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Point processes on the positive real axis which are positively self-
exciting in a sense expressed by their martingale dynamics are studied
in this paper. It is shown that such processes can be realized as increasing
mappings of Poisson processes and are therefore associated in appropri-
ate manners. Some examples are presented, including Hawkes, renewal,
Pólya–Lundberg, Markov dependent, semi-Markov, in addition to other
point processes. As corollaries an extension of the Burton–Waymire as-
sociation result and a solution of the Glasserman conjecture are obtained.
Some results on dependence in stochastic processes of interest in queueing
are given as a by product.

1. Introduction. Let N be a simple point process (p.p.) with no fixed
atoms on the real line. As the corresponding jump points we take P = �· · · <
T−1 < T0 ≤ 0 < T1 < · · ·� and we assume that this set has no limit
points. The counting measure N�·� is defined for each bounded Borel set B
to be the cardinality of the set B ∩ P. Here N�·� is a random measure de-
termined by its finite-dimensional distributions, that is, the joint distribu-
tions of �N�I1�; : : : ;N�Ik��, for every integer k > 0, and all bounded intervals
I1; : : : ; Ik in the real line. Other characterizations of point processes are of-
ten useful in discussing particular situations. For example, we may consider
Xi = Ti −Ti−1, i > 1, i < 1 and Y0 = −T0, Y1 = T1, which is called the in-
terval sequence. The joint distribution of �Y0;Y1;Xi; i ∈ Z\�1�� determines
the distribution of N. Another approach is through the stochastic intensity
of the point process N. Heuristically, the stochastic intensity λ�ty F N

t � is the
conditional intensity of having a point just after time instant t, provided that
the history F N

t = σ�N��−∞; s��; s ≤ t� of the point process N up to t is
known. In general, stochastic intensity does not necessarily characterize a
point process and it is usually difficult to demonstrate the existence of sta-
tionary point processes which have a particular stochastic intensity. However,
point processes on the positive real half axis that admit stochastic intensity
are uniquely determined by predictable versions of their intensities [Jacod
(1975), Theorem 3.4].

In this paper we shall consider a natural class of point processes, for which
stochastic intensities will be increasing functions of the past evolution of the
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process; that is, for such processes larger (in some sense) realizations before
t will imply that the corresponding intensities of having a point just after
t will also be larger. We shall call point processes with this property posi-
tively self-exciting. This is not precise without explaining what is meant by
the term “larger” point process. Therefore, we shall introduce three possible
orderings for point processes and we shall always relate the property of being
positively self-exciting to a given ordering. We shall show that a number of
natural point processes have such a property, for example, Hawkes population
point processes, Pólya–Lundberg point processes and some renewal processes.
We prove a general theorem that positively self-exciting point processes are
“increasing” transformations of Poisson processes, where monotonicity will be
related to the underlying ordering of point processes. As a consequence we
shall study association properties of positively self-exciting point processes.
Among other results we generalize the existing results on association for re-
newal processes due to Burton and Waymire (1986) (and at the same time
we give a rather different approach to the problem), and we also confirm a
conjecture on point processes with associated increments stated by Glasser-
man (1992). Finally, as a byproduct we obtain some association properties
of stochastic processes related to point processes of interest, for example, in
queueing theory.

The paper is organized as follows. In Section 2 definitions of stochastic in-
tensities of point processes, stochastic orderings for point processes and some
constructions of point processes are introduced. In Section 3 we shall discuss
association of random measures and point processes, giving some relations
between finite- and infinite-dimensional settings. In Section 4 positively self-
exciting point processes along with examples, monotonicity and association
properties of positively self-exciting point processes are studied. In Section 5
we shall establish the dependency properties of some stochastic processes re-
lated to point processes.

2. Preliminaries. Let M = M �E� be the space of Radon (i.e., locally fi-
nite) measures on a locally compact second countable Hausdorff space E. Let
B = B�E� be the class of Borel sets generated by the topology of E, and let
Fc = Fc�E� be the class of nonnegative continuous functions E→ R with com-
pact supports. The space M can be endowed with the vague topology, for which
the class of all finite intersections of sets of the form �µ ∈M x s <

∫
E fdµ < t�

for s; t ∈ R and f ∈ Fc, may serve as a base. The space M with the vague topol-
ogy is metrizable as a Polish space [Kallenberg (1983), 15.7.7]. We call any M -
valued random element M a random measure on E. The distributions of vec-
tors �M�B1�; : : : ;M�Bn��, n ≥ 1, for arbitrary bounded sets B1; : : : ;Bn ∈ B,
entirely determine the distribution of a random measure M. We define a point
process N on the space E as a random measure confined with probability 1
to the subset N = N �E� of M consisting of all integer Radon measures on
the space E. Elements of M or N will be denoted by µ, ν, π, with indices if
necessary.
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In the remainder of the paper we shall discuss mainly point processes on
R+. Thus E = R+. In this case the simplest description of a point process
is perhaps the one by a sequence of random variables 0 = T0 < T1 < · · ·
on a probability space ��;F ;P�, corresponding to the jump points of N. We
assume that Tn →∞ as n→∞ (the process is nonexplosive) and that �Tn�
is strictly increasing (the process is simple or without multiple points).

Depending on the context, it is convenient to view realizations of a point
process either as elements of N �R+� (i.e., measures) or as increasing se-
quences of jump points. To make this duality formally acceptable, we introduce
a pair of transformations between the corresponding subsets of N �R+� and
R̄∞+ and prove their measurability. These transformations can be easily ex-
tended to the whole spaces N �R+� and R̄∞+ . To this end let N∞�R+� = �µ ∈
N �R+�x µ�R+� = ∞�, and

J+ =
{
t = �t1; t2; : : :� ∈ R∞+ x t1 < t2 < · · · ; tn→+∞

}
:

Consider J+ to be endowed with the usual product topology. For µ ∈ N �R+�
let τ0�µ� = 0 and for n ≥ 1 let

τn�µ� = sup�u > 0x µ�0; u� ≤ n�:
Define a mapping tx N∞�R+� → J+ as

t�µ� = �τ1�µ�; τ2�µ�; : : :�:
Notice that t is invertible and that t−1�t� is defined as a measure µ such
that µ�C� = ∑∞

n=1 1C�tn� for all measurable sets C ⊂ R+. Here 1C�·� is the
indicator function of a set C. The mappings t and t−1 are measurable. Indeed,
let A ⊂ N �R+� be a set of the form

A =
{
µx

∫
R+
fdµ < s

}
;

where s ∈ R+ and f ∈ Fc�R+�. For measurability of t−1 it is sufficient to show
that t�A� is a measurable subset of J+. We have

t�A� =
{

t ∈ J+x
∞∑
i=1

f�ti� < s
}
:(1)

Since the support of f is bounded, for each t only a finite number of terms in
the sum on the right-hand side of (1) are nonzero. By the continuity of f, the
same terms (and none other) are nonzero in a neighborhood of t. Again, by the
continuity of f, it follows that t�A� is open in J+. Hence t−1 is measurable.

Let a; b ∈ R+. For a fixed i ≥ 1 let

B =
{
t ∈ J+x ti−1 < a < ti < b < ti+1

}
:

For measurability of t it is sufficient to prove that t−1�B� is a measurable
subset of N �R+�. Let �fn�; �gn� ⊂ Fc�R+� and �Fn�; �Gn� ⊂ B�R+� be such
that

1�a; b� ≥ fn ≥ 1Fn
↗ 1�a; b� and 1�0; b� ≥ gn ≥ 1Gn

↗ 1�0; b�
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[Kallenberg (1983), 15.6.1]. Then

t−1�B� =
∞⋃
n=1

{
µ ∈ N �R+�x

∫
E
fn dµ = 1

}
∩
∞⋃
n=1

{
µ ∈ N �R+�x

∫
E
gn dµ = i

}

is measurable in N �R+�. Hence t is measurable.

2.1. Compensator and stochastic intensity. Consider the canonical p.p. N
on N �R+�. Assume that N is simple and nonexplosive and 0 = T0 < T1 < · · ·
are the jump points of N on R+. That is, Tn = τn�N�. For n ≥ 0 let

Fn+1�xy t1; : : : ; tn� = P�Tn+1 −Tn ≤ x � T1 = t1; : : : ;Tn = tn�;
Rn+1�xy t1; : : : ; tn� = − log�1−Fn+1�xy t1; : : : ; tn��

be regular versions of conditional probability distributions of the interpoint
distances of N and their cumulative hazard functions, respectively. Since
N �R+� is a Polish space, the regular versions do exist. Fix n ≥ 1 and 0 =
t0 < t1 < · · · < tn. For t ≥ tn define (regarding empty sums as zeros)

an+1�ty t1; : : : ; tn� =
n∑
i=1

Ri�ti − ti−1y t1; : : : ; ti−1� +Rn+1�t− tny t1; : : : ; tn�;

and a1�t� = R1�t�. The definition of an+1 can be made “consistent” by setting
an+1�ty t1; : : : ; tn� = ak+1�ty t1; : : : ; tk� for t ∈ �tk; tk+1� and k < n. The family
of functions �an�·�� is called the compensator function family associated with
the point process N. The compensator of the process N is a process 3�t;N�
such that, for t ∈ R+ and µ ∈ N �R+�,

3�t; µ� =
∞∑
n=0

an+1�ty τ1�µ�; : : : ; τn�µ��1�τn�µ�; τn+1�µ���t�:(2)

Suppose now that the conditional distributions Fn+1�xy t1; : : : ; tn� are
absolutely continuous with respect to the Lebesgue measure on R+. Denote
the corresponding probability density functions by fn+1�xy t1; : : : ; tn�. Let
rn+1�xy t1; : : : ; tn� be the conditional failure rate of �Tn+1 − Tn�. That is, for
x > 0,

rn+1�xy t1; : : : ; tn� =
fn+1�xy t1; : : : ; tn�

1−Fn+1�xy t1 : : : ; tn�
:

Note that Fn+1, as a regular version of a probability distribution, is mea-
surable in �x; t1; t2; : : :�, and this yields that rn+1 is measurable as well. The
stochastic intensity of the process N is a process λ�t;N� such that

λ�t; µ� =
∞∑
n=0

rn+1�t− τn�µ�y τ1�µ�; : : : ; τn�µ��1�τn�µ�; τn+1�µ���t�;(3)

where t ∈ R+ and µ ∈ N �R+�. That is, λ�t;N� equals rn+1�t−Tny T1; : : : ;Tn�
for t ∈ �Tn;Tn+1�.
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Note that since Rn+1�xy t1; : : : ; tn� =
∫ x

0 rn+1�uy t1; : : : ; tn� du; then
3�t;N� =

∫ t
0 λ�u;N�du. For t > 0, let F N

t be the σ-field generated by the
family of mappings N�0; u�x ��;F ;P� → R, where u ≤ t. Then λ�t;N� is a
�P;F N

t �-predictable stochastic intensity of the process N [Brémaud (1981),
Theorem 3.7], and 3�t;N� is the compensator of N.

2.2. Orderings. Define the following partial order ≺M in M �E�. For µ; ν ∈
M let µ ≺M ν if and only if µ�B� ≤ ν�B� for all (topologically) bounded sets
B ∈ B�E�. The order ≺M is closed in M . That is, ��µ; ν�x µ ≺M ν� is closed in
M ×M [Kallenberg (1983), 15.7]. The ordering ≺M restricted to N is often
called thinning and will be denoted here by µ ≺N ν for µ; ν ∈ N . Since ≺M is
closed in M , ≺N is closed in N .

When one considers a p.p. on R+, other orderings corresponding to alterna-
tive descriptions of the p.p. also seem natural. The jump point description is
often restated in terms of a counting process Nt defined for t > 0 by

Nt =N��0; t�� =
∞∑
n=1

1�0; t��Tn�;

where 1 denotes the indicator function. Also, the distributions of vectors
�Nt1

; : : : ;Ntn
� for t1 < · · · < tn and n ≥ 1 completely define the distribution

of the p.p. N. A trajectory µt = µ��0; t�� of Nt, where µ ∈ N �R+�, is often
regarded as an element of D �R+�, the space of real-valued functions on
R+, which are right-continuous with left-hand limits. Note that D �R+� is
usually equipped with the Skorohod topology to be a Polish space. The natural
ordering in D �R+� is �µt� ≺D �νt� iff µt ≤ νt for all t > 0. We will, however,
always regard a p.p. as a random element of N �R+� and for µ; ν ∈ N �R+�
write µ ≺D ν iff �µt� ≺D �νt� for the corresponding functions µt; νt ∈ D �R+�.
Note that µ ≺D ν is equivalent to t�µ� ≥ t�ν� coordinatewise. Convergence
µn → µ in N �R+� implies that t�µn� → t�µ� in J+; hence, ≺D is closed in
N �R+� [also, it is closed in D �R+�].

Another description of a point process is provided by its interpoint distances:
the distributions of �T1;T2−T1; : : : ;Tn−Tn−1�, n ≥ 1, wholly determine the
distribution of a point process on R+. In order to compare interpoint distances
of point processes, we introduce the following ordering. For µ; ν ∈ N �R+� let
µ ≺∞ ν iff τn+1�µ� − τn�µ� ≥ τn+1�ν� − τn�ν� for n ≥ 0.

We now introduce various concepts of stochastic comparisons of point pro-
cesses. Depending on which of the descriptions of point processes we adopt,
we obtain different kinds of stochastic comparisons.

Suppose that N, N′ are two point processes on E. We write

N ≺st−N N′ iff E�φ�N�� ≤ E�φ�N′��

for all functionals φx N �E� → R+ which are ≺N -increasing. Suppose now
that N, N′ are two point processes on R+. Define

N ≺st−D N
′ iff E�ϕ�N�� ≤ E�ϕ�N′��
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for all functionals ϕx N �R+� → R+ which are ≺D -increasing. Finally, define

N ≺st−∞ N
′ iff Eψ�N� ≤ Eψ�N′�

for all functionals ψx N �R+� → R+ which are ≺∞-increasing.
The following lemma characterizes the above stochastic orderings in terms

of finite-dimensional vectors. For part (i) see, for example, Rolski and Szekli
(1991), Theorem 1; for other cases see, for example, Stoyan (1983). In the
lemma ≤st denotes the usual stochastic ordering of random vectors.

Lemma 2.1. (i) N ≺st−N N′ iff �N�B1�; : : : ;N�Bn�� ≤st �N′�B1�; : : : ;
N′�Bn��;

(ii) N ≺st−D N
′ iff �Nt1

; : : : ;Ntn
� ≤st �N′t1; : : : ;N′tn�;

(iii) N ≺st−∞ N
′ iff �X′1; : : : ;X′n� ≤st �X1; : : : ;Xn�

for each finite collection of sets B1; : : : ;Bn ∈ B�E�, t1 < · · · < tn ∈ R+ and the
corresponding interpoint distances Xn = Tn −Tn−1, X′n = T′n −T′n−1, n ≥ 1.

Since both µ ≺N ν and µ ≺∞ ν yield µ ≺D ν, then also both N ≺st−N N′

and N ≺st−∞ N
′ imply N ≺st−D N

′.

2.3. Constructions. In order to motivate the discussion of this section, con-
sider first a single nonnegative random variable X. Let FX be the distribution
function of X and assume that it is absolutely continuous with density func-
tion fX. Let RX = − log�1 −FX� and rX = fX/�1 −FX�. It is easy to verify
that RX�x� =

∫ x
0 rX�u�du, x ≥ 0.

Denote the left-continuous pseudo-inverses of FX and of RX by F−1
X �u� =

inf�xx FX�x� ≥ u�, u ∈ �0;1�, and R−1
X �p� = inf�xx RX�x� ≥ p�, p ≥ 0,

respectively. Then X has the representation

X =st F
−1
X �U�;

where U is a uniform �0;1� random variable, and =st denotes equality in law.
From this it follows that X also has the representation

X =st R
−1
X �E�;(4)

where E is a standard (i.e., mean 1) exponential random variable.
The idea of the representation (4) can be used for the purpose of represent-

ing the interpoint distances X1;X2; : : : of a point process N. Let E1;E2; : : :
be a sequence of independent standard exponential random variables. Then
we have the representation

T1 =X1 =st R
−1
1 �E1� �= T̂1; say�;

T2 = T1 +X2 =st T̂1 +R−1
2 �E2y T̂1� �= T̂2; say�:

And, in general, for n ≥ 1,

Tn =st T̂n−1 +R−1
n �Eny T̂1; : : : ; T̂n−1� �= T̂n; say�;(5)
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where R−1
n �· y t1; : : : ; tn−1� is the left-continuous pseudo-inverse of the cumu-

lative hazard function Rn�· y t1; : : : ; tn−1� defined in Section 2.1. It follows that

T = �T1;T2; : : :� =st �T̂1; T̂2; : : :� = T̂:

It is sometimes convenient to represent T̂ as a function of the cumulative
sums of the En’s. Denote Pn =

∑n
i=1Ei, n = 1;2; : : : : Then, for n ≥ 1, (5) can

be rewritten as

T̂n =st a
−1
n �Pny T̂1; : : : ; T̂n−1�;(6)

where a−1
n �· y t1; : : : ; tn−1� is the left-continuous pseudo-inverse of an�· y t1; : : : ;

tn−1� defined in Section 2.1.
Let 5�1� be a Poisson process on R+ with intensity 1 (the standard Poisson

process on R+), and for n ≥ 1 let Pn = τn�5�1��. Formula (6) assigns a realiza-
tion of a p.p. N̂ = t−1�T̂1; T̂2; : : :� to each possible realization of 5�1�. We will
write that in an abbreviated form N̂ = 0�5�1��, where 0x N �R+� → N �R+�.
We summarize this representation (construction) of a p.p. in a lemma. For its
point process proof, see Kwieciński and Szekli (1991), Proposition 3.2; in a
multidimensional setting, see Daduna and Szekli (1995), Lemma 4.2.

Lemma 2.2. (i) The mapping 0x N �R+� → N �R+� is measurable.
(ii) Let 5�1� be a Poisson process on R+ with intensity 1 (the standard Pois-

son process on R+). Then N =st 0�5�1��.

Another construction of a p.p. is called the Poisson embedding [Lindvall
(1988), page 127] and is given by the following description. Suppose that N is
a simple point process with an intensity process λ�t;N� defined in (3). Define
a mapping kxN�R2

+� → J+ as follows. Let π�2� ∈N�R2
+�. Set κ0 = 0. For n ≥ 1

let

An; t = ��u;y� ∈ R2
+x κn−1 < u ≤ t; y ≤ rn�u− κn−1y κ1; : : : ; κn−1��;

κn = κn�π�2�� = sup�t > κn−1x π�2��An; t� = 0�:

Now set k�π�2�� = �κ1�π�2��; κ2�π�2��; : : :�. Let ϒx N �R2
+� → N �R+� be given

by ϒ�π�2�� = t−1k�π�2��. Note that ϒ depends on N via the intensity function
λ�t; µ�. The transformation π�2� 7→ ϒ�π�2�� has an intuitive graphical interpre-
tation. Let µ0 ∈ N �R+� be a counting measure that has no points. Let �t1; y1�
be the point of π�2� with the smallest t1 lying below the line y = λ�t; µ0�. Set
κ1 = t1. Continue by defining µ1 as having an atom in κ1 and finding the point
�t2; y2� of π�2� with the smallest t2 > t1 lying below the line y = λ�t; µ1�. Set
κ2 = t2, and so forth.

Lemma 2.3 (Poisson embedding). (i) The mapping ϒx N �R2
+� → N �R+�

is measurable.
(ii) Let 5�2� be a Poisson process on R2

+ with intensity 1 (the standard Pois-

son process on R2
+). Then N =st ϒ�5�2��.



1218 A. KWIECIŃSKI AND R. SZEKLI

Proof. Part (i) follows from the fact that the mapping π�2� 7→ κn�π�2�� is
measurable for each n ≥ 1, which is a consequence of the measurability of the
rn’s. For part (ii) assume that �T1; : : : ;Tn−1� =st �κ1; : : : ; κn−1� and note that

P�κn − κn−1 ≤ x �κ1 = t1; : : : ; κn−1 = tn−1�
= P�5�2��An; κn−1+x� > 0 �κ1 = t1; : : : ; κn−1 = tn−1�
= 1− exp�−�An; κn−1+x�� = 1− exp�−Rn�xy t1; : : : ; tn−1��
= Fn�xy t1; : : : ; tn−1�:

Hence k�5�2�� =st �T1;T2; : : :� and ϒ�5�2�� = t−1k�5�2�� =st t−1�T1;T2; : : :� =
N. 2

Remark 2.1. Suppose that we have two point processes N and N′ with
intensity processes λ, λ′ and corresponding mappings ϒ, ϒ′. Suppose also that
if µ ≺N ν, then λ�τn�ν�; µ� ≤ λ′�τn�ν�; ν� for all n ≥ 1. Then the “simultaneous”
Poisson embedding ϒ�5�2�� and ϒ′�5�2�� yields versions of N and N′ satisfying
ϒ�5�2�� ≺N ϒ′�5�2�� a.s., and is equivalent to the construction of thinning
formalized differently in Rolski and Szekli (1991). Similarly, if the intensity
function of say the process N is bounded, that is, for all t and µ we have
λ�t; µ� ≤ a where a > 0, then ϒ�5�2�� is the result of thinning of a Poisson
process on R+ with intensity a.

3. Association. Let �S;S � be a Polish space with a closed partial order-
ing ≺. The classical notion of association of (the probability distribution of) a
random vector [Esary, Proschan and Walkup (1967)] can be extended in the
following way.

Definition 3.1. A probability measure on �S;S � is associated �≺� if

P�C1 ∩C2� ≥ P�C1�P�C2�
for all increasing sets C1;C2 ∈ S (a set C is increasing if x ∈ C and x ≺ y
implies y ∈ C).

The following theorem [Lindqvist (1988), Theorem 3.1] gives several condi-
tions equivalent to association of a probability measure on �S;S ;≺�.

Theorem 3.1. Let P be a probability measure on �S;S ;≺�. The following
conditions are equivalent:

(i) P is associated �≺�;
(ii)

∫
fgdP ≥

∫
fdP

∫
gdP for all f;g increasing, bounded, real-valued

functions;
(iii) P�C1 ∩C2� ≥ P�C1�P�C2� for all increasing closed sets C1, C2.

In many cases association of a probability measure on a partially ordered
Polish space follows from a useful technical lemma of Lindqvist (1988), Theo-
rem 3.2.
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Lemma 3.1. Suppose that �S1;S1;≺1� is a partially ordered Polish space
with P associated (≺1), and ϕx S1 → S2 is a measurable mapping to a partially
ordered Polish space �S2;S2;≺2�. If ϕ is such that ϕ�x� ≺2 ϕ�x′� for all x ≺1 x

′

(i.e., ϕ is increasing), then P ◦ϕ−1 is associated (≺2) on �S2;S2�.

3.1. Association of random measures. There are two ways to define associ-
ation of random measures, and in particular point processes, each based on a
different theoretical background. The first approach is based on the classical
notion of association of random variables introduced by Esary, Proschan and
Walkup (1967). From this viewpoint, a random measure or a point process
M on a space E is a collection of random variables �M�B�x B ∈ B�E��. The
random measure M is then said to be associated if and only if �M�B1�; : : : ;
M�Bn�� is a vector of associated random variables for any n ≥ 1 and
B1; : : : ;Bn ∈ C , where C is a certain subset of B. For a review of this
approach, see Burton and Franzosa (1990).

The other approach is to think of M as a random element assuming its
values in some functional space S = S �E�. Suppose that S has the structure
of a Polish space and is endowed with a closed partial order ≺. A random
measure M is then said to be associated if and only if Cov�f�M�; g�M�� ≥ 0
for any pair of real-valued, square-integrable functions f, g on S , increasing
w.r.t. the order ≺. That is, the distribution of M is associated �≺� in the sense
of Definition 3.1.

Sometimes the two approaches can be made equivalent. Suppose, for exam-
ple, that E = �0;1� with the topology of open intervals, and S is the space of
nondecreasing and right-continuous functions from E to R, with the Skorohod
topology. Such functions represent finite measures on E. The so-called time
association of an S -valued random element M is usually defined as the as-
sociation of all finite-dimensional projections �M�B1�; : : : ;M�Bn�� such that
Bi = �0; ti� for some ti ∈ �0;1� (the first approach). The time association is
equivalent to the association implied by a natural pointwise partial order on
S (the second approach); see Lindqvist (1988), Theorem 6.1.

We prove now that a random measure Mx ��;F ;P� →M �E� is associated
w.r.t. ≺M if and only if all its finite-dimensional projections are associated
random vectors. Rolski and Szekli (1991) considered a mapping γx M → R∞+
defined as follows. Let I = �I1; I2; : : :� be a denumerable DC semi-ring gen-
erating the ring of all bounded Borel sets in E [Kallenberg (1983)]. For µ ∈M
let

γ�µ� = �µ�I1�; µ�I2�; : : :�:

Let G = γ�M �. Lemma 2 in Rolski and Szekli (1991) yields the following
lemma.

Lemma 3.2 [Rolski and Szekli (1991)]. The set G is a closed subset of R∞+ ,
and γx M → G is a homeomorphism, where the topology of G is the one
generated by the topology in R∞+ .
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The following theorem is a consequence of Lemma 3.2.

Theorem 3.2. A random measure M is associated if and only if random
vectors �M�B1��; : : : ;M�Bn�� are associated for all n ≥ 1 and bounded sets
B1; : : : ;Bn ∈ B�E�.

Proof. Consider the natural coordinate order ≤ inR∞+ . Both γ and γ−1 are
increasing with respect to ≺M and ≤, respectively. Therefore, M is associated
if and only if γ�M� is associated as a random element of R∞+ (Lemma 3.1).
However, γ�M� is associated if and only if �M�I1�; : : : ;M�In�� is a vector of
associated random variables for all n ≥ 1 [Lindqvist (1988), Theorem 5.1].
Since this is true for any DC semi-ring I = �I1; I2; : : :� as specified above,
the statement of the theorem follows. 2

Remark 3.1. By an approximation argument, bounded Borel sets in the
statement of Theorem 3.2 can be replaced with (a) all Borel sets for which
M�Bi� < +∞ a.s. and (b) all Borel sets, if one allows random variables to take
values in the extended real line (with −∞ and +∞ as the extreme points) and
defines association of random vectors so as to take that into account.

3.2. Associated point processes. It is natural to introduce association of a
p.p. N with respect to ≺D , ≺N and ≺∞-orderings, which is association, in the
sense of Definition 3.1, of the distribution ofN on N �R+� with the given three
closed partial orderings.

To summarize, the above introduced notions of association are related to the
association of finite-dimensional random vectors by the following theorem.

Theorem 3.3. (i) A p.p. N on R+ is associated (≺N ) iff the vector
�N�B1�; : : : ;N�Bn�� is associated for all bounded sets B1; : : : ;Bn ∈ B�E�.

(ii) A p.p. N on R+ is associated (≺D ) iff the vector �Nt1
; : : : ;Ntn

� is asso-
ciated for all t1 < · · · < tn ∈ R+.

(iii) A p.p. N on R+ is associated (≺∞) iff the vector �−X1; : : : ;−Xn� is
associated for all n ≥ 1, where Xn = Tn −Tn−1.

Proof. Part (i) follows from Theorem 3.2. For part (ii) see Theorem 6.1
of Lindqvist (1988). Part (iii) follows from an obvious observation that the
transformation N 7→ �−X1; : : : ;−Xn� is ≺N -≤ increasing (≤ being the coor-
dinatewise ordering in Rn). 2

It is worth mentioning here that association (≺N ) is closely related to the
property of “associated increments” studied by Glasserman (1992).

4. Positively self-exciting point processes. In Brémaud (1981), self-
exciting p.p. refers to a description in terms of the internal history, in the
sense that the potential of a p.p. to generate a point is dictated by its past
evolution. In Hawkes (1971) the phrase self-exciting is used for point processes
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which, intuitively speaking, would have larger intensities of generating a point
if in their past evolutions the number of points would increase. We shall for-
mally describe the above-mentioned intuitive property of point processes by
stochastic orderings and call such processes positively self-exciting.

Definition 4.1. Let N be a simple point process with a compensator 3
and a stochastic intensity λ given by, respectively, (2) and (3).

(i) We say that N is positively self-exciting w.r.t. ≺N if, for all µ; ν ∈
N �R+�, n ≥ 1,

µ ≺N ν⇒
(
∀
t∈R+

λ�t; µ� ≤ λ�t; ν�
)

[it is sufficient to verify this condition for t = τn�ν�, n ≥ 1].
(ii) We say that N is positively self-exciting w.r.t. ≺D if, for all µ; ν ∈

N �R+�,

µ ≺D ν⇒
(
∀
t∈R+

3�t; µ� ≤ 3�t; ν�
)
;

or, equivalently,

∀
n≥0; t>0

an+1�ty τ1�µ�; : : : ; τn�µ�� ≤ an+1�ty τ1�ν�; : : : ; τn�ν��:

(iii) We say that N is positively self-exciting w.r.t. ≺∞ if, for all µ; ν ∈
N �R+�,

µ ≺∞ ν⇒
(
∀

n≥0; x∈R+
Rn+1�xy τ1�µ�; : : : ; τn�µ�� ≤ Rn+1�xy τ1�ν�; : : : ; τn�ν��

)
:

Relations between orderings ≺N , ≺∞ and ≺D and the fact that 3�t� =∫ t
0λ�u�du suggest possible relations between classes of point processes which

are positively self-exciting (s.e.) w.r.t. the three orderings. However, out of six
possible inclusions none holds. Counterexamples are:

(≺N -s.e.6⇒≺D -s.e. and ≺∞-s.e.6⇒≺D -s.e.). A renewal p.p. with DFR inter-
point distances; see Example 4.1.

(≺N -s.e.6⇒≺∞-s.e.). The process of failures in a system with block replace-
ment policy based on a DFR renewal process; see Example 4.5.

(≺∞-s.e.6⇒≺N -s.e.). Any renewal process with non-DFR interpoint dis-
tances; see Example 4.1.

(≺D -s.e.6⇒≺N -s.e. and ≺D -s.e.6⇒≺∞-s.e.). A point process with a compen-
sator of the following form. For a > b > 0 let `a; b�t� and `b; a�t� be two increas-
ing, continuous functionsR+→ R+ piecewise linear on intervals �kT;kT+T�,
k ≥ 0. Let `a; b�t� = `b; a�t� = ct for t ∈ �0;T� and c > 0. Then on successive
intervals of the form �kT;kT + T�, k ≥ 1, let the slopes of `a; b be cyclically
a; b; a; b; : : : and the slopes of `b; a cyclically b; a; b; a; : : : : Set 3�t; µ� = `a; b�t�
iff τ1�µ� < T, otherwise set 3�t; µ� = `b; a�t�.
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Example 4.1 (Renewal processes). The following lemma characterizes re-
newal processes which are positively self-exciting w.r.t. ≺N .

Lemma 4.1. Let N be a renewal process on R+. Suppose that the lifetime
distribution is continuous and has a failure rate r. Let the first renewal time
also have a continuous distribution, with a failure rate r0 possibly different
from r. Then the following statements are equivalent:

(i) N is positively self-exciting w.r.t. ≺N ;
(ii) the failure rate r is decreasing, and r0�t� ≤ r�t� for t ≥ 0.

Proof. The intensity process λ of the process N is given by

λ�t; µ� = r0�t� 1�0; τ1�µ���t� +
∞∑
i=1

r�t− τn�µ�� 1�τn�µ�; τn+1�µ���t�:

Suppose that (ii) holds. Let µ ≺N ν be elements of N �R+�. Fix n ≥ 0 and
suppose that λ�t; µ� ≤ λ�t; ν� for all t ≤ τn�ν�. Let kn ≤ n be such that
τkn�µ� ≤ τn�ν� < τn+1�ν� ≤ τkn+1�µ�. Then for t ∈ �τn�ν�; τn+1�ν�� we have
λ�t; µ� = r�1��t − τkn�µ�� and λ�t; ν� = r�2��t − τn�ν��, where r�1� = r�2� = r0 if
n = kn = 0, r�1� = r0 and r�2� = r if kn = 0 and n ≥ 1 and r�1� = r�2� = r if
n ≥ kn ≥ 0. In all cases λ�t; µ� ≤ λ�t; ν� for t ≤ τn�ν�, hence (i) holds.

Now suppose that (i) holds. To see that r is decreasing, consider µ ≺N ν
such that τ1�µ� = τ2�ν� = t1, τ2�ν� = t2 and τ2�µ� = τ3�ν� = t3 for some
0 < t1 < t2 < t3. Then r�t3 − t1� = λ�t3; µ� ≤ λ�t3; ν� = r�t3 − t2�, hence
r is decreasing. To see that r0 ≤ r, consider µ ≺N ν such that τ1�ν� = t1
and τ1�µ� = τ2�ν� = t2. Then r0�t2� = λ�t2; µ� ≤ λ�t2; ν� = r�t2 − t1�. Since
r is decreasing, it is almost everywhere continuous. Taking t1 → 0, we have
r0�t2� ≤ r�t2� for t2 > 0.

We state the following result without proof.

Lemma 4.2. A renewal point process is positively self-exciting w.r.t. ≺D iff
it is a time-homogeneous Poisson point process.

Since interpoint distances for renewal processes are independent, renewal
processes are always positively self-exciting w.r.t. ≺∞.

Example 4.2. Hawkes (1971) introduced a class of point processes which
he called self-exciting, without referring, however, to any particular order.
These processes are formally defined as point processes with a stochastic in-
tensity of the form

λ�t; µ� = c+
∫ t
−∞

d�t− u�dµ�u�;

where c > 0, d�u� ≥ 0 for u ≥ 0 and

0 < m =
∫ ∞

0
d�u�du < 1:
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Hawkes and Oakes (1974) represented such processes as Poisson cluster pro-
cesses and gave some counting and interval properties of them. Since their
intensity can be written as

λ�t; µ� = c+
∑
ti<t

d�t− ti�;

it is immediate that such processes are positively self-exciting w.r.t. ≺N and
positively self-exciting w.r.t. ≺D . Interpretations of c, d�u� are as follows.
Kendall (1949) introduced an age-dependent birth-and-death process such
that for any individual of age x alive at time t there are probabilities λ�x�dt
of birth and γ�x�dt of death [plus o�dt�] for the next interval �t; t + dt�, in-
dependently for each individual. If we take λ�x� = d�x�, γ ≡ 0 and we allow
immigration at rate c, then N�t� is the counting measure corresponding to
the times of birth or immigration.

A nonlinear Hawkes process is a point process N driven by an intensity of
the form

λ�t; µ� = φ
(∫ t
−∞

d�t− u�dµ�u�
)
;

where dx R+ → R and φx R → R+; see Hawkes (1971), Brémaud and Mas-
soulié (1994) and Daley and Vere-Jones (1988), page 367. If d is nonnega-
tive and φ nondecreasing, then N is positively self-exciting w.r.t. ≺N . If d is
nonnegative and nondecreasing and φ is nondecreasing, then N is positively
self-exciting w.r.t. ≺D .

Example 4.3 (Pólya process). Approximate a Poisson process by a discrete-
time process which can jump only at the time points 1/n;2/n; : : : : Let T be
the waiting time to the first jump point in the Poisson process. Let Yi = 0
or 1 according to whether the approximating process does or does not jump
at t = i/n, i = 1;2; : : : : If Yi are independent and the probability of a jump
is a/n for all i, then P�T > t� can be approximated by �1 − a/n�nt for t ≥ 0,
and, taking limits as n → ∞, it follows P�T > t� = exp�−at�. If we replace
independent Yi’s by a sequence generated by Pólya’s urn model, the resulting
continuous-time point processN is called a Pólya process; see Lundberg (1964)
and Marshall and Olkin (1993). It is known from these references that N in
this case is a doubly stochastic Poisson process with constant intensity A
having a gamma distribution with a density of the form

P�A ∈ dx� = xk−1

αk0�k� exp
(−x
α

)
:

The corresponding stochastic intensity then has the following form [see
Brémaud (1981), page 173]:

λ�t; µ� = E�A
µ��0; t��+1 exp�−At��

E�Aµ��0; t�� exp�−At�� :
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To simplify expressions, we assume α = 1 and after integration we get

λ�t; µ� = µ��0; t�� + k
t+ 1

:

From this formula we see that the Pólya point process is positively self-exciting
w.r.t. ≺N and w.r.t. ≺D .

Example 4.4. A special class of renewal processes are so-called Thorin
processes. The interpoint d.f. for such processes is given by F�t� = 1 −∫∞

0 exp�−tx�dV�x�, where V is a proper or defective d.f. satisfying V�0� = 0;
that is, a d.f. F is Thorin if it has a completely monotone derivative. Thorin
point processes fall into the class of these doubly stochastic Poisson point
processes which are renewal [Kingman (1964) and Daley (1965)], because the
Laplace transform of a Thorin d.f. can be written in the form [Berg and Forst
(1975), Theorem 9.8]

F∗�s� = 1
1+ bs+

∫∞
0 �1− exp�−sx��dB�x� ;

where b ≥ 0 and B is a positive measure on �0;∞�. For example, Weibull and
gamma distributions with shape parameter smaller than 1 are Thorin distri-
butions. Thorin point processes are positively self-exciting w.r.t. ≺N because
Thorin distributions are DFR as mixtures of exponential distributions and we
may apply Lemma 4.1 [see Barlow and Proschan (1981) for the DFR closure
property].

Example 4.5. Consider a system consisting of a replaceable element,
which is subject to failures. Suppose that the lifetime distribution of an
element has a failure rate r. Under a block replacement policy, elements
are replaced with new ones at fixed (deterministic) times Tb1;T

b
2; : : : and, of

course, at times of actual failures T1;T2; : : : :
Let NF�B� = ∑∞i=1 1B�Ti�, where B ∈ B�R+�, be a point process counting

failures, and let NR�B� =∑∞i=1 1B�Ti�+
∑∞
i=1 1B�Tbi � be a process counting all

replacements. The intensity λF of the process NF is

λF�t;Nf� =
∞∑
i=0

r�t− τn�NR��1�τn�NR�; τn+1�NR���t�:

Observe that NF is not a renewal process. The process NF is a positively self-
exciting process w.r.t. the order ≺N iff the failure rate r is decreasing on the
interval �0; b�, where b = sup�Tb1;Tb2 −Tb1;Tb3 −Tb2; : : :�. Indeed, if we fix an
i > 0 and shift the time origin to the point Tbi , then the shifted NF evolves as
a renewal process until the next point Tbi+1. The argument from Example 4.1
applies.

Example 4.6 (Stream of overflows from a finite queue). Consider a service
system with a finite number of exponential servers, numbered 1; : : : ; n, and a
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Poisson arrival stream. Arriving customers go to the idle server with the lowest
number; if all servers are busy, then the arriving customer leaves the system
immediately (overflows). It is an old problem, tracing back to Palm, to study
the overflow point process. It is known [see, e.g., Khintchine (1960), page 95]
that the overflow p.p. in this system is a renewal process with interpoint
distance distribution of the form

F�x� = 1−
n∑
k=0

ck exp�−akx�; x ≥ 0;

for positive constants ck, ak. Therefore, the overflow process is Thorin and
as such positively self-exciting w.r.t. ≺N . For systems with renewal arrival
stream and a waiting room available, see Çinlar and Disney (1967).

Example 4.7 (Wold’s p.p.). A point process of which successive intervals
form a first-order time-homogeneous Markov chain was put forward by Wold
as the simplest alternative to a renewal process. The asymptotic behavior of
such point processes has been studied by many authors; see Athreya, Tweedie
and Vere-Jones (1980) for a more recent treatment. Assume that the chain
has one-step transition kernel P�x;B�. From the definition of positively self-
exciting point processes, we see that in this case N is self-exciting w.r.t. ≺∞
iff P�x1; ·� ≤st P�x2; ·� for all x1 ≥ x2, which is simply stochastic monotonicity
of the underlying Markov chain.

Example 4.8 (Semi-Markov p.p.). Consider a Markov renewal process
�T;J� with a countable state space and the semi-Markov kernel Q�i; j; t�.
That is,

P�Tn+1 −Tn ≤ t; Jn+1 = j � J0; : : : ; Jn;T0; : : : ;Tn�
= P�Tn+1 −Tn ≤ t; Jn+1 = j � Jn�;

P�Tn+1 −Tn ≤ t; Jn+1 = j � Jn = i� = Q�i; j; t�:
Let G�i; t� = ∑

jQ�i; j; t�. The p.p. corresponding to T0;T1; : : : is called a
semi-Markov point process. It is known [see, e.g., Kwieciński and Szekli (1991)]
that the compensator of N in this case is given by

an�tn+1y t1; : : : ; tn� =
n∑
k=1

αk�tk+1 − tk � t1; : : : ; tk�

for

αk�t � t1; : : : ; tk� = − ln
(

1−
∑
i

G�i; t�pn�i � t1; : : : ; tn�
)
;

where

pn�i � t1; : : : ; tn� = P�Jn = i � T1 = t1; : : : ;Tn = tn�:
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For N to be positively self-exciting w.r.t. ≺∞, it suffices that for all t the prob-
ability P�Tn+1 −Tn ≤ t�T1 = t1; : : : ;Tn = tn� is ≺∞-decreasing as a function
of the point process in the conditioning event. Note that

P�Tn+1 −Tn ≤ t � T1 = t1; : : : ;Tn = tn� =
∑
i

∑
j

pijFij�t�pn�i � t1; : : : ; tn�;

where pij = Q�i; j;∞� are transition probabilities for the underlying Markov
chain and the Fij’s are renewal distribution functions for given transitions. If
the underlying Markov chain is stochastically monotone and Fij ≤st Fi′j′ for
i ≤ i′, j ≤ j′, then

∑
jpijFij�t� is decreasing in i for all t. It is now enough

to check that pn�· � t1; : : : ; tn� is stochastically increasing as a function of
the point process in the conditioning event with ≺∞. This can be checked
inductively under the additional condition Fij ≤lr Fi′j′ for i ≤ i′, j ≤ j′,
where ≤lr denotes the likelihood ratio ordering. We omit an elementary, but
rather lengthy argument.

Interesting properties of positively self-exciting point processes follow from
the fact that such processes can be realized as increasing transformations of
Poisson processes. The following two theorems contain the main results of this
paper.

Theorem 4.1. (i) If N is positively self-exciting w.r.t. ≺N , then N =st
ϒ�5�2�� for an increasing ≺N -≺N measurable function ϒx N �R+�2 → N �R+�,
where 5�2� is the standard Poisson process in R2

+.
(ii) If N is positively self-exciting w.r.t. ≺D (≺∞), then N =st 0�5�1�� for an

increasing ≺D -≺D (≺∞-≺∞) measurable function 0x N �R+� → N �R+�, where
5�1� is the standard Poisson process in R+.

Proof. (i) Suppose that N is positively self-exciting w.r.t. the order ≺N .
Let ϒ be the mapping from Lemma 2.3. Then

∀
π�2�; π

′
�2�∈N �R+�2

π�2� ≺N π ′�2� ⇒ �κ1�π�2��; κ2�π�2��; : : :�

⊂ �κ1�π ′�2��; κ2�π ′�2��; : : :�:

We omit an easy proof by induction. We also have

∀
�x1; x2;:::�∈J+
�y1; y2;:::�∈J+

�x1; x2; : : :� ⊂ �y1; y2; : : :�

⇒ t−1�x1; x2; : : :� ≺N t−1�y1; y2; : : :�:

It follows easily that ϒ = t−1k is increasing, that is,

∀
π�2�; π

′
�2�∈N �R+�2

π�2� ≺N π ′�2� ⇒ ϒ�π�2�� ≺N ϒ�π ′�2��:
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(ii) Suppose thatN is positively self-exciting w.r.t.≺D . Let 0 be the mapping
from Lemma 2.2. Let π�1�; π

′
�1� ∈ N �R+� and π�1� ≺D π

′
�1�. Consider µ = 0�π�1��

and µ′ = 0�π ′�1��. Suppose that τi�µ� ≥ τi�µ′� for i = 1; : : : ; n. Then, for t > 0,

an+1�ty τ1�µ�; : : : ; τn�µ�� ≤ an+1�ty τ1�µ′�; : : : ; τn�µ′��:

Hence

τn+1�µ� = a−1
n+1�τn+1�π�1��y τ1�µ�; : : : ; τn�µ��

≥ a−1
n+1�τn+1�π�1��y τ1�µ′�; : : : ; τn�µ′�� = τn+1�µ�:

It follows that 0 is increasing, that is,

∀
π�1�; π

′
�1�∈N �R+�

π�1� ≺D π
′
�1� ⇒ 0�π�1�� ≺D 0�π ′�1��:

For processes positively self-exciting w.r.t. ≺∞ the proof is similar. 2

Theorem 4.2. If N is a positively self-exciting p.p. w.r.t. ≺, then N is as-
sociated �≺� whenever ≺ denotes one of the three orderings ≺N , ≺D , ≺∞.

Proof. Let 5�2� be the standard Poisson process in R2
+. Then N =st

ϒ�5�2��. Since 5�2� is associated w.r.t. the thinning ordering on the plane
(independent increments) and ϒ is increasing, N =st ϒ�5�2�� is associated
(≺N ) from Lemma 3.1.

The proof for other orderings is similar. 2

Burton and Waymire (1985) studied scaling limits for associated point ran-
dom fields and in this context they found that stationary renewal processes
with interval distributions having log convex densities are associated. They
proved that fact in Burton and Waymire (1986) using so-called absolute prod-
uct densities. They also mentioned another interesting context connected with
this result. Namely, log convexity of the lifetime density f�t�, for integer lat-
tice lifetimes, makes the nearest particle system with constant death rate and
with birth rates f�m�f�n�/f�m + n� attractive [Liggett (1983)]. If the first
moment of f is finite, the stationary renewal process with log convex lifetime
density is the unique time-reversible equilibrium state for the particle system
concentrated on configurations with infinitely many occupied sites to the left
and to the right of the origin [Spitzer (1977)]. A suitable approximation implies
that from the Harris inequality the renewal process with f is associated.

If a lifetime density is log convex, then the corresponding distribution func-
tion is DFR. From Lemma 4.1 and Theorem 4.2 we have the following exten-
sion of the Burton–Waymire (1986) result.

Corollary 4.1. If N is a delayed renewal process as in Lemma 4.1, with
a DFR lifetime distribution, then N is associated (≺N ).
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It is worth mentioning here that the r0�t� making N stationary satisfies
r0�t� ≤ r�t�, t ≥ 0, for r decreasing.

Glasserman (1992) investigated processes with associated increments, that
is, processes X = �Xt; t ≥ 0� such that for all n > 0 and all 0 ≤ t0 < t1 <
· · · < tn the differences X0;Xt1

−Xt0
; : : : ;Xtn

−Xtn−1
constitute an associated

vector.
Glasserman conjectured (page 325) that if a point process N specified by

an intensity λ�t; µ� satisfies

∀
µ≺D ν

λ�·; µ� ≤ λ�·; ν�;(7)

and if additionally λ�t; ·� is bounded uniformly in t, then N is a process with
associated increments. However, he was unable to prove the conjecture us-
ing the techniques of time-inhomogeneous Markov processes exploited in this
paper.

Clearly, condition (7) implies that N is self-exciting w.r.t. ≺N . Thus it is
associated w.r.t. ≺N . It follows that N is indeed a process with associated
increments (note that the boundedness of λ is not necessary).

Moreover, if N is positively self-exciting w.r.t. ≺N , then for each t > 0
the shifted point process given the past �Nt+u � F N

t ; u ≥ 0� can also be
constructed as a monotone transformation of a Poisson process. Therefore, it
is associated (≺N ) and has associated increments. Now assume that we have
the following convergence in distribution as t→∞:

tβ�t−γN��0; t�� − α� → σ2
NN�0;1�;

tβ�t−γ3�t;N� − α� → σ2
3N�0;1�

for some constants α;β; γ > 0 and 0 < σN, σ3 < ∞, where N�0;1� is the
standard normal variable. Then from Theorem 6.1 in Glasserman (1992) we
have the following corollary.

Corollary 4.2. If N is a p.p. positively self-exciting w.r.t. ≺N with
bounded stochastic intensity, then σ2

3 ≤ σ2
N.

This asymptotic variance reduction is important in the context of Monte
Carlo simulation and it is well known for renewal processes with decreasing
failure rate [Brown, Solomon and Stephens (1981)].

5. Related results.

5.1. Virtual waiting time and the number of customers in the system in a
single-server queue. Consider a single-server G/G/1, FIFO queue driven by
a marked point process N = ��T1; S1�; �T2; S2�; : : :�, where Tn is the arrival
time of the nth customer and Sn is its service time. We will regard trajectories
µ = ��t1; s1�; �t2; s2�; : : :� of process N as counting measures on the plane and
order them by thinning.
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Let V�t;N� and Q�t;N� be respectively the virtual waiting time and
the number of customers in the system at time t. The trajectories V�·; µ�
and Q�·; µ� are naturally ordered by the pointwise partial ordering ≺D . The
proposition stated below gives a sufficient condition for time association of V
and Q.

Proposition 5.1. Suppose that a marked point process N feeding a single-
server queue is associated w.r.t. ≺N . Then processes V�t;N� of the virtual
waiting time and Q�t;N� of the number of customers in the system are asso-
ciated w.r.t. ≺D (time associated).

Proof. Note that the mappings µ 7→ V�·; µ� and µ 7→ Q�·; µ� are increas-
ing w.r.t. the appropriate orderings of trajectories of process N and processes
V and Q. To see that, it is sufficient to consider realizations ν ≺N ν′ of N,
such that ν = ��t1; s1�; �t2; s2�; : : :� and ν′ is obtained from ν by removing one
point, say �tk; sk�.

Then for t < tk we have V�t; ν′� = V�t; ν�. At tk the trajectory V�t; ν�
observes an upward jump of sk, whileV�t; ν′� does not have that jump. If n ≥ k
and V�tn; ν′� ≤ V�tn; ν�, then V�t; ν′� ≤ V�t; ν� for t ∈ �tn; tn+1�, because each
of the two trajectories decreases linearly or reaches 0 and stays there, and
V�tn+1; ν

′� ≤ V�tn+1; ν�, because after tk both trajectories observe the same
jumps. Thus V�·; ν′� ≺D V�·; ν�. Similar reasoning applies to Q�t; ·�. From
Lemma 3.1 the proof is complete. 2

To give a specific example of a queueing system satisfying the assumption
of Proposition 5.1, consider a GI/GI/1 queue. Suppose that the interarrival
times have a common failure rate r�t� and service times a common density
f�s�.

In such a queue the underlying marked point processN can be expressed as
a function of a standard Poisson process in a similar manner as in Lemma 2.3
(Poisson embedding). Define λ�t; s; µ� = r�t − tn�f�s� for t ∈ �tn; tn+1�, where
�tn; sn� is the nth point of µ and t0 = 0. Let µ0 be a counting measure in R2

+
that has no points. Let π�3� be a trajectory of a standard Poisson process inR3

+.
Let �t1; s1; z1� be the point of π�3� with the smallest t1 lying below the surface
z = λ�t; s; µ0�. Point �t1; s1� is the first point of a trajectory µ. The construction
is then continued recursively: let µ1 = ��t1; s1�� and let �t2; s2; z2� be the point
of π�3� with the smallest t2 > t1 lying below the surface z = λ�t; s; µ1�. Point
�t2; s2� is the second point of the trajectory µ and so on. Denote the resulting
trajectory as µ = 8�π�3��. We state the following lemma without proof.

Lemma 5.1. Let 5�3� be a standard Poisson process in R3
+. Then 8�5�3��

and N have the same distribution.

That Proposition 5.1 can be applied to certain GI/GI/1 queues follows by
the next lemma.
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Lemma 5.2. If r�·� is decreasing (interarrival times are DFR), then the map-
ping 8 is increasing and N is associated w.r.t. ≺N .

5.2. Association of stochastic intensity and compensator. For a p.p. N we
can view its �F N

t � stochastic intensity as a transformation µ→ λ�·; µ� which
is from N to D �R+�. Then ≺N -≺D increasingness of this transformation is
equivalent to N being self-exciting w.r.t. ≺N . This in turn is equivalent to the
fact that µ → 3�·; µ� is ≺N -≺M increasing if we view the compensator as a
random measure. To summarize, we have the following result from Lemma 3.1.

Corollary 5.1. If N is a p.p. positively self-exciting w.r.t. ≺N , then its
internal stochastic intensity �λ�t�; t ≥ 0� is associated (≺D ) (time associated)
and its compensator random measure given by 3�B� =

∫
B λ�s�ds is associated

(≺M ).

In a similar way for N a renewal p.p. we can see that the age process
A�t� = t−∑Nt

i=0Xi and the residual life process Z�t� =∑Nt+1
i=0 Xi − t are time

associated provided that N is positively self-exciting w.r.t. ≺N (i.e., r0 ≤ r and
r decreasing).

Acknowledgments. The authors are grateful to two anonymous refer-
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