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ON THE ASYMPTOTIC PATTERNS OF SUPERCRITICAL
BRANCHING PROCESSES IN
VARYING ENVIRONMENTS

BY HARRY COHN

University of Melbourne

� 4Let Z be a branching process whose offspring distributions varyn
� Ž .4with n. It is shown that the sequence max P Z s i has a limit.i) 0 n

Denote this limit by M. It turns out that M is positive only if the offspring
� 4variables rapidly approach constants. Let c be a sequence of constantsn

and W s Z rc . It will be proven that M s 0 is necessary and sufficientn n n
� 4for the limit distribution functions of all convergent W to be continuousn

Ž . � 4on 0, ` . If M ) 0 there is, up to an equivalence, only one sequence cn
� 4 Ž .such that W has a limit distribution with jump points in 0, ` . Neces-n

sary and sufficient conditions for continuity of limit distributions are
� 4derived in terms of the offspring distributions of Z .n

1. Introduction and results. A branching process in varying environ-
� 4 � 4ments Z is a sequence of nonnegative integer-valued random variables Zn n

defined inductively by Z s 1 and0

Zn¡
X , if Z G 1,Ý n , k n~1 Z sŽ . nq1 ks1¢0, if Z s 0,n

� 4where X ; k s 1, 2, . . . , the offspring variables of the nth generation, aren, k
for each n independent and identically distributed given Z . The termn
varying environments refers to the fact that, unlike the classical Galton]

� 4Watson process, the probability distributions of X are allowed to varyn, k
with n. Let X be a random variable distributed like X . Write M sn n, 1 n

Ž .max P Z s i and 1 for the indicator function of the set A. We say thati) 0 n A
� 4 � 4the sequences a and b are equivalent and write a ; b if lim a rbn n n n nª` n n

Ž .s g for g g 0, ` . In what follows convergence to a variable W includes the
Ž .case when the limit is defective. That is, P W s ` ) 0 is allowed.

The limit behavior of the branching process in varying environments in the
Ž . Žcase P lim Z ) 0 ) 0 was studied under two not mutually incompati-nª` n

. Ž . Ž . Ž . Žble conditions: i P 0 - lim Z - ` ) 0 and ii P lim Z snª` n nª` n
. w x ` Ž Ž ..` ) 0. In the first case Church 3 proved that Ý 1 y P X s 1 - ` isns1 n

� 4necessary and sufficient for Z to converge in distribution to a nondegener-n
w xate limit. Lindvall 12 strengthened this result to a.s. convergence. There are
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Ž . � 4a number of results in case ii centering on some norming constants cn
� 4tending to ` such that W , with W s Z rc , converges to a nondegeneraten n n n

� 4limit. Write F for the limit distribution of W . A number of papers haven
� 4dealt with the asymptotic behavior of W . We mention the basic paper byn

w x w xGoettge 8 and more recent papers of Biggins and D’Souza 2 , D’Souza and
w x w x w x w xBiggins 7 and D’Souza 6 . For a survey of earlier literature, see 1 and 10 .

� 4In this paper, the aspect of the limit behavior of Z which concerns us isn
Ž .the continuity or presence of jump points in 0, ` in the limit distribution of

� 4W . In sharp contrast to the case of sums of independent random variablesn
Ž .take, e.g., the law of large numbers , for branching processes in varying

w Ž .xenvironments lim max P Z s i s 0 turns out to be necessary andnª` i) 0 n
� 4sufficient for the limit distribution functions of all convergent W to ben

Ž . � 4continuous on 0, ` . Sufficient conditions for the limit of W to be continu-n
w x w xous outside 0 were given by Cohn and Schuh 5 and Cohn 4 in the one-type

w xcase and by Jones 11 in the multitype setting. Hattori, Hattori and Watan-
w xabe 9 studied the support of the limit distribution of the multitype process.

Ž . Ž . ny1Define k by P X s k s max P X s i and i s Ł k .n n n i) 0 n n js0 j

THEOREM 1. The following statements are equivalent:

Ž .i lim sup M ) 0;nª` n
Ž . � 4ii the sequence M converges to a positive limit;n
Ž . ` Ž Ž ..iii Ý i 1 y P X s k - `;ns1 n n n
Ž . � 4iv there exist a sequence of positive integers m and an event of positiven

Žprobability, L, such that lim 1 s 1 a.s. Here L may be chosen tonª` �Z sm 4 Ln n
.have probability lim M .nª` n

� 4COROLLARY 2. The sequence M converges.n

` Ž Ž ..THEOREM 3. Suppose that Ý i 1 y P X s k - `. Then the follow-ns1 n n n
ing statements hold:

Ž . � 4 Ž .i Z ri converges a.s. to a limit W with max P W s x ) 0;n n x ) 0
Ž . � 4 Ž .ii if Z rc converges a.s. to a limit W 9 with max P W 9 s x ) 0, forn n x ) 0

� 4some constants c , then c ; i .n n n

COROLLARY 4. The following conditions are equivalent:

Ž . ` Ž Ž ..i Ý i 1 y P X s k s `;ns1 n n n
Ž . � 4ii any a.s. convergent Z rc has a continuous limit distribution func-n n

Ž .tion in 0, ` .

It seems rather surprising that continuity may fail only if the offspring
variables approach constants very rapidly. In the case of the classical Gal-
ton]Watson process, it is sufficient to assume that the offspring distribution
is not concentrated in one point, that is, to exclude the deterministic case,
when of course F is not continuous. Another consequence of Theorem 3 in the
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� 4case when there are two or more nonequivalent rates of convergence for Zn
Ž w x w x. � 4see 13 and 6 is that there is essentially only one convergent W withn

Ž .limit distribution admitting jump points in 0, ` . Take the branching process
w xconsidered by MacPhee and Schuh 13 with offspring generating functions

f s s 1 y 4yŽ nq1. s2Ž . Ž .n

yŽ nq1. nq1 w xq4 s m y 2 4 q 2 , s g 0, 1 , n s 0, 1, . . . .Ž .
2Ž .

w x � n4 � n4By Theorem 2 of 13 , if m ) 4, there are two rates of growth: 2 and m .
In the first case we get k s 2 and i s 2 n withn n

` `
yni 1 y P X s k s 2 - `Ž .Ž .Ý Ýn n n

ns1 ns1

Ž . � n4and Theorem 3 i implies that the limit distribution of Z r2 must haven
Ž . Ž . � n4jump points in 0, ` . By Theorem 3 ii the limit corresponding to Z rm isn

continuous outside 0.

2. Proofs. We shall need a number of lemmas.

� 4LEMMA 5. Suppose that Z is a branching process in varying environ-n
� 4 � 4ments and c is a sequence of constants such that Z rc convergesn n nk k k

weakly as k ª ` to a nondegenerate limit W. Then there exist some random
� Žn.4variables W such thati

Zn
Žn.3 W s W a.s.,Ž . Ý i

is1

where W Žn., i s 1, 2, . . . , are independent and identically distributed giveni
Z .n

PROOF. Notice that for n - n ,k

Zn¡
Ž i.Z , if Z G 1,Ý n yn , n nk~4 Z sŽ . n is1k ¢0, if Z s 0,n

where Z Ž i. is the number of the mth generation offspring of the ith indi-m , n
� Ž i. 4vidual of the nth generation. The random variables Z ; i s 1, . . . , Zn yn, n nk

� 4are independent and identically distributed given Z . Since Z rc con-n n nk k

� 4verges weakly as k ª `, so does Z rc for i s 1, 2, . . . . This may ben yn nk k

ˆshown by using Laplace transforms. Indeed, write V s Z rc , V sk n n kk k

ˆ ˆŽ . w Ž .x Ž . w Ž .x Ž .Z rc , f t s E exp ytV , f t s E exp ytV and f t sn yn, n n k k k k nk k
` i Ž . Ž .Ý t P Z s i . Then 4 yieldsis0 n

ˆ5 f t s f f t .Ž . Ž . Ž .Ž .k n k

Ž . Ž . Ž .Using in 5 that lim f t exists for all t and that f t is continuous andk ª` k n
ˆ Ž .strictly increasing in t implies that lim f t must also exist for all t andk ª` k
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ˆ� 4therefore V converges weakly as k ª `. Notice now that a subsequence of ak
� 4branching process in varying environments Z is also a branching processnk ˆw x � 4in varying environments. Thus Theorem 29 of 8 applies to yield that Vk

Ž .converges a.s. as k ª `. Now dividing 4 by c and letting k ª ` completesnk

the proof. I

� 4 � 4LEMMA 6. If c is a sequence of constants such that Z rc convergesn n nk k k

in distribution as k ª ` to a nondegenerate limit, then there exists a whole
� 4 � 4sequence c such that Z rc converges a.s. as n ª `.n n n

� 4PROOF. As was noticed in the course of the proof of Lemma 6, Z is alsonk

w xa branching process in varying environments. Thus Theorem 16 of 8 applies
Ž . Ž . y1Ž .and yields c ; crh s for some s , where h s s ylog f s , f beingn n 0 0 n n nk k w xthe generating function of Z . However, according to Theorem 17 of 8 ,n

� Ž . 4 w xh s Z converges in distribution as n ª ` and Theorem 29 of 8 com-n 0 n
pletes the proof. I

� Žn. 4LEMMA 7. If Y , i s 1, 2, . . . are, for each n, nonnegative, independenti
Ž m n Žn.and identically distributed random variables such that lim P Ý Y snª` is1 i

. � 4 � 4 Ž Žn. .c s 1, for some constants c and m , then lim P Y s c rm s 1.n n n nª` i n n

� 4PROOF. Notice first that the result is elementary in the case when mn
are bounded. Let j , . . . , j be some independent and identically distributed1 n

Ž .random variables, S s j q ??? qj and p s sup P j s x . Define the con-n 1 n x 1
Ž . Žcentration function of the random variable X by Q X; l s sup P x F X Fx

.x q l . Then by a result on concentration functions of sums of independent
w w x Ž .xrandom variables see, e.g., 14 , page 68, equation 2.58 , for any l ) 0,

y1r2y1r2Q S ; l F An 1 y Q j ; l ,Ž . Ž .Ž .n 1

where A is an absolute constant. Notice that letting l tend to 0 yields
y1r26 sup P S s x F A n 1 y p .Ž . Ž . Ž .Ž .n

x

Ž Žn. . Ž Žn. . Ž .Let x be such that P Y s x s sup P Y s x . By 6 we getn i n x i

7 lim sup m 1 y P Y Žn. s x F A2 .Ž . Ž .Ž .n i n
nª`

On the other hand,
mn m nŽn. Žn.8 P Y s m x G P Y s x .Ž . Ž .Ž .Ý i n n 1 nž /
is1

Ž . Ž .By 7 the right-hand side of 8 is bounded away from 0. Letting now n ª `
Ž .in 8 yields x s c rm for n large enough and completes the proof. In n n

� 4 � 4LEMMA 8. Suppose that c is a sequence of constants such that Z rck n kk
Ž .converges a.s. as k ª ` to a limit W with P W s c ) 0 and c ) 0. Then there

� 4exist some positive integers m such that:n

Ž .i lim 1 s 1 a.s.;nª` �Z sm 4 �Wsc4n n
Ž .ii m rm s k for n large enough.nq1 n n
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PROOF. By Lemma 5 we get that
Zn

Žn.<9 P W s c Z s P W s c Z ,Ž . Ž . Ýn i nž /is1

� 4and by the martingale convergence theorem there must exist some m suchn
that

mn
Žn.10 lim P W s c s 1.Ž . Ý iž /nª` is1

Ž Žn. Ž ..By Lemma 7 this can only happen when lim P W s cr m s 1.nª` i n
Thus, in this case,

m q1n
Žn. Žy1.lim P W s c 1 q m s 1,Ž .Ý m nž /nª` is1

11Ž .
m y1n

Žn. Žy1.lim P W s c 1 y m s 1.Ž .Ý i nž /nª` is1

Ž . Ž .From 11 it follows that for d g 0, 0.5 , n large enough, l ) m and j - m ,n n

jl
Žn. Žn.12 P W ) c ) 1 y d , P W - c ) 1 y d .Ž . Ý Ýi iž / ž /

is1 is1

� Ž < .4The martingale convergence theorem applied to P W s c Z yieldsn
Ž < .lim P W s c Z s 1 a.s., which is equivalent tonª` n �Wsc4

13 lim 1 s 1 a.s.Ž . �Z g A 4 �Wsc4n nnª`

� Ž . 4 Ž .for A s j: P W s c N Z s j ) 1 y d . However, P W s c N Z s j sn n n
Ž j Žn. . Ž . Ž . � 4P Ý W s c follows from 9 , and using 12 yields A s m for n largeis1 i n n

Ž . Ž . Ž .enough. Finally, 13 completes the proof of i . Notice now that by i
Ž . Žlim P Z s m N Z s m s 1, which implies lim P X qnª` nq1 nq1 n n nª` n, 1

. Ž .??? qX s m s 1. By Lemma 6, this entails P X s m rm s 1,m nq1 n nq1 nn

which can happen only if m rm s k for n large, and the proof isnq1 n n
complete. I

LEMMA 9. The following conditions are equivalent:

Ž . ` Ž Ž ..i Ý 1 y P X q ??? qX s m k - `;ns1 n, 1 n, m n nn
Ž . ` Ž Ž ..ii Ý m 1 y P X s k - `.ns1 n n n

Ž .PROOF. If i holds, then

1 y P X q ??? qX s m kŽ .Ž .n , 1 n , m n nn

s P X q ??? qX / m kŽ .n , 1 n , m n nn

m y1nG m 1 y P X s k P X s k .Ž . Ž .Ž . Ž .n n n n n
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Ž . Ž .Since under i , lim P X q ??? qX s m k s 1, we invoke thenª` n, 1 n, m n nn
Ž . Ž Ž ..m ny1argument used in 7 to deduce that P X s k is bounded away fromn n

Ž .0 as n ª `, and ii follows.
Ž .If ii holds, then

m n1 y P X q ??? qX s m k F 1 y P X s kŽ .Ž .Ž . Ž .Ž .n , 1 n , m n n n , 1 nn

F m 1 y P X s kŽ .Ž .n n n
Ž .and i follows. I

Ž .PROOF OF THEOREM 1. Assume i and write a s lim sup M ) 0.nª` n
� 4 � 4Choose a sequence n with lim M s a and define c such thatk k ª` n kk

Ž . Ž . � 4M s P Z s c . Two cases are possible: a when c is bounded andn n k kk k
Ž .b when lim sup c s `. The proof that we give here holds in general.k ª` nk

Ž . Ž . Ž .However, we wish to mention that in case a , ii and iv follow immediately
w x � 4from a result of Lindvall 12 asserting that Z converges a.s. Indeed, thisn

Ž .implies that there must exist some i* such that a s lim P Z s i* ,nª` n
Ž . Ž .proving ii . It is easy to see that iv follows now from a.s. convergence. Let us

� 4assume the general case. Then Z rc or a subsequence thereof convergesn nk k

Ž . Ž .weakly to limit distribution F which is nondegenerate since F 1 G F 0 q a .
w xBy Theorem 29 of 8 weak convergence implies a.s. convergence; denote the

Ž . � 4almost sure limit by W. According to Lemma 8 i there exists a sequence mn
Ž .with 1 s lim 1 a.s. This proves iv .�Ws14 nª` �Z sm 4n n

Dominated convergence and the definition of a and M given

lim P Z s m s P W s 1 G a s lim sup max P Z s i ,� 4Ž . Ž . Ž .n n n
nª` i)0nª`

Ž .which proves ii .
Ž .Notice now that iv implies

14 lim P Z s m , Z s m , . . . s lim P Z s m ) 0,Ž . Ž . Ž .n n nq1 nq1 n n
nª` nª`

which leads to
< <15 lim P Z s m Z s m P Z s m Z s m ??? s 1.Ž . Ž . Ž .nq1 nq1 n n nq2 nq2 nq1 nq1

nª`

This in turn entails
`

16 1 y P X q ??? qX s m - `.Ž . Ž .Ž .Ý n , 1 n , m nq1n
ns1

Ž . Ž .However, by Lemma 8 ii , m rm s k for n large using this in 16nq1 n n
` Ž Ž ..together with Lemma 9 yields Ý m 1 y P X s k - `. Since m ; i ,ns1 n n n n n

` Ž Ž .. Ž . Ž .we get Ý i 1 y P X s k - ` and iii is proved. Assume now that iiins1 n n n
holds. By Lemma 9,

`

17 1 y P X q ??? qX s k i - `.Ž . Ž .Ž .Ý n , 1 n , i n nn
ns1

Ž . Ž .Further, it is easy to see that P Z s i ) 0 for all n which makes 17n n
Ž . Ž . Ž .imply 14 with m replaced by i . Since 14 implies i , the proof isn n

complete. I
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Ž .PROOF OF THEOREM 3. Theorem 1 iv together with Theorem 29 of Goettge
w x � 4 Ž .8 imply that Z rm converges a.s. to a limit W 0 with P W 0 s 1 ) 0.n n

� 4Indeed, any convergent subsequence of Z rm has a nondegenerate limit.n n
� 4 � 4Furthermore by Lemma 6 there are some constants c such that Z rcn n n

� 4converges a.s. to a nondegenerate limit, where a subsequence of c isn
� 4equivalent to a subsequence of m . It is now easy to see, from Theoremn

Ž . � 41 iv , that m are necessarily, up to an equivalence, the norming constantsn
� 4 Ž .making Z rm a.s. convergent. Using now Lemma 8 ii yields m ; i , andn n n n

Ž .i follows. However, the same argument based on Lemma 8 yields c ; i ,n n
Ž .which implies ii . This completes the proof. I
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