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FINITE STATE MULTI-ARMED BANDIT PROBLEMS:
SENSITIVE-DISCOUNT, AVERAGE-REWARD
AND AVERAGE-OVERTAKING OPTIMALITY

BY MICHAEL N. KATEHAKIS AND URIEL G. ROTHBLUM

Rutgers University and Technion]Israel Institute of Technology

We express Gittins indices for multi-armed bandit problems as Lau-
rent expansions around discount factor 1. The coefficients of these expan-
sions are then used to characterize stationary optimal policies when the

Žoptimality criteria are sensitive-discount optimality otherwise known as
.Blackwell optimality , average-reward optimality and average-overtaking

optimality. We also obtain bounds and derive optimality conditions for
policies of a type that continue playing the same bandit as long as the
state of that bandit remains in prescribed sets.

1. Introduction. Multi-armed bandit problems have traditionally been
studied under a total-discounted-reward optimality criterion with a fixed
interest rate. In the current paper, discrete time, finite state multi-armed
bandit problems are studied under alternative optimality criteria, namely,

Ž .sensitive-discount optimality Blackwell optimality , average-reward optimal-
ity and average-overtaking optimality. Related work for specific instances of

wŽ .the problem was done by Kelly 1981 , Bayes treatment of Bernoulli bandits
x wŽ .with unknown success probabilities and by Lai and Ying 1988 , average

xoptimality for a particular queuing model .
Sensitive-discount optimality concerns simultaneous maximization of to-

tal-discounted-reward under all sufficiently small positive interest rates. We
Ž .show that the Gittins indices have representations as computable Laurent

Ž .series in the sufficiently small positive interest rate; hence, a generalized
index rule based on lexicographic maximization of the sequence of coefficients
of the Laurent expansions can be used to obtain stationary index policies
which are sensitive-discount optimal. The lexicographic comparisons require
the computation of infinitely many coefficients. However, in the spirit of

Ž .results of Miller and Veinott 1969 for Markov decision chains, we prove that
the lexicographic comparisons can be truncated to rely only on a finite
Ž .prescribed number of terms, yielding a finite algorithm for computing
stationary index policies which are sensitive-discount optimal. As computa-
tion is applied to the projects independently, our results preserve the classic
decomposition structure of the optimal policies for bandit problems with fixed
interest rate.
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We consider two additional optimality criteria, namely, average-reward
Žoptimality and average-overtaking optimality see Sections 2 and 3 for formal

.definitions . Known results about Markov decision chains show that every
stationary sensitive-discount optimal policy is both average-reward optimal
and average-overtaking optimal. However, we obtain algorithms for comput-
ing stationary generalized index policies that are, respectively, average-re-
ward optimal and average-overtaking optimal which are more efficient than
the one that we developed for finding stationary generalized index policies
which are sensitive-discount optimal. These algorithms use, respectively, only
two or three coefficients of the corresponding Laurent series of the Gittins
indices.

In constructing and implementing policies for multi-armed bandit prob-
lems, it is reasonable to activate selected projects for more than a single
period. Holding policies are procedures that use first exit times of particular
sets of states to determine the time for reevaluating the selection of projects.
We also construct optimal holding policies for each of the three criteria we
consider. At decision epochs, these policies maximize lexicographically coef-
ficients of the Laurent expansions of the indices, but one fewer term is needed
than for optimal stationary policies; in particular, average-reward optimality
requires a single coefficient and average-overtaking optimality requires two.

Our approach extends to problems with infinitely many projects and
states. However, we do not consider such extensions here because additional
technical requirements are needed and the resulting algorithms do not
reduce to finite calculation.

Results about Markov decision chains and multi-armed bandit problems
are reviewed in Sections 2 and 3, respectively. Laurent expansions of the
Gittins indices are developed and are used in Section 4 to construct optimal
index policies for each of the three criteria we consider. Finally, optimal
holding policies are constructed in Section 5.

2. Optimality criteria for Markov decision chains. Consider a
Ž .Markov decision chain MDC with finite space S and finite action space A.

Ž .For s, u g S and a g A, let R s be the one-step reward received whena
Ž < .action a is taken in state s and let P u s be the transition probability froma

state s into state u under action a. Policies are functions which map history
paths into actions. Depending on the initial state s, a policy p determines a

� t Ž .4reward stream denoted R s and for 0 - a - 1 the expected a-dis-p ts0, 1, . . .
Ž .counted reward associated with p is then given by W s, a 'p

` t w t Ž .xÝ a E R s . The supremum of these quantities over all policies p ists0 p

Ž . Ž .denoted V s, a . Throughout we use the index a the discount factor inter-
Ž . Ž .changeably with the index r ' 1 y a ra the interest rate ; for example, we

Ž . Ž .write V s, r for V s, a .
Ž . Ž .A policy is called a-discount optimal if W s, a s V s, a for each s g S.p

A policy p is called stationary if the action associated to each history path
depends only on its last state, say s, and in this case we denote that action by
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Ž . Ž .p s . Blackwell 1962 showed that for each 0 - a - 1, there exists a station-
ary policy which is a-discount optimal.

Ž .Miller and Veinott 1969 showed that for some r* ) 0 there are Laurent
expansions

`
n Žn.W s, r s r w s for each stationary policy p ,Ž . Ž .Ýp p2.1Ž .

nsy1 s g S and 0 - r - r*,

and
`

n Žn.2.2 V s, r s r v s for each s g S and 0 - r - r*,Ž . Ž . Ž .Ý
nsy1

Žn.Ž . Žn.Ž .and that the coefficients w s and v s of these expansions can each bep

computed with finitely many arithmetic operations. It turns out that useful
conditions for a stationary policy p are to match the first k q 2 coefficients of

Ž . Ž .the expansion 2.1 with that of 2.2 , that is, to satisfy

wŽy1. s , wŽ0. s , . . . , wŽk . s s vŽy1. s , vŽ0. s , . . . , vŽk . sŽ . Ž . Ž . Ž . Ž . Ž .Ž .Ž .p * p * p *2.3Ž .
for each s g S.

A policy p is called sensitive-discount optimal or Blackwell optimal if for
Ž .some 0 - a* - 1 it is a-discount optimal for all 0 - a - a*. Veinott 1969

showed that a stationary policy is sensitive-discount optimal if and only if
Ž . < <satisfies 2.3 with k s S . Furthermore, he obtained an algorithm, requiring

finite computation, that identifies a stationary policy that satisfies this
condition. Thus, Veinott obtained a constructive proof for the existence of

Žstationary sensitive-discount-optimal policies, a result proved earlier non-
. Ž .constructively in Blackwell 1962 .

A policy p * is called average-reward optimal if
t t1

k k2.4 lim inf E R s y E R s G 0Ž . Ž . Ž .Ý Ýp * p½ 5t q 1tª` ks0 ks0

for each policy p and each state s g S.

and average-overtaking-optimal if
T t T t1

k klim inf E R s y E R s G 0Ž . Ž .Ý Ý Ý Ýp * p½ 52.5 T q 1tª`Ž . ts0 ks0 ts0 ks0

for each policy p and each state s g S.

It turns out that a stationary policy p * is average-reward optimal if and only
Ž .if it satisfies 2.3 with k s y1 and average-overtaking optimal if and only if

Ž . Ž .it satisfies 2.3 with k s 0; see Veinott 1966, 1974 and Denardo and Miller
Ž .1968 . In particular, for stationary policies sensitive-discount optimality
implies average-overtaking optimality, which implies average-reward opti-
mality.

Ž .Additional optimality criteria are obtained from 2.5 by replacing the
double summation with any finite number of consecutive summations. In

Ž .particular, if k q 2 -order summations are used, the corresponding optimal
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Ž . Ž .stationary policies are characterized by 2.3 ; see Veinott 1974 and
Ž .Rothblum and Veinott 1992 . In all cases results continue to hold when

optimization takes place within the class of randomized policies, and for
stationary randomized policies the associated expected discounted reward

Ž .have Laurent expansions as in 2.1 .

3. Preliminaries in multi-armed bandit problems. We next consider
Ž .a multi-armed bandit problems MABP with a finite set of projects N, where

Ž .each project i has a finite state space S . For i g N and x, y g S , let r x bei i i
the one-step reward received when project i is selected while in state x and

Ž .let p x, y be the transition probability of project i from state x into state yi
when i is active. As usual, this MABP is identified with a MDC having state
space S ' Ł S , and we use the terminology of policies and optimalityig N i
summarized in Section 2 to that MDC.

Ž� 4 .Let J ' D i = S . An index for the MABP is a real-valued functionig N i
m: J ª R. We say that a stationary policy p is consistent with index m if

3.1 m p s , s s max m i , s for each s g S.Ž . Ž . Ž .Ž .p Ž s. i
igN

� t4A stopping time t on the process Y generated when project i isi ts0, 1, . . .
activated indefinitely is called a stopping time for project i. For such t ,
consider the indices defined by

ty1 t t 0<E Ý a r Y Y s xŽ .ts0 i i i
3.2 m i , x , a ' for each i , x g J .Ž . Ž . Ž .t t 0<1 y E a Y s xi

The Gittins index is obtained by taking the suprema of these quantities over
all stopping times t for project i. Herein, we denote the Gittins index

Ž . Ž .associated with i, x g J by m i, x, a ; the parameter a is included to
Ž .express the dependence which we shall explore on the discount factor a .

Ž .Gittins and Jones 1974 proved that these suprema are well defined and
attained, that each stationary policy which is consistent with the Gittins
index is a-discount optimal and that such a stationary policy exists; see

Ž . Ž . Ž .Gittins 1989 , Ross 1983 , Whittle 1982 and references therein.
Ž .Glazebrook 1982, 1990 used Gittins indices to bound the performance of

stationary policies. We next use his results to bound the performance of
stationary index policies via their indices.

Ž .PROPOSITION 3.1 Bounding the performance of stationary index policies .
Let L, K G 0 and let m be an index satisfying

3.3 y L F m i , x y m i , x , a F K for each i , x g J .Ž . Ž . Ž . Ž .
Then each stationary policy p that is consistent with m satisfies

y13.4 W s, a G V s, a y 1 y a L q K for each state s g S.Ž . Ž . Ž . Ž . Ž .p

PROOF. Let p be a stationary policy which is consistent with m. The
Ž .consistency of p with m and two applications of 3.3 show that for s g S and
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for i s 1, . . . , N,

3.5 m p s , s , a q K G m p s , s G m i , s G m i , s , a y L.Ž . Ž . Ž . Ž . Ž .Ž . Ž .p Ž s. p Ž s. i i

Ž Ž . . Ž . Ž .So, m p s , s , a G max m i, s , a y L q K for each s g S, and thep Ž s. ig N i
Ž . wŽ . xinequalities of 3.4 follow from Glazebrook 1982 , Theorem 2 . I

For related bounds for policies under which selected projects are activated
for a number of periods determined by stopping times, see Katehakis and

Ž . Ž .Veinott 1987 and Glazebrook 1991 .
Ž .Katehakis and Veinott 1987 obtained a representation of the Gittins

i x Ž .indices by considering Markov decision chains MDC for each pair i, x g J;
MDC i x has state space S and two actions}one which continues to activatei
the project and the other which instantly restarts the process at state x. A

i x Ž .stationary policy d for MDC corresponds to a subset C d of S thati
Žcontains x and consists of the states at which the policy continues rather

. i xthan restarts at x . Also, a stationary policy d of MDC induces a stopping
Ž . i xŽ .time t d which is the first time the restart option is taken. Let W y, a bed

the expected a-discounted reward associated with d when y is the initial
i xŽ .state and let V y, a be the corresponding optimal expected a-discounted

wŽ . x i xreward. Katehakis and Veinott 1987 , Proposition 2 showed that, with D
i x Ž .as the set of stationary policies for MDC , for 0 - a - 1 and i, x g J,

3.6 m i , x , a s W i x x , a for each d g Di xŽ . Ž . Ž .t Žd . d

and

3.7 m i , x , a s max m i , x , a s V i x x , a .Ž . Ž . Ž . Ž .t Žd .
i xdgD

An alternative representation of Gittins indices was obtained by Whittle
Ž .1980 by considering parametric MDC’s for each project, depending on a
parameter m but not on the states of the projects. Two actions are available
in Whittle’s construction}one which continues to activate the project and the

Ž .other which calls for retirement with the parametric payoff m. The above
construction differs in that retirement is not allowed; rather the option of
restarting project i in state x is available.

Ž .4. Stationary optimal policies for MABP. The nonconstructive ar-
Ž .guments of Blackwell 1962 and the a-discount optimality of stationary

index policies for each fixed a imply the existence of stationary index policies
which are sensitive-discount optimal, hence, average-reward and average-
overtaking optimal; see Section 2. In the current section we show how such
policies can be computed.

Ž . Ž .From 3.7 and 2.2 we get the following Laurent expansions of Gittins
indices.
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Ž .THEOREM 4.1 Laurent expansions of Gittins Indices . For some r* ) 0,
there are Laurent expansions

`
n Žn.4.1 m i , x , r s r m i , x for each i , x g J and 0 - r - r*,Ž . Ž . Ž . Ž .Ý

nsy1

Žy1.Ž . Ž0.Ž .and the coefficients m i, x , m i, x , . . . of these expansions equal the
i xŽ .coefficients of the expansions of the V x, r ’s.

Ž . Žy1.Ž . Ž0.Ž . Ž .As in 2.2 , each of the coefficients m i, x , m i, x , . . . of 4.1 can be
computed with finitely many arithmetic operations. Also, the arguments of

wŽ . xKatehakis and Veinott 1987 , Proposition 2 combine with standard renewal
t Ž . y1Ž .arguments to show that, with the Y ’s as in 3.1 , m i, x has the represen-i

Ž .tation pointed out to us by Glazebrook
ty1 t 0<E Ý r Y Y s xŽ .ts0 i i iy14.2 m i , x s sup .Ž . Ž . 0<E t Y s xtG1 i

Ž . Ž Ž .Given two real sequences a s a , a , . . . and b s b , b , . . . , we sayy1 0 y1 0
that a dominates b lexicographically, written a 4 b, if for some k glex
� 4y1, 0, . . . , a s b for all y1 F n F k y 1 and a ) b . Also, we writen n k k
a 4 b if either a 4 b or a s b. As 4 is a complete order on the setlex lex lex}

of infinite sequences, every finite set of such sequences, say a1, . . . , aL, has a
lexicographically maximal element with respect to 4 , which we denotelex
lex max am. These definitions and observations extend to finite sequencesmg L
in the obvious way.

Ž . ` n Ž . ` nGiven two power series a « s Ý a « and b « s Ý b « whichnsy1 n nsy1 n
Ž .converge absolutely for all sufficiently small positive « , a , a , . . . 4y1 0 lex}

Ž . Ž . Ž .b , b , . . . if and only if a « G b « for all sufficiently small positive « .y1 0
Ž . Ž .Furthermore, if a , a , . . . , a s b , b , . . . , b for some k s y1, . . . ,y1 0 k y1 0 k

< Ž . Ž . < kq1then there exists a real number K such that a « y b « F K« for all
sufficiently small positive « . Similar conclusions hold for power series with
finitely many terms. The above observations and Theorem 4.1 imply that if a
stationary policy p satisfies

mŽy1. p s , s , mŽ0. p s , s , . . .Ž . Ž .Ž . Ž .Ž .p Ž s. p Ž s.

s lex max mŽy1. i , s , mŽ0. i , s , . . . for each s g S,Ž . Ž .Ž .i i
igN

4.3Ž .

then for sufficiently small positive r,

4.4 m p s , s , r s max m i , s , r for each s g S.Ž . Ž . Ž .Ž .p Ž s. i
igN

That is, p is consistent with the Gittins index and is therefore r-discount
Ž . Ž .optimal. So, 4.3 is an attainable sufficient condition for a stationary policy

to be sensitive-discount optimal. This condition is separable and is based on
Žy1.Ž . Ž0.Ž .parameters m i, x , m i, x , . . . that are determined independently for

each project. Though each of these coefficients is computable with finitely
many arithmetic operations, the computation of the complete sequences
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requires infinite computation. The next result establishes truncated variants
Ž . Ž .of the implication 4.3 « 4.4 .

Ž . Ž .Laurent expansions of W ? for each stationary policy p and for V ? arep

Ž . Ž . Ž0.Ž . Ž1.Ž .given in 2.1 and 2.2 , and we shall use the notation w s , w s , . . . andp p

vŽy1., vŽ0., . . . to denote the corresponding coefficients.

THEOREM 4.2. Let k s 0, 1, . . . and let p be a stationary policy that
satisfies

mŽy1. p s , s , . . . , mŽk . p s , sŽ . Ž .Ž . Ž .Ž .p Ž s. p Ž s.

s lex max mŽy1. i , s , . . . , mŽk . i , s for each s g S.Ž . Ž .Ž .i i
igN

4.5Ž .

Then

4.6 wŽn. s s vŽn. s for each s g S and n s y1, . . . , k y 1.Ž . Ž . Ž .p

PROOF. For each r ) 0 consider the index m r defined byk

k
r n Žn.4.7 m i , x ' r m i , x for each i , x g J .Ž . Ž . Ž . Ž .Ýk

nsy1

Ž . Ž . Ž Žy1. Ž0. Žk .. Ž Žy1. Ž0. Žk ..For pairs i, x , j, y g J, m , m , . . . , m 4 m , m , . . . , m ifi x i x i x lex j y j y j y
rŽ . rŽ .and only if m i, x ) m j, y for all sufficiently small positive r. As 4 isk k lex

�Ž Žy1.Ž . Žk .Ž .. Ž . 4 Ž .a complete order on the finite set m i, x , . . . , m i, x : i, x g J , 4.5
implies that p is consistent with each of the indices m r for 0 - r - r*.k

Theorem 4.1 and standard arguments about power series show that there
a < Ž . rŽ . < kq1exist positive constants r and K such that m i, x, r y m i, x F K rk

a Ž .for each 0 - r - r and i, x g J. As p is consistent with each of the indices
m r for 0 - r - r*, Proposition 3.1 implies thatk

0 F V s, r y W s, r F 2 K r k 1 q rŽ . Ž . Ž .p
4.8Ž .

for each 0 - r - min r*, ra and s g S.� 4
Ž . Ž . Ž . Ž . Ž .Using the expansions of W s, r and V s, r given in 2.1 and 2.2 , 4.8p

implies that the first k y 1 coefficients of the two expansions coincide; that is,
Ž .4.6 has been verified. I

Theorem 4.2 is next combined with the characterizations of optimal sta-
Ž .tionary policies for MDC’s through 2.3 to obtain sufficient conditions for

these optimality criterion for MABP’s.

Ž .THEOREM 4.3 Sufficient conditions for optimality of stationary policies .
Ž . < <If p is a stationary policy satisfying 4.5 with k s S q 1, k s 0 or k s 1,

then p is, respectively, sensitive-discount, average-reward or average-overtak-
ing optimal.

For each nonnegative integer k, the construction of a stationary policy that
Ž . Žn.Ž .satisfies 4.5 requires the computation of the coefficients m i, x for each
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Ž . � 4pair i, x g J and each n g y1, . . . , k . Each of these coefficients can be
computed with finitely many arithmetic operations. Thus, Theorem 4.3 yields
a finite algorithm for computing stationary sensitive-discount-optimal poli-
cies. Such policies are both average-reward optimal and average-overtaking

Ž . < <optimal. Verification of 4.5 with k s S may require extensive computation
when S is large, but Theorem 4.3 also provides succinct sufficient conditions
for a stationary policy to be average-reward optimal or average-overtaking
optimal, respectively. On-line implementation of algorithms that apply poli-

Ž . Žn.Ž .cies that satisfy 4.5 will compute the corresponding coefficients m i, x for
Ž .pairs i, x only as they are encountered.

As is the case for index policies, the computation required for verifying
Ž .4.5 considers each of the projects independently. In fact, stationary policies

Ž . r Ž .that satisfy conditions 4.5 are index policies with index m given by 4.7 fork
Ž . Ž .some positive small r. Still, 4.5 has the advantage of avoiding the need to

determine an appropriate value of r which may be difficult.
Ž .One can construct stationary policies that satisfy 4.5 for any specified

nonnegative integer k. By Theorem 4.1, such policies are then optimal with
respect to the optimality criteria mentioned at the end of Section 2.

5. Holding optimal policies for MABP. A holding policy is deter-
Ž .mined by a strict ranking 4 of J and a continuation function C ? , which

Ž . Ž .maps each pair i, x g J into a subset C i, x of S that contains x. Thei
implementation of the holding policy is then as follows:

STEP 0. Set s1 to be the initial state of the system and enter Step 1.

Ž k .STEP k. A project i 4-maximizing j, s over j g N is selected andk j
Ž k .activated. Project i remains active while its state is in C i , s . Once thek k j

Ž k . kq1state of i leaves C i , s , set s to be the state of the system at thatk k j
point and enter Step k q 1.

We refer to entrances into the evaluation step as decision epochs. Periods
between consecutive decision epochs are stopping times; thus, holding policies
are instances of the stopping policies considered in Katehakis and Veinott
Ž . Ž .1987 where more complicated stopping rules are allowed .

Ž .THEOREM 5.1 Bounding the performance of holding policies . Let 0 -
a - 1, let A and B be positive numbers and let p be a holding policy with

Ž . Ž .ranking 4 and continuation function C ?, ? . Suppose that m i, x, a G
Ž . Ž . Ž . Ž . Ž .m j, y, a y A for all pairs i, x , j, y g J satisfying i, x 4 j, y , and

Ž . i xfurther suppose that for each pair i, x g J the stationary policy d for MDC
Ž . i x Ž . i x Ž .corresponding to C i, x satisfies W x, a G V x, a y B. Thend

Ž . Ž . Ž .W s, a G V s, a y A q B for each s g S.p

PROOF. Suppose state s is observed and project i is selected at a particu-
lar decision epoch. Let d be the stationary policy of MDC i s i that corresponds
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Ž . Ž . Ž .to C i, s . Then the first exit time of C i, s is the stopping time t d asi i
Ž . Ž .defined in Section 3. In particular, 3.6 and 3.7 combine with the assump-

tions about p to show that

m i , s , a s W i s i s , a G V i s i s , a y BŽ . Ž . Ž .t Žd . i d i i

s m i , s , a y B G max m j, s , a y A y B.Ž . Ž .i j
jgN

5.1Ž .

wŽ .The asserted inequalities now follow from Katehakis and Veinott 1987 ,
xTheorem 1 , where we already observed that holding policies are included in

the set of stopping policies they consider. I

A holding policy need not be stationary because the selected action in a
given state may depend on the occupied project and on its state when
selected. However, holding policies are, in essence, stationary in a MDC with

Ž .an extended state space. Consequently, for each holding policy p , W ?, r hasp

Ž .a Laurent expansion as in 2.1 ; furthermore, the characterizations of the
Ž .various optimality criteria through 2.3 extend from stationary to holding

policies.
For MDC i x, we denote the coefficients of the Laurent expansions of

Ž i x .Ž . i xŽ .W x, r for a stationary policy d and of V x, r , respectively, byd

Ž i x .Žn.Ž . Ž i x .Žn.Ž .w x and v x for n s y1, 0, . . . . We recall from Theorem 4.1d

Ž i x .Žn.Ž . Žn.Ž .that v x s m i, x .

THEOREM 5.2. Let k be a positive integer and let p be a holding policy
Ž .with ranking 4 and continuation function C ?, ? . Suppose

i , x 4 j, y « mŽy1. i , x , . . . , mŽk . i , xŽ . Ž . Ž . Ž .Ž .
4 mŽy1. j, y , . . . , mŽk . j, yŽ . Ž .Ž .lex}5.2Ž .

for all i , x , j, y g J ,Ž . Ž .
Ž .and further suppose that for each pair i, x g J the stationary policy d for

i x Ž .MDC corresponding to C i, x satisfies
Ž . Ž .n ni x i x5.3 w x s v x for all n s y1, . . . , k .Ž . Ž . Ž . Ž .Ž .d

Žn.Ž . Žn.Ž .Then w s s v s for each s g S and n s y1, . . . , k.p

Ž . Ž .PROOF. Applying the expansion 4.1 of Theorem 4.1 to pairs i, x ,
Ž . Ž . Ž . Ž .j, y g j, 5.2 implies that if i, x 4 j, y , then for some r9 ) 0 and
K 9 ) 0,

m i , x , a G m j, y , a y K 9r kq1 for all 0 - r F r9.Ž . Ž .
Ž . Ž . Ž . Ž .Also, by 2.1 and 2.2 , for each i, x g J, 5.3 implies that for some r0 ) 0

and K 0 ) 0,

W i x x , a G V i x x , a y K 0 r kq1 for all 0 - r F r0 .Ž . Ž .Ž .d

� 4Hence, for 0 - r F r* ' min r9, r0 , the conditions of Theorem 5.1 are satis-
fied with A s K 9r kq1 and B s K 0 r kq1, and the conclusion of that theorem
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Ž . Ž . kq1shows that, with K ' K 9 q K 0, W s, r G V s, r y K r for all s g S andp

0 - r - r*. For all s g S and r ) 0, we also have that
` `

n Žn. n Žn.r v s s V s, r G W s, r s r w s .Ž . Ž . Ž . Ž .Ý Ýp p
nsy1 nsy1

Thus,
` `

n Žn. n Žn. kq1r v s y r w s F K r ,Ž . Ž .Ý Ý p
nsy1 nsy1

immediately implying the conclusion of the theorem. I

Theorem 5.2 is next combined with the characterizations of optimal hold-
Ž .ing policies through 2.3 to obtain sufficient optimality conditions for holding

policies. The proof follows the arguments used to deduce Theorem 4.3 from
Theorem 4.2 and is left to the reader.

Ž .THEOREM 5.3 Sufficient conditions for optimality of holding policies . If p
Ž .is a holding policy with ranking 4 and continuation function C ? such that

Ž . < <5.2 holds with k s S q 1, k s 0 or k s 1 and, respectively, for each
Ž . i x Ž .i, x g J the stationary policy of MDC corresponding to C i, x is
sensitive-discount, average-reward or average-overtaking optimal, then p is,
respectively, sensitive-discount, average-reward or average-overtaking opti-
mal.

Theorem 5.3 suggests the following implementation for holding policies
that are sensitive-discount optimal, average-reward optimal and average-
overtaking optimal, respectively. Suppose state s is observed at a decision
epoch. For each i g N, determine the corresponding coefficients of the expan-

i s iŽ .sion of V s , r ; in fact, past initialization, new coefficients have to bei
computed only for the single project that has been selected in the previous

Ž .decision epoch while the coefficients of the other projects do not change .
Next, select a project i* that lexicographically maximizes the corresponding
coefficients, compute a corresponding stationary optimal policy d i*s i* for
MDC i*s i* and use the continuation set determined by d i*s i*.

Ž .One can construct stationary policies that satisfy 5.2 for any specified
nonnegative integer k. By Theorem 5.2, such policies are then optimal with
respect to the optimality criteria mentioned at the end of Section 2.
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