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This paper continues the study of time series models generated by
nonnegative innovations which was begun by Feigin and Resnick. We
concentrate on moving average processes. Estimators for moving average
coefficients are proposed and consistency and asymptotic distributions
established for the case of an order-one moving average assuming either
the right or the left tail of the innovation distribution is regularly varying.
The rate of convergence can be superior to that of the Yule-Walker or
maximum likelihood estimators.

1. Introduction. This paper continues the study of time series models
generated by nonnegative innovations which was begun in Feigin and Resnick
(1992, 1994). This program is motivated by the need to model teletraffic and
hydrologic data sets where quantities such as holding times and stream flows
are inherently positive and hence possibly unsuited to the usual time series
methods which are based on Gaussian models. In Feigin and Resnick (1994),
we showed how to estimate parameters of a pure autoregression using linear
programming (Ip) techniques. Assuming regular variation of either the left or
the right innovation distribution tail, such Ip estimators have a good rate of
convergence which is frequently superior to those achieved by Yule-Walker
or maximum likelihood estimators. The lp estimators can be used for model
selection and for testing for independence [Feigin, Resnick and Starica
(1995)]. In this paper, we focus on estimation of moving average coefficients.
This is a necessary step along the road to being able to estimate parameters
in more general ARMA processes which combine both autoregressive and
moving average components.

There is an abundance of heavy-tailed data coming out of teletraffic
studies. Recent examples include Crovella and Bestavros (1995) and Cunha,
Bestavros and Crovella (1995). Since ARMA modeling is firmly established as
an effective tool for modeling finite variance data, it is natural to inquire if
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ARMA models are a sufficiently flexible class for modeling infinite variance
data. Affirmative evidence to date is scanty at best [Davis and Resnick (1996)
and Resnick (1996)] but without efficient estimation techniques such as
proposed here and in Feigin and Resnick (1994), it is not possible to deci-
sively reject a linear model as an adequate description of the data. Note also
that there are finite variance circumstances where the left innovation distri-
bution tail is regularly varying and in this case lp estimation techniques
applied to linear time series models can be quite successful. A striking
example is lp analysis of the lynx data presented in Feigin, Resnick and
Starica (1995).

The process under consideration in this paper is the finite-order moving
average of order g, denoted MA(q) and specified as follows. Let {Z,} be an iid
sequence of nonnegative random variables. For a positive integer q > 1,
suppose we have parameters 6,,..., 6, such that 6, > 0 for 1 <i <gq. The
MAC(q) process {X,} is

q
(1.1) X, =Z+ ) 0Z,_,, t=0,+1,+2,...,

i=1
and we are interested in estimating 6,,..., §,. It is convenient to be able to

write (1.1) compactly and to achieve this we define the moving average
polynomial

q
®(Z) = Z oizi?
i=0

where 6, = 1 and the backward shift operator B is defined symbolically by
BX, =X, ,, BZ,=Z,_,.
With this notation we may write the MA(q) as
X,=0(B)Z, t=0,+1,+2,....

For a pure autoregressive process of order p, denoted by AR(p), with
positive innovations {Z,} and with autoregressive coefficients ¢,,..., ¢, ¢, #
0, X2 ,¢; <1, of the form

p
(1.2) X,=Y ¢,X,,+Z, t=0,+1,+2,...,

k=1
Feigin and Resnick (1994) defined the linear programming estimators $
based on observing X,,..., X, as

S

(1.3) ¢ = arg max3d'l,
8D,
where 1’ = (1,...,1) and where the feasible region D, is defined as

p
(14) D,={8eR:X,— Y §X,,20,t=p+1,...,n}.
i=1
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Such estimators can be motivated either as approximate maximum likelihood
estimators or from the point of view of generalized martingale estimating
equations. [See Feigin (1991) and Feigin and Resnick (1992, 1994).] Assuming
regular variation conditions on either the left or the right tails of the
innovations was sufficient to show that a limit distribution existed for ¢ and
that rates of convergence were often superior to the Yule-Walker estimators.
Furthermore, 1p estimators frequently give some warning of model misspeci-
fication whereas Yule-Walker estimators do not [Feigin and Resnick (1996),
Davis and Resnick (1996) and Resnick (1996)].

A natural approach to the estimation problem for moving averages is to see
what results from the autoregressive case can be brought to bear and thus we
assume the moving average in (1.1) is invertible which, according to Brock-
well and Davis (1991), means ©(z) # 0, |z| < 1. This allows us to write

1 =<}
M(z) = ——= )Y mz", lz| < 1,
0(z) 5 *

and we convert (1.1) into an infinite-order autoregression
I(B)X, =2, t=0,+1,+2,....

If we now try to apply the lp estimators, we find we have a nice objective
function but the constraints involve an infinite number of variables. If we
truncate the constraints suitably, we should obtain an estimator with worth-
while properties. The precise definition of our estimator of the moving aver-
age coefficients in the MA(q) process is

q
(1.5) 6 == argmax ). 0;,

noi=1

where
21 '

(1.6) D, = {0:[Z(I—@(B))L}Xizo,t=2lq+1,...,n
i=0

and !/ is the first integer such that 2/ > g. Further motivation and discussion
of this estimator is the subject of Section 2.

Here is a precise statement of the assumptions which will allow discussion
of the properties of our estimators. We need conditions which specify the
model. In order to obtain a limit distribution for our estimators, we impose
regular variation and moment conditions on the distribution of the innova-
tion sequence. We recall that a function U: [0, ®) — (0, ) is regularly varying
with exponent p € R if

. U(wx)
N O

x?, x> 0.
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ConpiTioN M (Model specification). The process {X,: t =0, + 1, + 2,...}
satisfies (1.1):

q
(1.1) X, =Z,+ Y 6,Z,_,, t=0,+1,+2,...,
i=1

where {Z,} is an independent and identically distributed sequence of nonneg-
ative random variables and common distribution function F. The nonnega-
tive coefficients 6, ..., 6, satisfy the invertibility condition that the moving
average polynomial ©@(z) = XJ_,6,z" has no roots in the unit disk {z: [z| < 1}.

ConpITION L (Left tail). The distribution F of the innovations Z, satisfies,
for some o > 0:

i li Fsx) for all 0
— aQ > 0:
(1) slffol F ) x¢ forall x ;
(ii) E(Zf) = /muBF(du) < o for some 8> a.
0

ConDITION R (Right tail). The distribution F of the innovations Z, satis-
fies, for some o > 0:

i lim — () for all x > 0
— A > 0:
(1) Lim — “F(s) x orall x ;
(ii) E(Z;%) = [(u PF(du) <= for some B> a.
0

Our results have as hypotheses M and either L or R. Condition L is rather
mild. It is satisfied if a density f of F' exists which is continuous at 0 and with
f(0) > 0. In this case @ = 1. Other common cases where Condition L holds are
the Weibull distributions of the form F(x) = 1 — exp{ —x“}, where F(x) ~ x*
as x /0, and the gamma densities f(x) =ce *x"" 1, r >0, x > 0, so that
f(x) ~cx"" ! as x |0 and therefore the associated gamma distribution func-
tion satisfies F(x) ~ cr 'x” as x | 0. Examples of distributions satisfying
Condition R include positive stable densities and the Pareto density.

Section 2 discusses further motivation and properties of the mathematical
programming estimator given in (1.6). Section 3 assumes Condition R and
reviews the point process limit theory [Resnick (1987)] which underlies
discussion of the limit distributions for 6 carried out for the case ¢ = 1. We
show that for ¢ = 1, if 6 is the true MA(1) parameter, then under Condi-
tions M and R, our estimator 6 is asymptotically Weibull distributed and
(Theorem 3.1)

limP[bn(é— 6) Sx] =1-—exp{—cx}, x>0,

n—ow
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where

1
¢c=E|IZ, +(69)°Z,°%, b, =F° (1 - —).
n
Section 4 parallels SAection 3 but assumes Condition L. When ¢ = 1, under
Conditions M and L, 6 is also asymptotically Weibull distributed (Theorem
4.1):

lim P[a(\/ﬁ)il(é— 0©) gx] =1 — exp{ —kx2"}, x>0,

n—ow

where

-3a a
E=(09) " "c(a)E(IZ, — 09Z,* 1, . 5,),

c(a) = fol(l —s5) “as* tds,

e 1
a(n) ( - ) .

In Section 5 we give the results of a simulation study which investigates
how well the limit distributions derived in Sections 3 and 4 for MA(1)
estimation approximate the true finite-sample distributions. The conclusion
is that in the right-tail case, the limit distribution provides an excellent
approximation over a wide range of §© values. In the left-tail case, this is
true provided 6 is not too close to 1.

In Section 6 we present some concluding remarks which emphasize the
point that, in contrast to the autoregressive case, the moving average estima-
tors in the left-tail case suffer a performance degradation depending on the
order g of the model; no such degradation is present under Condition R. Some
future issues to be resolved are also considered.

2. The parameter estimator for MA(qg). Assume we have the invert-
ible model {X,} specified by Condition M. Suppose the true value of the
moving average coefficients is #?. In inverted form, the model can be written
as the AR(«) process

(2.1) (B)X,=Z,, t=0,+1,+2,...,

where

0(2) =1IlI(2), lz] < 1.

For a finite-order autoregression (1.2), the linear programming estimator of
autoregressive coefficients is given by (1.3) and (1.4). If in (1.2) we write as
usual the autoregressive polynomial as

p
(I)(Z) = 1 - Z (rbizi;
i=1
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then the objective function in (1.3) can be written as 1 — ®(1) and the
constraints in (1.4) can be expressed as

(2.2) ®(B)X, >0, t=p+1,...,n.

If we try to write down an analogous expression for the parameter estimators
for the AR() process in (2.1), we obtain as the objective function

1 {6

1-— =
O(1) 1+x7.6,

which is monotone in ¥J_,6,. So we try to maximize XJ_,6,. For the con-
straints, (2.2) suggests the set of conditions

(B)X,>0, ¢=1,...,n.

A problem arises in that this constraint set requires knowledge of X,, X, 4, ...
with the index extending back to —<, and since we only have knowledge of
Xi,..., X, we must somehow truncate this constraint set.

A suggestion for how to construct a truncated set of constraints comes from
symbolically expanding 1/0:

1 1 . 21 _ i
©(B) I-(I-0O(B)) kgo(1_®(3)) - ;Eo(l o

where [ > 1 is an integer to be specified. Note that

2Zl (I-0(B))'0(B) =1-(I-06(B))*"'=1+Q(B)""",
k=0

where Q(B) = @(B) — I = £¢_,6,B". Let 0(B) = L{_,6/"B’ and Q,(B) =
Y4 ,0/9B' and thus

y (I -0 (B))"'09(B)Z,

E=0
(I+Q3""(B))Z, =0,

Y (I- 69(B))'x,
k=0

since all 0{”’s are assumed nonnegative. So, by truncating the series expan-
sion for 1/0 in a judicious manner, the truncated expansion is always
positive at the true value of the parameter vector.

Thus our estimator is

q
(2.3) ® = argmax Y n,,

W =1
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where the constraint set is

D, =

21 q 0\ F
neR: ) (I— ZniB‘) X, >0,
(2.4)

k=0 i=0

q
t=2lg+1,...,n;m,=1, Y. 2 #0, |z < 1}.
i=0

The choice of [ suggested by the limit theory is to choose [/ to be the first
integer such that 27 > gq.

Change of variable. We seek a limit distribution for qn(é — 0), where q,,
is an appropriate scaling satisfying g, — . It will turn out that, under
Condition R, the right choice of g, is

qn=bn=F&(1—%)=(%)e(n),

and, assuming Condition L and g = 1, the appropriate choice of g, is

1
=a(Vn)=F*° (ﬁ)
We observe that ¢, (8 — 0) satisfies
qn(é —09)1>q,(n—-069)1
for all y € D,. Let & = g,(q — 0®) so that ¢, '8 + 0 = x. Then ¢,(6 — )
satisfies qn(() —0©)1 > §'1 for all § such that

e x (g

— + 0(0)

n

z'# 0, lz| < 1,

and

8(B)

n

21 k
Y (—D’“(QO(B) + ) X, 20
k=0

for t =2Ilg + 1,...,n, where 8(B) = ©%_,8,B'. Thus
q,(0 — ) = argmax$'l,
A

n

where

q
A,={8e€D,:1+ Z —+0(0)z¢0|z|<1
—1\9n

5(B)

n

21 k
2(—1)"*(Q0(B)+ ) X,>0,t=2lg+1,...,n).
k=0
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Incase g =1, wealsohave Il =1and ®(B) =1+ 6B so I — O(B) = —6B
and the estimator is

§=sup{ne[0,1): X, - 19X, , + n?X,_ ,>0,t=3,...,n}
= Asup{ne€[0,1): X, — nX, | + n°X, , > 0}.

t=3

Also,
q,(0 — 0©) = argmax 5 = sup{8 € A},
An
where
0
A,=1{8:1+|—+09|z+0,lzl<1,
qn
5 2
X, —(69+—|X,_,+ |0+ —| X,_,=0,t=3,...,n}.
q, n

Let n = 8/q, and recall that X, = Z, + 09Z,_,. If we set
A =2, ,+09Z,_,,
(2.5) B,=—Z, ,+09Z, ,+200°)Y°Z, ,,
C,=2,+ (092, ,,
then
A, =qf{-09<n<1-609:An*+Bn+C,>0,t=3,...,n}

and we find in case ¢ = 1 that, since 0 € A,
(2.6) ,(0—09) =g, Asup{0<n<1-060:An%+Bn+C, =0}
t=3

So the limit distribution depends on the behavior of random parabolas and
from extreme value theory we expect the limit distribution to be in the
Weibull family [cf. Resnick (1987), pages 14 and 15].

To analyze the limit distribution in (2.6), we intend to proceed as follows.
Denote the random parabola by

p,(n) =Am*+Bn+C,.

Only those parabolas such that p,(1 — 0®) <0 are of interest since if
p,(1 — 6©) > 0, then

sup{0 < <1 -09:p,(n)=>0}=1-00,

which is an uninteresting contribution to the minimum in (2.6). Note that the
condition p,(1 — 0®) < 0 also implies B, < 0 and that the discriminant of
the quadratic is positive so that the two roots of the quadratic are real. [The
product of the roots of p,(n) is C,/A, > 0 so that both roots have the same
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sign. The sum of the roots is —B,/2A,. If p,(1 — ) < 0, then the bigger
root is positive which implies both roots are positive and hence B, < 0.] Thus
the smaller root r; is the desired root and in (2.6)

.(6-6")=q, A .

1<t<n
p,(1-0<0
Now
~ —-B,—/B?-4ALC,
Tt 24,
4A,C,\"?
(2.7) = IBtI—IBtI(l— B’;") 24,
t
C,
"Bl

where the last step resulted from expanding the function (1 + x)/2 and
neglecting remainder terms. Thus the behavior of

a N

1<t<n
p,(1-6%<0

should be determined by
. N CJ/B,

1<t<n
p(1-0®<0

and the behavior of this quantity can be determined by using a point process
argument which depends on whether Condition L or R is assumed.

The approximation in (2.7) can be justified by the following mechanism:
Assume p,(1 — ) < 0. Consider the roots of the lines

L,: Bn+ C,, LZ:(At(l— 0©) +Bt)»q+Ct,

L, being the line passing through C, and p,(1 — 0©). The roots of the two
lines are

C, C,
= |Bt|, X9 = |Bt| _ (1 _ 0(0))At

X1

and

Xy ST <Xy,

If we know the limit behavior of the point process depending on {x,;}, and if
X,y 1s sufficiently close to x,;, then the sandwiched piece r, will behave
properly and give us the limit distribution.

Details are in the next two sections which assume Condition R and then
Condition L.
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3. The limit distribution in the right-tail case for q = 1. In this
section we assume Conditions M and R hold. We assume we are dealing with
MA(D) so that g = 1. The goal of this section is to present the limit distribu-
tion for §. We will prove the following theorem.

THEOREM 3.1. Suppose {X,} is the MA(1) process given in (1.1) and that
Conditions M and R hold. Suppose the true parameter is 8 € (0, 1) and that
F is continuous. Let q, = b, be the quantile function

«—

b ! F|1 !

i) meE i),

where F is the distribution of Z,. The estimator 0 given in Section 2 has a
Weibull limit distribution. In [0, %),

S *© 3 ,
(3.1) b,(6—00) = A TH(Y, + (69)°Y;),
k=1

where {Y,, Y], k = 1} are iid with common distribution F and
I,=E, ++E,, k=>1,

is a sum of iid unit exponentially distributed random variables independent of
{(Y,,,Y))}). The limit distribution of 0 is Weibull:

(3.2) lim P[bn(é -09) < x] =1-—exp{—cx*}, x>0,
where

¢ = ElY, + (69)°y; ",
which is finite by the second statement of Condition R.

Before discussing the limit theory which leads to the asymptotic distribu-
tion of 0, we quickly review some facts about point processes.

For a locally compact, Hausdorff topological space E, we let M,(E) be the
space of Radon point measures on E. This means m € M,(E) is of the form

oo
m = Z Ex;s
i=1
where x; € E are the point masses of m and where

1, ifxecA,
ox(4) = {0, if x & A.
We emphasize that we assume that all measures in M,(E) are Radon, which
means that, for any m € M (E) and any compact K € E, m(K) < «. On the
space M,(E) we use the vague metric p(-,-). Its properties are discussed, for
example, in Resnick (1987), Section 3.4, or Kallenberg (1983). Note that a
sequence of measures m, € M, (E) converge vaguely to m, € M,(E) if for
any continuous function f: E — [0, %) with compact support we have m,(f)
- my(f), where m,(f) = [pfdm,. The nonnegative continuous functions
with compact support will be denoted C;(E).
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A Poisson process on E with mean measure u will be denoted PRM( w).
Two examples of the space E that interest us are E = [0, «), where compact
sets are those closed sets bounded away from «, and E = [0, <]? \ {0}, where
compact sets are closed subsets of [0,>]” which are bounded away from 0.
Other examples of the space E will be needed as well.

The fact that (3.1) implies (3.2) is a standard fact in extreme value theory.
Since

%]

)y &Iy, Y+ (09)°Y})
k=1

is a Poisson process with mean measure du X P[Y, + (0)%Y] € dv]
[Resnick (1987), page 135], if we set

A= {(u,0) € [0,)% u!/"v < x),
then, for x > 0,

oo 3 ,
/\ F,}/“(Yk +(09)Y;) >«

= P[ Z &y, Yk+(6(°))3Yk)(A) = 0}
- { /duP [, + (0) Y’edv]}

= exp{ duP[Y1 + (0(0))3Y1’ S dv]}
u<(x/v)“

exp{—xc’f(:cv“P[Y1 + (9(0))3Y1’ € dv]},

which is (3.2).

The main point process limit theorem which underlies our work in this
section now follows. It is more general than we need for considering the
asymptotic behavior of 6 in the MA(1) case but is stated in full generality for
application to future work. A simpler version is discussed as Proposition 3.1
of Davis and Resnick (1988).

PROPOSITION 3.2. Suppose Conditions M and R hold and that P[Z, = 0] =
0. Define the measure
v(dx) = ax “"tdx, x>0.

For any positive integer m we have

Z;
nP ZOEdyO,b— €dx;,i1=1,....m;Z;€dy;,j=1,....,m

n

=, F(dy,) ZIV(dx edy;) T1 eo(dx;)F(dy;)
' lsjfglm

(3.3)
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in

(3.4) E =[0,] x ([0,2]" \ {0}) x [0,]".

Furthermore, let E be defined as in (3.4) and for 1 = 1,..., m set
e,=(0,...,1,...,0) € R™,

where the 1 appears in the lth coordinates. Suppose {Y, ;,Y; ;, k> 1,1 > 1}
are iid with distribution F. Then

n

)y 82,6792, i=1,...,m), Z,_j, j=1,...,m)
t=1
= E S(Yk,l Iy Yee;,», Y] 1,..., Yim-1)
(3.5) k=1
+k2 E(Yy 0, Ty V€5, Y, 1,0, Y] 1, Yim-2)

oo
+k2 8(Yk,myrf;1/“em-yk,m—1 ----- Y, 1,%)
=1

in M,(E).

ProoF. The proof of (3.3) is based on the following two simple results. For
y,a,b > 0, since b, — o,

_ 0, if b < oo,

nP[bn1Zt>y$Zt€[aab]]_){y—a, ifb=oo,

and, for x > 0, y > 0,
x~¢, ify=0,
0, if y > 0,
and furthermore we have checked the vague convergence of
Z,
nP[(b—,Zt) € } -, VX &,

n

nP|b;'Z, >x,b,'Z,_, >y] > {

as measures on (0, ] X [0, ]. To prove (3.5), we let p be the vague metric on
M ,(E). Then we can show that

n
P( Z 82,672 1,2, s, Zt-m)Zi-1,Z4-25---, Zi-m)?

=1
(3.6) 0w
Z 28 -1 -, 0
(2, b7 Z,_ 01, 2y 1,250 Zy ) P
t=1i=1
and
n m
P> Z'9<Zt,b;1227iei,zt71,zt72 ,,,, Zi_p)
t=1i=1
(3.7) o
— —>
Z ZS(Ztﬂ”bnlzteivztﬂ—l’ztﬂ‘—z ’’’’’ Zt+im)) P 0.
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The proof of (3.6) is almost exactly the same as that of Proposition 4.26 of
Resnick (1987) and rests on the fact that, for any 6 > 0,

n
I" = lg(Zub;l(Zz—let—z !!!!! Ziom)Zy—1,Z425- s Zi—m)
t=

has the property that

EIn( U {(yo,xl,...,xm,yl,...,ym):xi>8,xj>6})

l<i<j<m

< ('g)nP[Z1 > 8b,, Zy, > 8b,],
which tends to 0 as n — o [cf. Feigin and Resnick (1992), (3.37)]. The proof of
(3.7) is identical to that of (3.40) in Feigin and Resnick (1992). From (3.7) and
(3.6) we see that, to prove (3.5), it suffices to show that the rightmost point
process in (3.7) converges to the limit in (3.5). Toward showing this, we assert
that

= 1/a ,
E EX s Y1, T, Y, Y)mo1)?

where {Y; ,,Y, ;, k=1, 1 <i, j<m} are iid random variables with the
distribution of Z; and independent of {T',}. To see this, let

t
Xn,t = Zt+m""’Zt+1’ b_’Zt’Zt—l"“’Zt—m+1

n

and observe that {X, ,, —% < ¢ < %} satisfies:

1) {X, ,, —= <t < =} is stationary and 2m-dependent.
(i1) We have

nP[X

n

1€ (dzm,...,dzl,dx,dy,dul,...,dum,l)]
m m—1

=, [ F(dz;,)v(dx)e(dy) [] F(du;)
i-1 j=1

on [0,%]™ X (0,%] X [0,0]™ := E'.
(iii) For g € CE(E'),

[n/k]
I}im limsupn Y. Eg(X, 1)g(X, ) =0.
—® n—o =2

The desired result then follows from Theorem 2.1 in Davis and Resnick
(1988).
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By projecting, we then get in (Mp([O, ] X (0,0 ] X [0,%]"~ 1)) that

n n
Z €(Zt+1’b;lztvzt 77777 Zis1-m)? Z S(ZHZ:Z’;th’Zﬁl ,,,,, Ziyg )"0
t=1 t=1

= -1/a ’ ’ ~1/a ’ ’ P
(ZS(Yk,l’Fk AR 7 IPRRTIN Yim-1)? Zg(yk,mrk VY 1,9, Y 1 Yim-2)? ’
k k

§E(Yk,myr{l/",Yk,m—1 yyyyy Yk,l,w))'

Hence, by using a mapping argument, we have

n
( Zl 82y 072000, 2y i 1. B T VT Lo m)
t:

= 1/a , -1 =
(§S(Yk,i’[k1/ e Yh ot Y1 Y e Vi o) 1""’m)'

Since addition is vaguely continuous we finally obtain that the rightmost
point process in (3.7) converges weakly to the limit in (3.5) and therefore, by
using (3.6) and (3.7), we deduce the result of the proposition. O

Before proceeding with the proof of Theorem 3.1 based on Proposition 3.2,
we state some preliminaries. Suppose E' C E and give E’' the relative
topology inherited from E. The compact subsets of E’ are those subsets
K' c E’' such that K’ is compact when considered as a subset of E. To see
this, suppose K’ is compact in E’. Suppose Og, B € A, is an open covering of
K'in E, so that K' € U z. ,0p. Since K' C E’, we also have

K’ c( U OB) NE = U (O,nE").
BeA BEA
Since Oy N E' is open in E’ and K’ is compact in E’, we have
K'c J(O;nE)c U O,
Bel pel
where I is a finite index set. Thus K’ is compact in E. The converse is
similar.

ProPOSITION 3.3. Suppose E' is a measurable subset of E and give E' the
relative topology inherited from E. For a set B C E' denote by dgy B the
boundary of B in E' and denote by dy B the boundary of B in E.

(a) Define
T:M,(E) > M,(E'")
by
Tm = m(-NE").
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Ifm € M (E) and m(dzE') = 0, then T is continuous at m so that if m, —
in M (E), then Tm, —, Tm in M (E’).

(b) The same conclusion holds if we define T the same way but consider it
as a mapping

» M

T:M,(E) » M,(E).

(c) Conversely, suppose m, € M (E) for n >0 and that m, —
M (E"). If

» My in

m,((E)=0, n=>0,
and m(dzE') = 0, then m,, >, m, in M (E) as well.

ProoF. (a) Suppose B C E' is relatively compact in E’' and m(dz B) = 0.
It suffices to show m,(B) — m(B) [Resnick (1987), page 142]. Since m, —, m
in M,(E), it suffices to show that m(JzB) = 0. One can readily check the
inclusion

(3.8) 9pB C 9y BU dpE’
for B c E'. Thus
m(dgB) <m(dgyB) + m(dgE") = 0.
The proofs of (b) and (c) are very similar except one needs the inclusion

(3.9) dg(BNE") c(dzB) NE'UdE'. o

The following simple result allows us to discard components in a point
process convergence result.

LEMMA 3.4. Suppose E;, i = 1,2, are locally compact Hausdorff topologi-
cal spaces and that E, is compact. If m, € M (E; X E;) for n >0 and
m, =, my in M (E, X E,), then

m, (X Ey) =, my(- X Ey)
in M(E,).

Proor. Let f; € CEZ(E,) and define f: E; X E, » R, by f(x,y) = f1(x).

The support of f is contained in K, X E,, where K, is the compact support

of f;. Thus the support of f is compact and m,(f) = m(f) which translates
to

fElfl(x)mn(dx X Ey) — fElfl(x)mO(dx X E,),

which is equivalent to the desired convergence in M, (E,). O
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We now proceed to prove Theorem 3.1. From Proposition 3.2 and Lemma
3.4 we have

M=

Nn = E(Ztv 0,211, 21-2:24-3), Zs-1,Z4-2,Z43)

t=1

s

U
2

8(Yk,1»ril/“,O.O,“yYé,l,Y}!,z)

k=1

(3.10)

+

DM T

g(Yk,ZyO,ril/ayO,Yk,hw,Y/é,l)

T L &, 4,00, Y, 5, Y, 1,

k=1

in M,(E) where, recall, E = [0,%] X ([0, 13\ {0}) x [0, =]3.

Referring back to the end of Section 2 and (2.5), recall that we are
interested only in the case where p,(1 — 6) < 0. However, it is initially
easier to deal with the restriction of the point process convergence in (3.10)
for the case that B, < 0 which is implied by p,(1 — ) < 0. So we define the
region [B < 0] Cc E by

[B<0] = {(x0,..., %) € B x, > 605 +2(0©)" xg,
x, # 0Qx, + 2(0(0))2x3>
- {(xo,...,xs) e [0,5] x ((0,%] x [0,%)?%)
2y > 000 + 2009 xg, x, > 00, + 2(0(0))2x3}
U{(xo,...,xe) & [0,%] x [0,%) x ([0,%]*\ {(0,0)}) x(0,]

X [0,0)% x, > 6@x, + 2(0(0))2x6, x, < 0x, + 2(0(0))2953}

2

=[B<0].U[B<O0]..
Note that for b6 > 0,¢ >0, b, >0, b, > 0, a; <=, j = 2,3,5,6, the set

{(xo,...,xG) e [0,] x ((0,%] x [0,%)?)

2 2
x, > 00x5 +2(09) xg, x; > 00x, + 2(09) x5,

2

xi2b,i=1,4 2 <a,j= 2,3,5,6}
is a compact subset of [0, ] X ((0,% ] X [ 0,%) %)%, Define the mappings
Ti( g,y Xg) =%y + (0(0))3x6,
B11) T,(x,,..., x5) =1 —x, + 0Ox, + 2(0(0))2x3|,

T(xg,..., x¢) = (Ty(xg,..., %6), To(%g,...,Xg), X4, X5, Xg)
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and think of T as
T:[B<0] > E =[0,°] X(0,*]
X{(x4, x5, %) € [0,%]*: x, > 0@x, + 2(0(0))2x6}
= [0, ] x(0,%] x {(x4,x5,x6) €(0,%] x [0,%)*
xy > 0Qx, + 2(9(0))2x6}.
Note that
t>On

T(Z b, (Z, 1,2, 4,2, 3),Z, 4, Zi 5,2, 3)

| B,
= Ct’ b_’Zt—l’Zt—Q’Zt—3 .

n

We seek to show

M=

LB, <018, 6,1 1B, 2o 10 240, 24 5)

t=1

(3.12)

=]

#
=2 H— ’ _ « ’ ’
N; Z (Y, 1+ (0O)3Y] 5, Ty V0, Y] 1,Y} )
k=1

in M,([0, ] x (0,%] X [0, ]?).
Since

P[N(35([B <0])) =0] = 1,
we obtain from Proposition 3.3 that if we take restrictions to [B < 0] in
(3.10), we get

o

(3.13) Nz<oy= Nls<oy= X Y41, T /9,0,0,, Y] 1,Y} 5)
k=1

in M,([B < 0)). It is tempting to try to apply Proposition 3.18, page 148, of
Resnick (1987). To apply this theorem, we need to check that T' is continuous
(no problem) and that 7"! maps compact sets into compact sets (problem).
This last compactness property fails, so to get around the problem, truncation
of the domain is necessary. For M > 0, let

[B<0]y=[B<0]. n{(xq,...,x6): 2, > M, x, Vg <M]}
U[B <0]. n{(xq,...,x6): 2y <M, x5 Vg =M1}

From (3.13) we get by restriction

Nn|[B<O]M = Nw|[B<0]M
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in M,([B < 0],,). Considered as a mapping on [B < 0],,, T~" maps compacta
into compacta. For instance, for a > 0, b,b',¢ > 0, a; < «©, i = 5,6,

\

T’l([O,a] X [b,%] X {(x4,x5,x6): x4>b",x,<qa;,i =5,6;
2y > 0Qx; +2(09) xg + c})
- {(xo,...,x6) e [0,5] x ((0,%] x [0,)?)

: 2
xy=b',x; <a;,i=5,6;x,> 0%, +2(09) x4 +c,

2

3 2
xg+ (09 xs <a,x, Vg <M, x;> 0%, +2(09) x; + b}

is compact in [0,%] X ( (0,90 ] X [ 0,%) 2)? and hence in [ B < 0],,. Thus we
conclude from Proposition 3.13, page 148, Resnick (1987) that

N, <oy, ° T !> N8 <o, o1

in M,(E’"). Part (c) of Proposition 3.3 then implies

n

N, ou = )y LB, <0102, 1> 0,71, 2, ;v 2, 3<b,MIUIZ, 1 <b,M,Z, 4V Z, 3> M 'b,])
t=1

XEC, b B, Zi 12 29, Zy_3)
= Noc#
in M,([0,] X (0,°] x [0, «]®). From Billingsley (1968), Theorem 4.2, to show
(3.12), we need to verify that, for any n > 0,
lim limsupP[ p(N, »,N,) > n] =0.

M— n—oow
Let g € C3([0,] X (0,] X [0,]®) and suppose the support of g is in [0, ]
X [b, ] X [0,]3. It suffices to show that, for all n > 0,

lim limsup P[IN, (g) — N,(g)l> n] =0.

M-» 5 0

Now

n

= 1([Bl<0]ﬁ([Z,,1> b M~ Z, oV Z, 5<b,M]UIZ, 1 <b,M,Z, 5V Z, 3>b,M )%
t=1

xg(Cy, b, B, Zo 1, Zy 5, Z, )
and so
P[IN, u(8) — N,(8)|> n]
<nP{[B, <0,IB/l/b,25] N ([Z,>b,M ", Z,_,V Z,_; <b,M]
U

[Z_ <b,M,Z,_,V Z,_;> bnMil])c}
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and since B, < 0 and |B,|/b, = b imply Z,_,/b, > b we have the bound
<nP{[Z,_,/b,>b] 0 ([Z, ., <bM | U[Z,_,VZ,_5>bM])
<nP[Z,_,>b,b,Z, ;VZ, ;>b,M]
=nP[Z,_,>b,b|P[Z,_yV Z,_;>b,M].
As n — « this last expression is asymptotic to
b “P[Z,_yV Z,_4>b,M],

which goes to 0 as n — .
Now corresponding to the condition p,(1 — ) define

NEG = {(x,, %1, X9, X3, %,) € [0,00] X(0,00] X 0,003:
05 X1, X9, X3, Xy
(5 + 0@2,)(1 = 09) + (—xy + 0Dy +2(09) 2, )(1 - )
+x, + (09’ x, < 0}.

Since
P[N!(o(NEG)) =0] =1

and p,(1 — ) < 0 implies B, < 0, we get from parts (a) and (c) of Proposi-
tion 3.3 that

M=

1[1%(1 0O <018(C,, b, B, Zeo 1, 215, Ze )

t=1

(3.14)

= N“# = kzl S(Yk,1+(9(o>)3Y;€,2,F{l/“:m;yé,hY}é,z)’
and applying Lemma 3.4 gives
n o0
(3.15) L1 a-00<08e, b = L W1+ (00)Y 5, Ty V)
t=1 k=1
in M,([0,] X (0, ]). Finally, another application of Proposition 3.3(a) gives
the desired result
n o0
(3.16) L - 00y <018, b B = D BT, 0O, T
t=1 k=1
in M,([ 0,) X (0, ]).
The next step is to show that we can take the ratio of the components in
(3.16) and we show

n
Vo,n = )y L pa-09<08s,c,/1B,
t=1

(3.17)

]

= Vo, = )y T (¥, 1+ (09)°Y 5)
k=1
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in Mp([ 0,%) ). The map

Ty: (u,v) € [0,%) X(0,%] »u/v e [0,),
although continuous, does not have the property that T;! carries compacta
into compacta and so a truncation of the domain must be done. For small
8 > 0, we restrict attention to [0, 67'] X [§, ] and then apply T to get, as
n — OO,

n

Vi = L Lpa-60)<0,¢,<571, b, B, 1= 5185,C,/IB,]

= Vs, T Z1[Yk,1+<6<°>)3Y;;,zsafl,Fgl/“z61grkl/“(Yk,1+(e<°>>3Y;g,z)
k

in Mp([ 0,%)). As § > 0 we have

G % Ly, 4 0@y < 57, 170 2 01 ETY (Y, 4+ (0O)Y )

= = @ ,
Vo, o %8%/ (Y31 +(09)3Y15)

in M ([ 0,%)), which is the right-hand side of (3.17). To show (3.17), therefore,
it suffices by Theorem 4.2 of Billingsley (1968) to prove that, for any n > 0,
(3.18) hm limsupP[ p(v5 ,, ¥5.,) > m] =0,
where p is the vague metric.
Let g € C#([0,%)) and suppose the support of g is in [0, a]. For (3.18) it
suffices to show that
hn}) limsup P[lv; (&) — vo..(&) > ] =0,

or, equivalently,

n C,
lim lim sup P Z ( n|B|) [B,l/b,>5,C, <81, p,(1—0©)<0]

-0 poo

(3.19)

n C,
g ”IBI [pt(1—9(°>><01

The absolute value of the difference between the two sums is bounded by

C,
Z (bn|B | p(1—e(°>)<0]1[\Bt\z 8b,,C, <871

>

n Ct

<)sg bn_|B| Lig,<ojnpB, = 8b,,C, <61
t=1 t
" t

<) bn_|B| 1g,<0,B, <65, c <51
t=1 t

n
+ Zg(bnm)1[3,<0,ct>51]'
¢
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Taking into account the compact support of g, the probability in (3.19) is thus
bounded by

{CJ[ &<aB<O !<5C<5 }}
- T b

O

?
<nPl|b C< B<0|Bt|<60<6’1
n IBl_a p =% C=
C,
+nPbﬁ B<0C>5
=]+ II.
Now II is bounded as follows:
81 B,
II <nP|— < —, B, < 0],
a n

and because B, < 0 implies Z, , > 09Z, , + 2(0)3Z,_,, the previous ex-
pression is dominated by

-

6_1
—)(—) , n — o,
n a

=06%*—0, 60— 0.
To bound I, observe that for arbitrarily small v < 6 ! we have

51 7, ,
— <
a

nP

C, |B,|
I<nP|b,— B,<0,— <6,
sn[n|B|3a 0, 5 <6,C,<w

n

C,
bn®S0,3t<0,Ct>w

= Ia + Ib.

Now Ib has a double limit which is 0 by the argument that handled II so we

concentrate on Ia. From the definition of C, we have C, > Z, and C, >

(0©)3Z,_,. Recall that Z, |, > 6©Z, , + 2(60©)*Z,_, when B, < 0. Thus Ia
is bounded by

-1 -1 |B,|

Io <nPla™ ' <(Z, )b—,

n

Bt<0,Ctsw}

Z
< nP[OL1 <(z) -

1 3
b’ (09)°Z,_5 < w}

n

S E(Z) “aP[(09)'Z, y<0|, n-=
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since, by Condition R, E(Z,) # < = for some B8 > « and thus

lim limsupla < (constant)P[(6(0))3Zt,3 < w]

n=o® 5§50

and since o can be picked arbitrarily small, the double limit must be 0 as
desired. This completes the verification of (3.17).

From (3.13) a standard argument mapping the points of v, , into the
minimum [see, e.g., Resnick (1987), page 214] yields

C o]
(3.20) b A= ATV (00)°Y).
pt(llf(ti(so)’;<0 t ot

The rest of the proof consists of showing that, in fact, bn(é — 0©) has the
same limit distribution as the limit random variable in (3.20).

To do this, recall the outline presented at the end of Section 2. When
p,(1 — 09) < 0, we approximate the polynomial p,(n) with two lines

L,: B+ C,, Ly: (A(1-609) +B,)n+C,,
which have roots

C, C,
- |Bt|’ Xyg = |Bt|_(1_ 0(0))At

X1

and therefore the smallest root r, of the random polynomial satisfies
(3.21) Xy ST <Xy,

We know from (3.13) that
n
Z 1[p,(1—e<°>)< 01€b,x,, = V0, = ZSF,%/“(Y,BY1+(0(O))3Y,£YZ)
t=1 k

in M, ([ 0,>)), and we now propose to show that the same holds true with x,,
replacing x,; and we show

n n
(3.22) p( X 1[pt(1—0‘°>>< 018b,x,,7 X l[pt<1—0<°>><0]€bnxzz) —p 0
t=1 t=1

as n — «. Suppose f € C;/ ([ 0,%)) with support in [0, £]. It is enough to show,
for any 7,

limP[ L f(b,x41) = (b x2) 10— p0y<op > m| = 0.
t=1

n— o
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For any small 6 > 0, this probability is bounded by
P[ Y f(b,x,) — f(b,x,5) 15, <oy > m
t=1

<P

n
Z |f( bnxtl) - f( bnxt2)|1[Bt<0,bnxt2>k+5,bn\xt2—xt1\<6] > 77/3:|
t=1

+P

n
2 1f(b,x,0) = f( b, %) LB, <0, 5,505 k45, b, 1x0—r0l> 5] ”’)/3}
t=1

+ P

Z 1f(b,%,1) _f(bnxt2)|1[Bt<0,bnx,23k+8] > 77/3}
t=1

=1+1I+1III.

Note that I is 0 because both arguments of f are outside the support of f.
For IT we have the bounds

II < P[ Z f(bnxtl)l[bnxtlsk,3t<0,|x,1—xt2|2 8] > 77/3}
t=1

sP{
¢

<nP|b,x, <k,B,<0,b,lx,, —x,]>35].

C=

[b,x2, <k, B, <0,0b,lx,; —x,5 > 8]}
1

Now

1
S 1-(1-69)A,/IB]
and on the set [b,x,; < k] this difference is bounded by

1
C1-(1-09)A4,/B,

1

b,lx,; — x5l =b,x,

k‘l

Thus, for some 6’ > 0,

[Bt <0,b,x, <k, lx,; —x,l= 8]

At
B,<0,b,x, <k, — >

c
|B,|
On [b,x,; < k], we have
1 k

—< ,

|Bt| ant
which implies

At At

— <k
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Thus, using the definitions of A,, C,, we have the bound for some new 6"

- Zy o+ Q(O)Zt—s
II <nP|B, <0, - > 8"
b,(Z, + (09)°Z,_,)

Z._ o+ 607 _ Z. o+ 6097 _
<nP|B, <0, 222 03 5 5 T2 35 6.

S
L b.Z, b,(0)°Z,_4
On the set [ B, < 0], we have (§)"'Z, > Z, , + 6Z,_, and so

t-1 Z, 5+ 097, 4
3907 > T oa, ¥
b,0"Z, b,(09)Z, ,

Z,_,+09Z,_, )

a9
bn(a(O)) Zt—3

Z,_,+09Z,_,

Sl TS s s
bn(e( )) Zt—3

[by a result of Breiman (1965) which is applicable from the second part of
Condition R]

< np[L > &
=" 1,00z,

~ (const)( 8”)“P[

-0, n — o,

which shows II — 0.
Observe that what was proven in the treatment of II is that, for any

constants £ > 0 and & > 0,
(3.23) lim nP[B, <0, b,lx,; — x,51 > 8, b,x,, <k] = 0.

For IIT we note that

n
b 1f(b,%,1) _f(bnxt2)|1[3,<o,b,,,xtzgkm]
t=1
n
= Z |f( bnxtl) - f( bnxt2)|1[Bt<0,bnxtzsk+5,b"\xt2—xt1\s 8]
t=1

n
+ Z |f(bnxt1) - f(bnxt2)|1[Bt<0,bnxtzngrB, b,|x9—%x41|> 8]
t=1

— S, +S,.

So
III <P[S, > n/6] + P[S, > n/6] = Illa + IIIb.

Letting w/(8) be the modulus of continuity for f:
wp(8) = sup If(x) —f(y)l,

lx—yl<$
we have for IIla the bound

Illa < P| o/(9) b 1ig,<0,6,x,<k+251 > /6|,
t=1
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and by the argument which showed (3.17), this probability converges to
(n — )

P[wf('é)vo’w([o,k +28]) > 1)/6],

which converges to 0 as § — 0 since w/(5) — 0.
For IIIb we have by (3.23) that

IIIb < nP[B,<0,b,x,, <k +8,b,lx,, —x,| > 8, b,x,; >2k] +0(1)
=o(1),

since x,; < x,q.
The proof of Theorem 3.1 is concluded by recalling that, when p,(1 — 6®)
<0,

Xy STy =Xy

and
b,(6—09)=" A b/
1<t<n
p,(1-6")<0
Since

/\ bnxtl =< /\ bnrt_ < /\ bnth

1<t<n 1<t<n 1<t<n
p,(1—-60<0 p,(1-60%<0 p,(1—-60"<0
and the two extremes converge to the same weak limit, the minimum in the
middle converges to the same weak limit. The proof of Theorem 3.1 is
complete.

4. The limit distribution in the left-tail case for q = 1. In this
section we assume Conditions M and L hold. We continue to assume the order
is ¢ = 1 and we present the limit distribution for §. We will discuss the
following theorem whose proof parallels that of Theorem 3.1 for the right-tail
case.

THEOREM 4.1. Suppose {X,} is the MA(1) process given in (1.1) and that
Conditions M and L hold. Suppose the true parameter is 8 € (0,1) and that
F, the distribution of Z, is continuous. Let a(n) be the quantile function

a(n) =F~ (1/n).
Note that a(n) — 0. The estimator 6 given in Section 2 has a Weibull limit
distribution. In [ 0,) ,

3/2

1A (9(0)) I‘kl/Zoz
(41)  a(n) (-09)=—To A ,
(=) (@) e Wiy = 007, ]
Yp1> Y2

where {Y), 1,Y, 5, k = 1} are iid with common distribution F and
I,=E + - +E,, k>1,
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is a sum of iid unit exponentially distributed random variables. The constant
c(a) is defined by the beta integral

c(a) = /1(1 —5) as* lds.
. 0
The limit distribution of 0 is Weibull:
lim Pla(Vn) (6 - 09) <«
) lim Pla(vn) (8- o) <x]

=1—exp{—kx?*}, x>0,
where

-3« @
k= (09) (@) E(IV, 1~ 007, Ly, o, ),
which is finite by Condition L. The convergence rate is 1/a(/n).

REMARK. In the right-tail case the convergence rate was b, which up to a
slowly varying multiplicative factor is of order n'/® However, under Condi-
tion L, the convergence rate is only 1/a(Vn) which up to a slowly varying
multiplicative factor is of order n'/@%. The convergence rate is slowed by the
presence of a moving average component.

The proof of Theorem 4.1 parallels that of Theorem 3.1 and is only
outlined. Our plan of attack is to show first that min{C,/|B,: 1 <¢ < n,
p,(1 = 60) < 0} has the limit distribution given in (4.2) and then we show
that 6 has, in fact, this limit distribution.

We begin with the following limit theorem which parallels Proposition 3.2.
It is built on the observations that, for x > 0, y > 0,

lim \/;P[Zth, =y,

n— o

Zt
a(n) =7

lim \/EP[Zt > x,

Z, _ 0
i =]

and

lim nP

Z, Zi
tm |y < 2y <7

Z Z
= limVan P|—— <x|VnP| 2L <
[awﬁ } [a(ﬁ) y}

IA

=x%y“
PrOPOSITION 4.2. Suppose Conditions M and L hold. Define the measure

u(dx) = ax* tdx, x>0.
We have
€ dx,,

nP|Z,_,€dy;,i=0,...,3; € dx
(4.3) [ e }

Zt Zt—3
a(Vn) a(Vn)
=, eo(dyo) F(dyy) F(dyy) eq(dys) n(dxo) p(dxs)
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in
4 2
(44) E = {(yo’h,ymys’ Xg, x3) € [0,%]" X ([O’OO] )>
Furthermore, with E as defined in (4.4), we have in M (E) that

n

Nn = Z &z, Zi1,24-9,2,-3,2,/ayn), Z,_3/aln)
(4.5) -t
= ]Voo = §S(O,Yk1,ykg,0,j}z1,jk2)’

where
Z E1rdr2)
k
is PRM with mean measure u X pu on [ 0, OO)2.

Again, as in Section 3, we wish only to consider points corresponding to
p,(1 — 0®) < 0 but because it is easier, we start by restricting attention to
the part of the state space corresponding to B, < 0. So we define

[B<O0]:= <(x0,...,x5) €E:x;> 0%, + 2(0(0))2353}.

Further we need the maps

Ty(x,...,%5) =2, + (09) xs,
(4-6) T,(x,,...,25) =|—2x; + 0Ox, + 2(0(0))2x3|,
T(xg,...,%5) = (%9, %1, %g, %3, T1(%q,..., x5), To(%g,..., x5)),

with domains and ranges

T,:[B < 0] » [0,), T,:[B < 0] —(0,%]
and

T:[B<0] ~E =[0,%]*x[0,%) x(0,%].

Also, T is continuous and 7! maps compact sets into compact sets since, for
instance,

4
Tl( >< [O’ai] X [a5’oo])

i=0

={(x0,...,x5)EE: x;<a;,i=0,...,3 x,+(09)’x; <a,,

as <x; — (H(O)x2 + 2(0(0))2x3)}.
From Propositions 4.2 and 3.3 we have
an[B <0 = Nw|[B <0]
in M,([B < 0. Applying Proposition 3.18, page 148, of Resnick (1987) yields
Np<ogeT ' = Nlp<oeT !
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in M,(E’), where, remember, E' = [0,0]* X [ 0,%) X (0, ]. Written an-
other way, this is

n

Y Y5 018202, 1. 20 320 5.Co/atyiIBD
t=1

= . .
% 1[Yk1 > 00Y,5180, Y31, Y30, 0, g1 + (0340, = Yy + 0¥ 5))

in MP(E’).
Now define

NEG = {( Xo, X1, Xy, X3, X5) € E': (x5 + 0Pxg)(1 — 0(0))2
=y + 0@, +2(09) 2 )(1 = 09) + (x5 + (09) xy) < o}.

We get from parts (a) and (c) of Proposition 3.3 that

n
Z 1[Pt(1_ 0(0)) <0] 8(Zt’Zt—1’Zt—2: Zt—37Ct/a(\/;)5 |Bt|)
t=1
e}

#
= = . .
N kZ l[Ykl > Yo 800, Y1, Y2, 0,1+ (00) g, |- Yy + 6@V 50
=1

Note that in the indicator on the right-hand side, the condition [Y,, > Y,,] is
equivalent to the condition

Yio(1 = 69) + (=Y, + 60Y,,)(1 - 69) < 0.
Applying Lemma 3.4 yields

n
)y L pa-09y<018c,/am), 1B
t=1

o

#
= = . .
N Z 1[Yk1 > Y351 €01+ (0 2hyg, |- Yyr + 60 5]
k=1

After an argument that verifies division between the two components is
permitted, we get

n
Z 1[pt<1 -0 < 018(C,/a(yn)IB,D
(4.7) t=1

= % l[Y}n > Y30] €1+ 6)k2)/ |- Yir + 60
in M,(([ 0,%)). Now one finishes the derivation with a comparison argument
as in Section 3.

The form of the limit in (4.1) is based on the fact that

% Er1+(0©)%))
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is PRM with a mean measure of [0, x] equal to (8®) 3%c(a)x2% and so is
D E(00)3/2¢(a))~ 1/ @0}/ @)
k=1

The form of the Weibull limit is gotten from the usual argument that the
minimum of the points is greater than x iff the point process has no points in
[0, x].

5. Simulation study. There is often a problem with applying limit
theorems based on weak convergence results that are driven by maxima or
minima. In particular, the rates of convergence to the limit distribution may
be very slow [see, e.g., de Haan and Resnick (1996)]. In order to verify the
usefulness of our limit results we simulated MA(1) processes for both the left-
and the right-tail cases and investigated the closeness of the empirical
distribution of the estimator and the theoretical limit distribution. We note
that this study deals only with the issue of the closeness of the approxima-
tion, and does not deal with further practical issues such as estimating «, the
parameter of regular variation, which would be required in an analysis of
real data.

Each simulation study involved 200 replications, and time series of lengths
n = 250, 500 and 1000 were considered. The innovations Z, were Pareto with
a = 1 for the right-tail case (P[Z, > x] = x~!; x > 1), and unit exponential
for the left-tail case (P[Z, < x] = 1 — exp{—x}; x > 0).

Three values of 6 (0.2, 0.5 and 0.8) were used for each case. A QQ-plot of
the distribution of the normalized estimates ¢,(6 — 0®) versus that of the
limit distribution was used. The value of ¢, is n in the right-tail case and
—1/log(1 — 1/ Vn) ~ Vn in the left-tail case.

In the right-tail case, from Theorem 3.1, the limit distribution is exponen-
tial with scale parameter given by

c(0) = E((2, + 0°Z,) ")
1

1+ 63
=3 1—63— 0 %log(1+ 6°%) — 6°log PE :

In the left-tail case the limit distribution, according to Theorem 4.1, is
Weibull with form:

1 — exp(—k(60)x?),
and
k(6) =(4—40+ 0%)/(86%).
We see from Figure 1 for the right-tail case that the simulated and
theoretical distributions match up very well for all sample sizes and for all
values of (¥ that were investigated. In other words, in this case, confidence

statements based on the limiting distributions will provide good approxima-
tions to the true ones even for sample sizes of 250.
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Exponential QQ-plot for MA(1) - Right Tail Exponential QQ-plot for MA(1) - Right Tail
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For the left-tail case, we find good approximations to the limiting distribu-
tion for 09 = 0.2 and 6©® = 0.5, but a poorer one for 6 = 0.8, for the
sample sizes considered.

6. Concluding remarks. It is noteworthy that, in contrast to the au-
toregressive case, the moving average estimators in the left-tail case suffer a
performance degradation depending on the order g of the model; no such
degradation is present under Condition R. From the results of Section 4 we
see that the convergence rate for the estimator of the MA(1) parameter is
1/a(yn ) which is a regularly varying function of index 1/(2a). Contrast this
to the convergence rate of the lp estimators in the autoregressive case which
is regularly varying of index 1/«. We anticipate that the convergence rate in
the left-tail case for MA(q) parameters will have index 1/(2[q/2]qa), where
[q /2] is the first integer greater than or equal to g /2. Thus, under Condition
L, a sharp penalty is paid for using models which have moving average
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Exponential QQ-plot for MA(1) - Right Tail Weibull QQ-plot for MA(1) - Left Tail
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Fic. 1. (continued)

components and the penalty increases as the order of the model increases.
This is in contrast to results under Condition R and to the results found for Ip
estimators for autoregressive parameters.

How does our linear programming estimator compare with other estima-
tors? Under condition L, the rate of convergence of our MA(1) estimator is
1/a(Vn). Because a(-) is regularly varying with index 1/, the rate of
convergence [neglecting the slowly varying component of a(-)] is of the order
nt/2® When Condition L is applicable one could also consider using the
Gaussian maximum likelihood estimator which has a rate of convergence Vrn .
Our estimator will be superior provided 1/(2a) > 1/2; that is, when « < 1.
The validity of the condition o < 1 can be statistically checked by using, for
example, the Hill estimator. See Resnick and Starica (1995).

When Condition R holds, Davis and Resnick’s (1986) method of moments
estimator for 6 based on the sample correlation function can be used. Such
estimators, because they are based on products of the innovations variables,
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Weibull QQ-plot for MA(1) - Left Tail Weibull QQ-plot for MA(1) - Left Tail
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will have a rate of convergence which is inferior to our linear programming
estimator. For example, if the innovations have Pareto tails, the rate of
convergence of the Davis and Resnick (1986) estimator will be (n /log n)'/ ¢,
whereas our linear programming estimator has a rate of convergence n'/ .
Thus, for example, when « = 1 and the sample size is 5000 (a not uncommon
sample size in teletraffic studies), the rate of convergence of the moment
estimator is about 8 times slower than the linear programming estimator. A
Gaussian maximum likelihood estimator can be expected to have the same
rate of convergence as the method of moments estimator.

The important challenge now is to extend these results from the MA(1)
case to more general moving average processes and then on to the general
ARMA model. We anticipate that for ARMA models the rate of convergence
under Condition L of the lp estimators will suffer depending on the order of
the moving average component. The theoretical challenge in dealing with
higher-order MA models or general ARMA models arises from the fact that
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the estimators are not representable explicitly but are solutions of mathemat-
ical programming problems. Thus general weak convergence techniques in-
volving random sets representing feasible regions for the mathematical pro-
gram will be needed. These techniques will be similar to but harder than
those used by Feigin and Resnick (1994). As for practical implementation of
numerical methods to compute the estimated values, there is an emerging
field of semidefinite programming which offers general computational tools
that will be relevant. See, for example, Vandenberghe and Boyd (1996).

There is some evidence that many data sets exhibiting heavy tails cannot
be fit by ARMA models, perhaps because of nonlinearities. See Davis and
Resnick (1996) and Resnick (1996). However, one cannot appreciate the
potential shortcomings of classical Box—Jenkins modeling when applied to
the new context of heavy tails without a reasonably complete set of estima-
tion and fitting techniques and thus present efforts to estimate coefficients in
linear models are crucial for progress in finding acceptable models for heavy-
tailed data.
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