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ON THE ASYMPTOTIC PATTERNS OF SUPERCRITICAL
BRANCHING PROCESSES IN
VARYING ENVIRONMENTS

By HARRY COHN

University of Melbourne

Let {Z,} be a branching process whose offspring distributions vary
with n. It is shown that the sequence {max,., P(Z, = i)} has a limit.
Denote this limit by M. It turns out that M is positive only if the offspring
variables rapidly approach constants. Let {c,} be a sequence of constants
and W, = Z, /c,,. It will be proven that M = 0 is necessary and sufficient
for the limit distribution functions of all convergent {W,} to be continuous
on (0,%). If M > 0 there is, up to an equivalence, only one sequence {c,}
such that {W,} has a limit distribution with jump points in (0, ). Neces-
sary and sufficient conditions for continuity of limit distributions are
derived in terms of the offspring distributions of {Z,}.

1. Introduction and results. A branching process in varying environ-
ments {Z,} is a sequence of nonnegative integer-valued random variables {Z,}
defined inductively by Z, = 1 and

ZrL

Y X, ., ifZ, >1,
(1) Zyi1 =1 121 ok
0, ifZ, =0,

where {X, ,; £ = 1,2,...}, the offspring variables of the nth generation, are
for each n independent and identically distributed given Z,. The term
varying environments refers to the fact that, unlike the classical Galton—
Watson process, the probability distributions of {X, ,} are allowed to vary
with n. Let X, be a random variable distributed like X, ;. Write M, =
max;. , P(Z, = i) and 1, for the indicator function of the set A. We say that
the sequences {a,} and {b,} are equivalent and write a, ~ b, if lim, _, . a, /b,
= v for y € (0,%). In what follows convergence to a variable W includes the
case when the limit is defective. That is, P(W = «) > 0 is allowed.

The limit behavior of the branching process in varying environments in the
case P(lim, . Z, > 0) > 0 was studied under two (not mutually incompati-
ble) conditions: () PO < lim,_,.,Z, <o) >0 and Gi) Pdim,,, Z, =
) > 0. In the first case Church [3] proved that ¥;,_,(1 — P(X, = 1)) < < is
necessary and sufficient for {Z,} to converge in distribution to a nondegener-
ate limit. Lindvall [12] strengthened this result to a.s. convergence. There are
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a number of results in case (ii) centering on some norming constants {c,}
tending to « such that {W,}, with W, = Z, /¢, , converges to a nondegenerate
limit. Write F for the limit distribution of {W,}. A number of papers have
dealt with the asymptotic behavior of {W,}. We mention the basic paper by
Goettge [8] and more recent papers of Biggins and D’Souza [2], D’Souza and
Biggins [7] and D’Souza [6]. For a survey of earlier literature, see [1] and [10].
In this paper, the aspect of the limit behavior of {Z,} which concerns us is
the continuity or presence of jump points in (0, ) in the limit distribution of
{W,}. In sharp contrast to the case of sums of independent random variables
(take, e.g., the law of large numbers), for branching processes in varying
environments lim, , [max;.  , P(Z, = i)] = 0 turns out to be necessary and
sufficient for the limit distribution functions of all convergent {W } to be
continuous on (0, «). Sufficient conditions for the limit of {W,} to be continu-
ous outside 0 were given by Cohn and Schuh [5] and Cohn [4] in the one-type
case and by Jones [11] in the multitype setting. Hattori, Hattori and Watan-
abe [9] studied the support of the limit distribution of the multitype process.
Define k, by P(X, = k,) = max,. , P(X, =i) and i, = [1/_'k;.
THEOREM 1. The following statements are equivalent:

() limsup, . M, > 0;
(i) the sequence {M,} converges to a positive limit;
Gid) o _4i,1 — P(X, =k,)) < o
(iv) there exist a sequence of positive integers {m,} and an event of positive
probability, A, such that lim, .. 1., _, , =1, a.s. (Here A may be chosen to
have probability lim M )

n—owx n

COROLLARY 2. The sequence {M,} converges.

THEOREM 3. Suppose that L7 _1i,(1 — P(X, = k,)) < . Then the follow-
ing statements hold:

1) {Z,/i,} converges a.s. to a limit W with max . , P(W = x) > 0;
(i) if{Z, /c,} converges a.s. to a limit W' with max ., , P(W' = x) > 0, for
some constants {c,}, then ¢, ~ i,.

COROLLARY 4. The following conditions are equivalent:

@ X4, - P(X, =k,) =
(ii) any a.s. convergent {Z,/c,} has a continuous limit distribution func-
tion in (0, x).

It seems rather surprising that continuity may fail only if the offspring
variables approach constants very rapidly. In the case of the classical Gal-
ton—Watson process, it is sufficient to assume that the offspring distribution
is not concentrated in one point, that is, to exclude the deterministic case,
when of course F is not continuous. Another consequence of Theorem 3 in the
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case when there are two or more nonequivalent rates of convergence for {Z,}
(see [13] and [6)] is that there is essentially only one convergent {W,} with
limit distribution admitting jump points in (0, «). Take the branching process
considered by MacPhee and Schuh [13] with offspring generating functions

fu(s) = (1 - 470" D)s?
+4-*Dg[(m — 2)4"* 1 + 2],  s€[0,1],n=0,1,....

By Theorem 2 of [13], if m > 4, there are two rates of growth: {2"} and {m"}.
In the first case we get &, = 2 and i, = 2" with

Yi(1-P(X,=k,))= L2 <=

n=1 n=1
and Theorem 3(i) implies that the limit distribution of {Z,/2"} must have
jump points in (0, «). By Theorem 3(ii) the limit corresponding to {Z, /m"} is
continuous outside O.

(2)

2. Proofs. We shall need a number of lemmas.

LemMA 5. Suppose that {Z,} is a branching process in varying environ-
ments and {cnk} is a sequence of constants such that {an/cnk} converges
weakly as k — » to a nondegenerate limit W. Then there exist some random
variables {W, ™} such that

Z,
(3) W=y WwW" as,
i=1
where W™, i =1,2,..., are independent and identically distributed given

VA

ne

Proor. Notice that for n < n,,

ZTL
@ , ) EZ0 ... 2,21,
i=1

g

0, ifZ, =0,

where Z{) is the number of the mth generation offspring of the ith indi-

vidual of the nth generation. The random variables {Z"_, ,;i=1,...,Z,}
are independent and identically distributed given Z,. Since {Z, /c, } con-
verges weakly as k — =, so does {Z, _,/c, } for i =1,2,.... This may be
shown by using Laplace transforms. Indeed, write V, =2, /c,, V, =
Zy nn/Cn» (1) = Elexp(—tV})], ¢,(t) = Elexp(—tV,)] and f,(t) =
Yr ot'P(Z, = i). Then (4) yields

(5) ¢k(t) =fn(¢;k(t))‘

Using in (5) that lim,, _, . ¢,(¢) exists for all ¢ and that f,(¢) is continuous and
strictly increasing in ¢ implies that lim,, _, ., ¢,(#) must also exist for all ¢ and



BRANCHING IN VARYING ENVIRONMENTS 899

therefore {Vk} converges weakly as £ — «. Notice now that a subsequence of a
branching process in varying environments {Z, } is also a branching process
in varying environments. Thus Theorem 29 of [8] applies to yield that {Vk}
converges a.s. as k — . Now dividing (4) by ¢, and letting £ — « completes
the proof. O

LemMmaA 6. If {c,,} is a sequence of constants such that {Z, /c, } converges
in distribution as k — © to a nondegenerate limit, then there exists a whole
sequence {c,} such that {Z,/c,} converges a.s. as n — .

PROOF. As was noticed in the course of the proof of Lemma 6, {Z, } is also
a branching process in varying environments. Thus Theorem 16 of [8] applies
and yields ¢, ~ c/h, (s,) for some s,, where A, (s) = —log f,'(s), f, being
the generating function of Z,. However, according to Theorem 17 of [8],
{h,(sy)Z,} converges in distribution as n — « and Theorem 29 of [8] com-
pletes the proof. O

LEmMA 7. If{Y\™, i =1,2,...} are, for each n, nonnegative, independent
and identically distributed random variables such that lim, _,, P(X7Y,™ =
c,) = 1, for some constants {c,} and {m,}, then lim, ,, P(Y," =¢,/m,) = 1.

Proor. Notice first that the result is elementary in the case when {m,}
are bounded. Let &4,..., &, be some independent and identically distributed
random variables, S, = &, + - + ¢, and p = sup, P(&; = x). Define the con-
centration function of the random variable X by Q(X; A) = sup, P(x <X <
x + A). Then by a result on concentration functions of sums of independent
random variables [see, e.g., [14], page 68, equation (2.58)], for any A > 0,

Q(S,; N) <An~2(1-Q(&; 1) 7%,
where A is an absolute constant. Notice that letting A tend to O yields

(6) supP(S, =x) <A(n(1-p)) /%
Let x, be such that P(Y™ = x,) = sup, P(Y,"” = x). By (6) we get
(7 limsupm,(1 - P(Y,"” =x,)) < A%

On the other hand,

(8) P( % Yi(n) = mnx") = (P(Yl(n) = xn))mn

i=1
By (7) the right-hand side of (8) is bounded away from 0. Letting now n — «
in (8) yields x, = ¢,/m,, for n large enough and completes the proof. O

LEMMA 8. Suppose that {c,} is a sequence of constants such that {an/ck}
converges a.s. as k — «© to a limit W with P(W = ¢) > 0 and ¢ > 0. Then there
exist some positive integers {m,} such that:

@ lim, .1, _,,=1y_, as;
(i) m,,,/m, =k, for n large enough.
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Proor. By Lemma 5 we get that
z

n

> W =
i=1

(9) PW=clZ,)=P Z,

b

and by the martingale convergence theorem there must exist some {m,} such
that

(10) lim P( Y W = c) = 1.

— .
n i=1

By Lemma 7 this can only happen when lim,_ . P(W" =c/(m,) = 1.
Thus, in this case,

m,+1
lim P ) W =c(1+ m(nl))) =1,

n=e i=1

(11) m,—1
lim P ) W™ =c(1- m(n_l))) =1.

From (11) it follows that for 6 € (0, 0.5), n large enough, [ > m, and j < m,,,

l
(12) P( Y W >e >1-3.

i=1

j
>1-3, P(ZWi<”)<c
i=1

The martingale convergence theorem applied to {P(W =c|Z,)} yields
lim P(W =cl|Z,) = 1_, as., which is equivalent to

n— oo

(13) im1, c,y=1lwy_, as.

n— o

for A, ={j: PW=c|Z,=j)>1- 8} However, PW=c|Z, =j) =
P(Z/_ W™ = ¢) follows from (9), and using (12) yields A, = {m,)} for n large
enough. Finally, (13) completes the proof of (i). Notice now that by (1)
lim, .. P(Z, ,=m,, | Z, =m,) =1, which implies lim, . P(X, +
-+ +X =m,,;) =1 By Lemma 6, this entails P(X, =m,,;/m,) =1,
which can happen only if m,,,/m, =k, for n large, and the proof is
complete. O

LEMMA 9. The following conditions are equivalent:

(1) Z“0101:1(1 - P(Xn,l + +Xn,mn = mnkn)) < o5
) Xo_m, 1 —-P(X, =Fk,) <.

Proor. If (i) holds, then

(1-P(X,,++X, , =m,k,))
=P(X,,+ - +X,, #m,k,)

>m,(1 - P(X, =k,))(P(X, =k,))"" .
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Since under @), lim, . P(X, “+X, , =m.k,) =1, we invoke the
argument used in (7) to deduce that (P(X k ))m - is bounded away from
0 as n — «, and (ii) follows.

If (ii) holds, then

(1-P(X,,++X, , =m,k,)) <(1-(P(X,,= kn))m")

and (i) follows. O

ProOF OF THEOREM 1. Assume (i) and write « = limsup,_. M, > 0.
Choose a sequence {n,} with lim, M, =a and define {c,} such that
M, =P(Z, =c,). Two cases are possible: (a) when {c,} is bounded and
(b) when lim sup, _, .. ¢,, = ®@. The proof that we give here holds in general.
However, we wish to mention that in case (a), (ii) and (iv) follow immediately
from a result of Lindvall [12] asserting that {Z,} converges a.s. Indeed, this
implies that there must exist some i* such that a =lim,_, P(Z, =i%),
proving (ii). It is easy to see that (iv) follows now from a.s. convergence. Let us
assume the general case. Then {an /an} or a subsequence thereof converges
weakly to limit distribution F' which is nondegenerate since F(1) > F(0) + a.
By Theorem 29 of [8] weak convergence implies a.s. convergence; denote the
almost sure limit by W. According to Lemma 8(@i) there exists a sequence {m,}
with 1y _;, = lim,_, 1, _,, , a.s. This proves (iv).

Dominated convergence and the definition of a and M, give

lim P(Z, =m,) = P(W=1) > a = limsup max{P(Z =i},

n—es n—ow

which proves (ii).
Notice now that (iv) implies

(14) limP(Z,=m,,Z,.,=m .)=1lmP(Z,=m,) >0,

n+lsee

which leads to

(15) hm P(Zn+1 = mrL+1|Zn = mn)P(Zn+2 = mn+2|Zn+1 = mn+1) = 1
This in turn entails

(16) Y (1-P(X, + - +X, 0 =m,,q)) <

n=1
However, by Lemma 8(ii), m,,,/m, =k, for n large using this in (16)
together with Lemma 9 yields X, _,m (1 — P(X, = k,)) < «. Since m,,
we get X7 _,i,(1 — P(X, = k,)) < % and (iii) is proved. Assume now that (iii)
holds. By Lemma 9,

(17) Y (1-P(X, 1+ +X,, =k,i,)) <=

n=1
Further, it is easy to see that P(Z, =1i,) > 0 for all n which makes (17)
imply (14) with m, replaced by i,. Since (14) implies (i), the proof is
complete. O
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ProoF oF THEOREM 3. Theorem 1(iv) together with Theorem 29 of Goettge
[8] imply that {Z,/m,} converges a.s. to a limit W” with P(W” =1) > 0.
Indeed, any convergent subsequence of {Z,/m,} has a nondegenerate limit.
Furthermore by Lemma 6 there are some constants {c,} such that {Z, /c,}
converges a.s. to a nondegenerate limit, where a subsequence of {c,} is
equivalent to a subsequence of {m,}. It is now easy to see, from Theorem
1(iv), that {m,} are necessarily, up to an equivalence, the norming constants
making {Z, /m,} a.s. convergent. Using now Lemma 8(ii) yields m, ~ i,, and
(1) follows. However, the same argument based on Lemma 8 yields ¢, ~ i,
which implies (ii). This completes the proof. O
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