≥ 1
exp�2α�n�−k� − 1

− n−1/22α�n�−k exp�2α�n�−k�1+ n−1/2��
�exp�2α�n�−k� − 1�

[
exp�2α�n�−k�1+ n−1/2�� − 1

]

≥ 1
exp�2α�n�−k� − 1

− 82k−α�n�√
n

(by Lemma 3).
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Therefore,

Prob�Hn ≤ �lg n� + k� ≥
(

1− 2
e
√
n

)[
2α�n�−k

exp�2α�n�−k� − 1
− 8√

n

]

≥ 2α�n�−k

exp�2α�n�−k� − 1
− 9√

n
: 2

4. Distribution by an analytic approach. We apply an analytic ap-
proach based on Poissonization and de-Poissonization to rederive exact and
asymptotic distributions for Hn. One of the earliest applications of this idea
can be traced back to the work of Kac (1949). Over the past few decades the
idea has resurfaced in various guises, and the difficult step has always been
in carrying results from the Poisson model back to the fixed-population model,
the model of prime interest. A variety of ad hoc solutions has been proposed.
Perhaps the earliest in digital problems is due to Jacquet and Régnier (1986).
Poissonization and de-Poissonization have also been considered by some as
a mathematical transform followed by an inversion operation. The first to
treat it as such were Gonnet and Munro (1984) [Poblete (1987) follows up on
the inversion of the transform]. Other useful related results may be found in
Holst (1986), Aldous (1989), Rais, Jacquet and Szpankowski (1993), Arratia
and Tavaré (1994) and Jacquet and Szpankowski (1995).

Poissonization is carried out as follows. Instead of having a population of
fixed size, we first determine the number of players participating in the elim-
ination contest by a draw from a Poisson distribution with parameter w. For
subsequent de-Poissonization, we even formally allow w to be a complex num-
ber in order to manipulate the resulting generating function by considering its
analytic continuation to the w complex plane. The de-Poissonization process is
then achieved by a combination of Mellin transform methods and asymptotic
integration over a circle of radius n in the w complex plane. The general idea
in Poissonization is that the behavior of a fixed-population problem should be
close to that of the same problem under a Poisson model having the fixed-
population problem size as its mean. The rationale behind the mechanics of
the approximation is discussed following the de-Poissonization lemma.

The Mellin transform [see, e.g., Mahmoud (1992), Section 1.5, for an intro-
duction or Flajolet, Gourdon and Dumas (1995) for a survey] plays a prominent
role in this process because the functional equations for the probability gen-
erating functions in digital problems under the Poisson model usually have a
harmonic nature. That is, when solved by iteration the solution is a harmonic
sum of the general form

∞∑
k=0

λkf�akx�:(6)

Such a harmonic function has a simple Mellin transform. The formula for the
transform f∗ of a function f is

f∗�s� =
∫ ∞

0
f�x�xs−1 dx:
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Applied to a harmonic sum of a base function f with different scales as in (6),
the Mellin transform yields

f∗�s�
∞∑
k=0

λka
−s
k :

With the proper choice of a fundamental strip (usually a vertical strip of finite
width or a semiinfinite strip) for the complex variable s, convergence of the
series is achieved as well as the existence of f∗�s�. One then resorts to contour
integration to evaluate f�x� via the inversion integral

1
2πi

∫
x−s

(
f∗�s�

∞∑
k=0

λka
−s
k

)
ds;

which is taken over an infinite vertical line in the fundamental strip. That is,
the integral is really done by a residue calculation and an asymptotic solution
is recovered for the functional equation of the probability generating function
under the Poisson model.

4.1. Asymptotic distribution by Poissonization and de-Poissonization. For
each n ≥ 0, let

Gn�z� x=
∞∑
k=0

Prob�Hn = k�zk

denote the probability generating function for the fixed-population height Hn.
(We use the conventions H1 = 0 and, since it is not possible to choose a winner
from 0 players, H0 = ∞.) The starting point of our analysis is Prodinger’s
equation [Prodinger (1993)]:

Gn�z� =
z

2n

n∑
k=1

(
n

k

)
Gk�z� +

zGn�z�
2n

;(7)

which is valid for n ≥ 2, with the boundary values G1�z� = 1 and G0�z� = 0.
[Equation (7) is easily derived by conditioning on the number of tails tossed
in the first round.] This equation can be used to extract the exact distribution
of Hn, as will be sketched later on in this subsection.

We shall call the tree constructed under Poissonization the Poissonized in-
complete trie. We shall also refer to its properties as Poissonized; in particular
we shall call the height of the Poissonized incomplete trie the Poissonized
height and denote it by HN�w� or simply by HN, where N ≡ N�w�, the Pois-
sonized number of participants, has the Poisson distribution with mean w.
Introduce the generating function

g�w;z� x=
∞∑
n=0

Gn�z�e−wwn
n!

:
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This bivariate generating function has the following interpretation as a prob-
ability generating function for the Poissonized height:

E�zHN� =
∞∑
n=0

E�zHN �N = n�e
−wwn

n!

=
∞∑
n=0

E�zHn�e
−wwn

n!

= g�w;z�:
Multiplying both sides of (7) by e−wwn/n!, summing over the range of valid-

ity of the recurrence (i.e., n ≥ 2) and adjusting for the boundary cases n = 0
and n = 1, we obtain

g�w;z� = z�1+ e−w/2�g
(
w

2
; z

)
+ e−ww�1− z�:(8)

To handle this latter recurrence, introduce

h�w;z� = g�w;z�
1− e−w ;

which transforms the recurrence into

h�w;z� = zh
(
w

2
; z

)
+R�w;z�;(9)

where

R�w;z� x= w�1− z�
ew − 1

:

The recurrence (9) can now be solved by direct iteration [see Knuth (1973b) or
Szpankowski (1987) for a general solution of this type of equation]. This gives

h�w;z� =
∞∑
k=0

R

(
w

2k
; z

)
zk + lim

k→∞

[
h

(
w

2k
; z

)
zk
]
:(10)

It is not hard to show that the limit vanishes if we assume that z belongs
to the open disk of radius 1/2 centered at the origin in the z complex plane.
Thus, in the assumed domain

h�w;z� =
∞∑
k=0

R

(
w

2k
; z

)
zk:(11)

The sum in (11) is a harmonic sum and so is well suited to the application of
Mellin transform methods [see Flajolet, Gourdon and Dumas (1995) or Mah-
moud (1992) for background]. We denote the Mellin transform of a function
f�w;z� with respect to w by f∗�s; z�; that is,

f∗�s; z� x=
∫ ∞

0
f�w;z�ws−1 dw:
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Formally,

h∗�s; z� = R∗�s; z�
∞∑
k=0

�2sz�k:

This transform calculation is valid provided the following hold:

1. The sum
∑∞
k=0�2sz�k converges, which happens if < s < − lg �z�.

2. The transform R∗�s; z� exists. Using the geometric series representation

1
ew − 1

=
∞∑
k=1

e−wk

and the harmonic sum formula for the Mellin transform [Flajolet, Gourdon
and Dumas (1995)], we find after some simple algebra

R∗�s; z� = �1− z�0�s+ 1� ζ�s+ 1�;
provided < s > 1. This calculation uses the classical representations of the
gamma function as an integral and of the zeta function as a sum, both valid
over the stated domain.

So the Mellin transform h∗�s; z� exists in the following domain of the s
complex plane:

1 < < s < − lg �z�:
Observe that this fundamental strip is nonempty for �z� < 1/2, which is also
sufficient to annihilate the limit in (10). Within this fundamental strip, the
transform is given by

h∗�s; z� = �1− z�0�s+ 1� ζ�s+ 1�
1− 2sz

:

Since we are concerned here with the distribution function of HN rather than
its probability mass function, our interest centers on the transform

h∗�s; z�
1− z =

0�s+ 1� ζ�s+ 1�
1− 2sz

:

This expression can be expanded immediately in a power series in z; the
coefficient of zk is

2ks0�s+ 1� ζ�s+ 1�:
Inverting the transform gives

h�w;z�
1− z =

∞∑
k=0

[
zk

w/2k

exp�w/2k� − 1

]

for w > 0, but
∞∑
k=0

Prob�HN�w� ≤ k�zk =
g�w;z�
1− z =

�1− e−w�h�w;z�
1− z ;
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so for each k = 0;1;2; : : : and w > 0 we have

Prob�HN�w� ≤ k� = �1− e−w�
w/2k

exp�w/2k� − 1
:(12)

The relation (12) can be manipulated to prove Theorem 1(i). In fact, this is
how we originally discovered the exact distribution. Once it became known to
us, we went back and devised the direct argument of Section 3.1. Here is the
derivation. For any w > 0,

Prob�HN�w� ≤ k� = exp�−w�w
2k

exp�w� − 1
exp�w/2k� − 1

= exp�−w�w
2k

2k−1∑
j=0

exp
(
jw

2k

)

= exp�−w� 1
2k

2k−1∑
j=0

∞∑
n=1

�j/2k�n−1wn

�n− 1�!

= exp�−w�
∞∑
n=1

wn

n!

(
n

2kn

2k−1∑
j=0

jn−1
)
;

from which the first equality in (1) is evident.
We can also use (12) to derive asymptotics, as follows. We use the de-

Poissonization lemma of Rais, Jacquet and Szpankowski (1993) to derive an
asymptotic expression for the fixed-population probabilities

pk;n x= Prob�Hn ≤ k�(13)

from an asymptotic development for the Poissonized probabilities

Pk�w� x= �1− exp�−w�� w/2k

exp�w/2k� − 1
:(14)

Although up until now the right-hand side of (14) has arisen only as
Prob�HN�w� ≤ k� for real w ≥ 0, note that it defines an entire function of
the complex variable w. (The singularity at the origin is removable.) We next
state the de-Poissonization lemma of Rais, Jacquet and Szpankowski (1993)
in a slightly altered form (the proof remains unchanged).

Lemma 5. Consider an arbitrary collection of sequences �pk;n�n≥0, k ∈ K,
and suppose that each Poisson transform

Pk�w� x=
∞∑
n=0

pk;n
exp�−w�wn

n!

can be analytically continued as an entire function of complex w. Fix θ ∈
�0; π/2� and let Sθ be the cone �wx �argw� ≤ θ�. Suppose that there exist
constants a < 1, c, β1, β2 and w0 such that the following conditions hold for
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every k ∈K:

(i) For all w ∈ Sθ with �w� ≥ w0,

�Pk�w�� ≤ β1�w�c:
(ii) For all w /∈ Sθ with �w� ≥ w0,

�Pk�w� exp�w�� ≤ β2�w�c exp�a�w��:
Then for large n, uniformly in k ∈K,

pk;n = Pk�n� +O�nc−1/2�:

Remark 3. The de-Poissonization lemma says that if conditions (i) and (ii)
are satisfied with c < 1/2, the fixed-population probabilities are nearly the
same as the Poissonized probabilities with n replacing w.

The rough idea behind de-Poissonization is the following. For any fixed n,
the coefficient of wn in the power series expansion of ewPk�w� about the origin
is pk;n/n!. Finding pk;n is then only a matter of extracting a coefficient from
a generating function. This is routinely done by considering a contour integral
around the origin in the w complex plane. In particular, when we choose the
contour to be the circle �w� = n, we get

pk;n =
n!

2πi

∮ ewPk�w�
wn+1

dw:

Such integrals typically have most of their value contributed by a small arc at
the intersection of the circle with the positive real line (i.e., at w = n); the rest
of the contour adds only an ignorable correction. Over this small arc, the value
of the functionPk�w� is well approximated byPk�n�. Taking this now-constant
factor outside the integral, performing the remaining elementary integration
and applying Stirling’s approximation to n!, we see that all factors cancel
out, except Pk�n�. The point is that pk;n can be accurately approximated by
Pk�n�, with a diminishing error as n→∞. The de-Poissonization lemma gives
sufficient conditions to make this approximation valid.

In order to prove Theorem 2(i), we have two tasks remaining: we must verify
that the two conditions of the de-Poissonization lemma are satisfied by (13)
and (14) and we must apply the lemma. Neither task is difficult. We first show
that the conditions are met for any θ ∈ �0; π/2� and w0 > 0 by taking

c = 0; a = cos θ; β1 = 2 sec θ β2 = sec θ:

To verify condition (i), we first observe that if 0 6= v ∈ Sθ, then �v� ≤
<v/ cos θ and

� exp�v� − 1� ≥ � exp�v�� − 1 = exp�<v� − 1;

so that ∣∣∣∣
v

exp�v� − 1

∣∣∣∣ ≤ �sec θ� <v
exp�<v� − 1

≤ sec θ:
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Thus for 0 6= w ∈ Sθ we have

�Pk�w�� ≤ �1− exp�−w��
∣∣∣∣

w/2k

exp�w/2k� − 1

∣∣∣∣

≤ �sec θ��1− exp�−w��
≤ �sec θ��1+ � exp�−w���
≤ �sec θ��1+ exp�−<w��
≤ 2 sec θ:

To verify condition (ii), we first observe that if v /∈ Sθ, then <v ≤ �v� cos θ.
Thus for 0 6= w 6∈ Sθ, we have [from (14)]

�Pk�w� exp�w�� ≤
∣∣∣∣
w

2k
exp�w� − 1

exp�w/2k� − 1

∣∣∣∣

≤ �w�2−k
2k−1∑
r=0

∣∣∣∣exp
(
rw

2k

)∣∣∣∣

≤ �w�2−k
2k−1∑
r=0

exp�r2−k�w� cos θ�

≤ �w�
∫ 1

0
exp�x�w� cos θ�dx

= �sec θ��exp��w� cos θ� − 1�
≤ �sec θ� exp��w� cos θ�:

Finally, we apply the de-Poissonization lemma to conclude that

Prob�Hn ≤ j� = pj;n = Pj�n� +O�n−1/2�(15)

holds uniformly in integers j ≥ 0. However [from (14)],

Pj�n� = �1− exp�−n�� n/2j

exp�n/2j� − 1
:

Setting j = �lg n� + k, we find that

Pj�n� = �1− exp�−n�� 2α�n�−k

exp�2α�n�−k� − 1
= 2α�n�−k

exp�2α�n�−k� − 1
+O�exp�−n��(16)

holds, uniformly in all integers k �≥ −�lg n�). Combining (15) and (16) com-
pletes the proof of Theorem 2(i).

Remark 4. We wish to stress the broad applicability of the Poissonization
and de-Poissonization approach. The method has been successfully applied to
problems where exact results such as our Theorem 1 are unobtainable; see, for
example, Jacquet and Régnier (1986), Rais, Jacquet and Szpankowski (1993)
and Jacquet and Szpankowski (1995).
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4.2. Moments by Poissonization and de-Poissonization. We complete the
study of the height in a random incomplete trie by studying its mean and
variance. As for the distribution, the strategy is first to compute the mean
and variance of the Poissonized height HN and then to de-Poissonize. The
tool here will be a de-Poissonization lemma from Jacquet and Szpankowski
(1989). Our presentation will be somewhat informal, as rigorous verification of
the conditions required for careful application of this lemma is straightforward
but laborious. [One can apply the so-called “increasing domains approach” of
Jacquet and Szpankowski (1995) directly to the functional equations (17) and
(18).] Use of an analytical cousin—Rice’s method—of the Poissonization and
de-Poissonization method to rigorously establish Theorem 2(ii) and (iii) will be
discussed briefly in Section 4.3. Unlike the approach in this subsection, Rice’s
method requires exact formulas for the moments.

Proof of Theorem 2(ii) and (iii). Let

A�w� x= E�HNy HN <∞�; M�w� x= E�HN�HN − 1�y HN <∞�:
(Here the indicators for HN < ∞ are needed only to properly handle the
possibility N = 0.) From our basic recurrence (8) for the Poisson model, after
taking first and second derivatives with respect to z at z = 1, we obtain

A�w� = A�w/2�
(
1+ exp�−w/2�

)
+ 1− exp�−w� −w exp�−w�;(17)

M�w� =M�w/2��1+ exp�−w/2�� + 2A�w/2�
(
1+ exp�−w/2�

)
:(18)

As before, these equations are not yet suitable for direct iteration. Define
a�w� x= A�w�/�1− e−w� and m�w� x=M�w�/�1− e−w�. Then the above equa-
tions become

a�w� = a
(
w

2

)
+ 1− w

exp�w� − 1
;

m�w� =m
(
w

2

)
+ 2a

(
w

2

)
:

To solve these functional equations, we apply the Mellin transform to each
side. It is easy to see that the Mellin transforms a∗�s� and m∗�s� of a�w� and
m�w�, respectively, exist in the strip < s ∈ �−1;0�. After some algebra we find

a∗�s� = 0�s+ 1� ζ�s+ 1�
2s − 1

;

m∗�s� = −2s+1 0�s+ 1� ζ�s+ 1�
�2s − 1�2 :

In order to derive asymptotics for a�w� and m�w� for large w, we com-
pute inverse Mellin transforms, using the residue theorem to shift the line
of integration to the right. Observe also that as w → ∞ in a cone Sθ =
�wx �argw� ≤ θ� with 0 < θ < π/2, we have A�w� = a�w��1 +O�e−a�w��� and
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M�w� = m�w��1 + O�e−a�w��� with a = cos θ. For any fixed R > 0 we arrive
after considerable calculation (aided by MAPLE) at

A�w� = lgw+ 1
2 − δ1�lgw� +O��w�−R�;

M�w� = lg2w+ π2

6L2
− 1

6
− 2γ1

L2
− γ2

L2
+ δ̃2�w� +O��w�−R�;

with δ1�·� and δ2�·� as given in Theorem 2 and Remark 1 and

δ̃2�x� x= −2�lg x�δ1�lg x� + δ2�lg x� + δ2
1�lg x�:

Finally, we must de-Poissonize the Poissonized first and second factorial
moments to revert to the fixed-population model. In this case we use the
result from Jacquet and Szpankowski (1989) to get immediately the fixed-
population asymptotics. Define V�w� x= M�w� + A�w� − A2�w�, that is, the
Poissonized variance. Then the fixed-population mean has the asymptotic ex-
pansion E�Hn� ∼ A�n� − 1

2nA
′′�n� and the fixed-population variance satisfies

Var�Hn� ∼ V�n� − n�A′�n��2 [cf. Régnier and Jacquet (1989) and Jacquet
and Szpankowski (1995)]. We can show that A′�n� is O�1/n� and that A′′�n�
is O�1/n2�. For example, A′�n� = O�1/n� can be established by differentiat-
ing (17), which gives a functional equation for A′�w� as a recurrence involving
A′�w/2� and A�w/2�. This recurrence can then be solved by the Mellin trans-
form and its inverse to yield the desired asymptotic bound. Consequently,
the fixed-population moments are obtained from the Poissonized moments by
adding to the latter moments corrections only of order O�1/n�. [An alterna-
tive approach using a bound on A�w� and Cauchy’s formula for A′�w� follows
Jacquet and Szpankowski (1995).] Completing the algebra, we obtain Theo-
rem 2(ii) and (iii). 2

4.3. Moments by Rice’s method. Recall from Lemma 2(ii) that for n ≥ 2
and r ≥ 1, the rth factorial moment E��Hn�r� of the height Hn is given by

E��Hn�r�
r!

=
n−1∑
j=1

(
n

j

)
�−Bj�

2j

�2j − 1�r :

As is well known [see, e.g., Chapter 23 in Abramowitz and Stegun (1972)],

−Bj = �−1�jjζ�1− j� for j ≥ 1:

Thus Rice’s method [see, e.g., Section 6.4 in Mahmoud (1992) or Flajolet and
Sedgewick (1995)] for handling alternating sums involving binomial coeffi-
cients is ideally suited to the asymptotic calculation of moments for the height.
An application of the method leads to Theorem 2(ii) and (iii). This approach
is outlined in Fill, Mahmoud and Szpankowski (1996).
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