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University of Gottingen¨
We consider optimal stopping problems with loss function q depend-

ing on the rank of the stopped random variable. Samuels asked whether
there exists an exchangeable sequence of random variables X , . . . , X1 n
without ties for which the observation of the values of the X ’s gives noi
advantage in comparison with the observation of just the relative ranks of
the variables. We call distributions of the sequences with this property
q-noninformative and derive necessary and sufficient conditions for this
property. Extending an impossibility result of B. Hill, we show that, for
any n ) 1, there are certain losses q for which q-noninformative distribu-
tions do not exist. Special attention is given to the classical problem of
minimizing the expected rank: for n even we construct explicitly universal
Ž .randomized stopping rules which are strictly better than the rank rules
for any exchangeable sequence.

1. Introduction. We consider optimal selection models, which have be-
come known also as secretary problems. A well-known theme in this field is
the comparison of decision rules based on different kinds of information
regarding the alternatives available for selection. One of the most attractive
features of this class of models is that simple low-information strategies often
demonstrate surprisingly high performance.

We adopt the following framework. Assume a choice is to be made from a
set of n alternatives examined in a random order. The alternatives are
identified with their numerical values X , . . . , X which are assumed to be1 n
exchangeable random variables without ties, with an n-dimensional probabil-
ity distribution DD. The values of the X ’s are observed sequentially, with thei

Ž .object to select one of them via a stopping rule i.e., no recall is allowed .
Ž .Stopping with the kth largest value incurs the loss q k , where q is a given

loss function. The performance of a stopping rule is characterized by its
Ž .expected loss also called the risk .

The central role in our discussion will be played by rank rules which, at
each stage, use only the values of relative ranks of the alternatives observed
so far. The class of rank rules is a finite proper subclass of the class of all
stopping rules adapted to the X ’s. Under the exchangeability assumption,i
the risk of the rank rules does not depend on DD; thus we can speak of their
performance regardless of the distribution.
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Ž .Following Samuels 1994 we study the following questions:

1. For a given loss function q does there exist a q-noninformative distribu-
� 4tion for the X such that the minimal risk using stopping rules based oni

the relative ranks only is the same as that for the wider class of stopping
rules adapted to the natural filtration of the sequence?

Ž .2. Is there a stopping rule which may be randomized with respect to the
larger filtration which performs better than any rule just based on the
relative ranks for any distribution of the sequence?

These questions are closely related to minimax considerations in the
w Ž . Ž .secretary problems cf. Hill and Kennedy 1992 , Gnedin 1994 and Gnedin

Ž .xand Krengel 1995 . If the answer to the first question is affirmative, then
the answer to the second question is negative, and the best rank rule and the
relevant DD are both minimax. On the other hand, if the second question has
a positive answer and the best rank rule is minimax, then there are no
minimax DD.

It is also easy to see that if there is a randomized stopping rule which
beats the rank rules for all DD, then for each fixed DD there is also a
nonrandomized rule improving the rank rules. This follows from the fact that
randomization does not reduce the risk in stopping problems. Therefore, if
the second question is resolved positively, the answer to the first question is
negative.

A restricted version of the first question, where DD is assumed to be a
mixture of product distributions with identical factors, is of some interest

Žfrom the Bayesian point of view. The knowledge of DD is at least theoreti-
.cally equivalent to the knowledge of the ‘‘prior’’ distribution, that is, of the

mixing measure. The decision-making process in this case involves, via the
prior-to-posterior transformation, the learning of the distributions of the
variables X , the latter being in this case conditionally iid. The affirmativei
answer to the first question would imply that there exist ‘‘sufficiently nonin-
formative priors’’ for which learning of the underlying distribution cannot

whelp to perform better than by using the optimal rank rule cf. Samuels
Ž .x1989, 1994 .

This restricted class of models is known in the literature as problems with
w Ž .x‘‘partial information’’ cf. Samuels 1991 . One extreme in this class is the

‘‘full information’’ problem, where DD is a continuous product distribution and
the X ’s are iid with known distribution. The generally accepted opposite toi
the ‘‘full information’’ model is the so-called ‘‘no information’’ problem where
only the relative ranks of alternatives are observable. One of our motivations
was to clarify the obscurity concerning what constitutes a ‘‘no information’’
problem by comparing the rank model with the logical opposite to ‘‘full
information’’; namely, the actual values of the X ’s are observed, althoughi
nothing is known about DD beyond the fact that DD is a mixture of product
distributions.

The questions we study here were raised in connection with the classical
Ž . Ž .best choice problem, corresponding to the special loss: q 1 s 0 and q k s 1
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w Ž .xfor k ) 1 cf. Ferguson 1989 . In this problem, the answer to the first
wquestion is now known to be affirmative for all n ) 2 cf. Silverman and

Ž . Ž . xNadas 1992 , for n s 3, and Gnedin 1994 , for all n G 3 . The case of two´
observations is special: the randomized rule ‘‘pick a normally distributed T,
independent of X and X , and then stop at X if X ) T and at X1 2 1 1 2

w Ž .xotherwise’’ always beats the rank rules cf. Cover 1987 . Recently Samuels
Ž .1994 studied the general loss in the case n s 3. He showed that for some
Ž . Ž .but not all losses the distributions introduced by Gnedin 1994 also provide
the affirmative answer to the first question.

In this paper we give necessary and sufficient conditions for overall opti-
mality of a rank rule in terms of some inequalities on predictive probabilities
of relative ranks. We show that these inequalities can be interpreted in terms
of nonnegativity of certain signed linear combinations of multidimensional
marginal distributions of the order statistics vector. In the case when the
optimal rank rule is not unique, some of these inequalities turn out to be
equalities; that is, some marginals must be linearly dependent. We show that
Ž .n y 1 -dimensional marginals cannot be linearly dependent. From this fact
we derive that, for any n, there exist losses q for which the first question has
a negative answer. For n ) 3, there are monotone loss functions among such

Ž .q. For n even, q-noninformative distributions do not exist for q k ' k, that
wis, in the minimal expected rank problem cf. Chow, Moriguti, Robbins and

Ž .xSamuels 1964 ; for this case we construct explicitly a universal stopping
rule whose risk is strictly smaller than the risk of any rank rule for all DD.

It is worth mentioning that the considerations regarding the predictive
distribution of relative ranks are closely related to the problems of nonpara-

Ž .metric inference studied by Hill 1968 . Our result about linear independence
of marginals extends his result, which says that for no exchangeable se-
quence without ties is the relative rank of X independent of X , . . . , X .n 1 ny1

Finally, we give a description of all exchangeable distributions for which,
Ž .in the classical best choice problem n ) 2 , the best rank rule is overall

optimal.

2. Preliminaries. Given n ) 1, let X , . . . , X be exchangeable random1 n
variables, which tie only with probability 0. Let

� 4A [ a i : X G X , 1 F i F n , m s 1, . . . , n ,m i m

Ždenote the absolute rank of the mth variable thus smaller ranks are
.assigned to larger values of the X ’s . By exchangeability, all n! possiblei

Ž .values of the sequence A , . . . , A are equally likely. We interpret X , . . . , X1 n 1 n
as sequential observations and consider the class XX of stopping rules t F n
satisfying the measurability condition

XX : t s m is measurable w.r.t. X , . . . , X ; m F n.Ž . 1 m

It is often useful, and in fact equivalent, to consider stopping rule t as
a function of n real variables with the property that the set of those
Ž . n Ž .x , . . . , x g R satisfying t x , . . . , x s m is a Borel set of the form1 n 1 n
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B = R nym, where B ; R m. We will evaluate t g XX by means of the expected
Ž .loss called also the risk

n

Eq A s E q A 1 ,Ž . Ž .Ž .Ýt m Žtsm.
ms1

� 4where q: 1, . . . , n ª R is a specified loss function measuring the loss of
stopping at the observation with a given value of absolute rank. To avoid

Ž .trivialities, q ? will be assumed nonconstant.
Introduce the relative ranks as

� 4 � 4R [ a i : X G X , 1 F i F m s a i : A F A , 1 F i F m ; m F n ,m i m i m

and the class RR of rank stopping rules satisfying a weaker measurability
condition

RR: t s m is measurable w.r.t. R , . . . , R .Ž . 1 m

The values of these classes are

V DD [ inf Eq A and V [ inf Eq A .Ž . Ž . Ž .XX t RR t
tgXX tgRR

The existence of optimal stopping rules in problems with a finite number of
observations is a standard fact of the optimal stopping theory.

The distribution of relative ranks is the same for all exchangeable se-
quences without ties; therefore V does not depend on the distribution ofRR
Ž . Ž .X , . . . , X . In contrast to this, V DD depends heavily on the distribution of1 n XX

observations. The set of rank rules always constitutes a proper subclass of XX ,
Ž .even in the simplest case, when X , . . . , X is a random permutation of a1 n

Ž .fixed n-tuple of different reals. Obviously, V DD F V . Our main concernXX RR

here is the existence of distributions for which these values are equal.

Ž .DEFINITION 1. Given a loss q ? , the probability distribution DD of
Ž . Ž .X , . . . , X is said to be q-noninformative iff V DD s V .1 n XX RR

This property means that there exists a stopping rule t g RR, which is
optimal in XX . Any q-noninformative distribution DD is necessarily minimax0
in the sense that

V DD s sup inf Eq A s V .Ž . Ž .XX 0 t RR
tgXXDD

Ž . Ž . Ž Ž . Ž ..Note that V DD is the same for X , . . . , X and f X , . . . , f X , where fXX 1 n 1 n
is a strictly monotone function. The family of q-noninformative distributions
is clearly convex. Given a single q-noninformative DD, we can construct new
ones by combining monotone rescaling with forming convex mixtures.

Ž .If the loss function q ? admits a q-noninformative distribution, the same
Ž .is valid also for the losses aq ? q b, with arbitrary constants b and a ) 0.

Ž . Ž .The same holds also for the loss q k s q n y k , because the absolute ranksˆ
Ž .of the reflected sequence yX , . . . , yX are n y A , . . . , n y A .1 n 1 n
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3. Optimal rank rules. In this section we discuss the structure of
optimal rank rules, with special emphasis on possible nonuniqueness. We list
first some simple facts about relative and absolute ranks.

Ž . � 4 �Let a , . . . , a be a permutation of the integers 1, . . . , n and let r [ a i:1 n k
4a F a , i F k , k s 1, . . . , n. It is easy to see thati k

� 41 r s a y a i : a - a , k - i F n .Ž . k k i k

Ž .Since r is expressed in 1 through a , . . . , a , we can use this formula tok k n
Ž . Ž .regard r , . . . , r as a function of a , . . . , a , m F n. Keep in mind thatm n m n

1 F r F k.k

PROPOSITION 2. For any m s 1, . . . , n, there exists a mapping

F : r , . . . , r ¬ a , . . . , aŽ . Ž .m m n m n

Ž .between the set of possible values of r , . . . , r and the set of possible valuesm n
Ž . Ž .of a , . . . , a , which is inverse to the correspondence a , . . . , a ¬m n m n

Ž . Ž .r , . . . , r given by 1 , with k running from m to n.m n

Ž .PROOF. Observe that both sequences may take n!r m y 1 ! different
Ž . Ž .values, and the correspondence a , . . . , a ¬ r , . . . , r is injective.m n m n

Ž .Explicitly, a can be expressed through r , . . . , r as follows. Set z [m m n m , k
� 4a i: a F a , i F k , m F k F n. We have z s r , z s a and, recur-i m m , m m m , n m

sively, for k s m, . . . , n y 1,

z s z q 1 if r F z ,m , kq1 m , k kq1 m , k

z s z if r ) z .m , kq1 m , k kq1 m , k

It is easy to see that a y r q 1 is equal to the number of differentm m
members of the sequence z , z , . . . , z , which depends only onm , m m , mq1 m , n

Ž .r , . . . , r . Iterating this construction, we express a , . . . , a in terms of them n m n
Ž . Ž .array z ; m F i F k F n , which depends only on r , . . . , r . Ii, k m n

The following facts will be used without special reference.

PROPOSITION 3. The distribution of the ranks has the following properties:

Ž . Ž . y1i R , . . . , R are independent, and P R s k s m for 1 F k F m F1 n m
n;

Ž . Ž . Ž .ii F R , . . . , R s A , . . . , A ;m m n m n
Ž . Ž . Ž .iii R , . . . , R and A , . . . , A are independent;1 my1 m n
Ž . Ž . Ž .iv R , . . . , R and X , . . . , X are independent;1 my1 m n
Ž . Ž . Ž .v R , . . . , R is conditionally independent of R , . . . , R given them n 1 my1

Ž .order statistics of X , . . . , X .1 my1

PROOF. The first three statements follow immediately from exchangeabil-
ity and Proposition 2. Using exchangeability and rearranging X , . . . , X ,1 my1
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we see that, for any fixed Borel set B g R nymq1, the events of the form

R s r , . . . , R s r , X , . . . , X g B ,Ž .Ž .1 1 my1 my1 m n

with different admissible combinations of the r ’s are equally likely; thereforei

<P R s r , . . . , R s r X , . . . , X s 1r m y 1 !Ž .Ž .1 1 my1 my1 m n

Ž .and iv follows. The last assertion is proved similarly. I

We will now use standard backward induction arguments to describe the
structure of all optimal stopping rules in RR. Without assuming the mono-
tonicity of q, we need to treat separately a curious family of loss functions for
which all rank rules have the same risk.

For m F n, we introduce the subclass of rank stopping rules which always
� 4pass the first m y 1 observations, RR [ t g RR: t G m , and setm

v [ inf Eq A , v [ `.Ž .m t nq1
tgRRm

Then we have

v s V , v s Eq A s ny1 q 1 q ??? qq n ,Ž . Ž . Ž .Ž .1 RR n n

because RR s RR and RR consists of the single constant stopping rule t ' n.1 n
Set further, for r F m F n,

a y 1 n y a
nymqr ž /ž / m y rr y 1

<2 u r [ E q A R s r s q a .Ž . Ž . Ž . Ž .Ž . Ým m m nasr ž /m

Ž .The hypergeometric probabilities in 2 appear as the distribution of Am
conditioned on R s r.m

Define, for m s 1, . . . , n,

C [ r : u r ) v , r F m ,� 4Ž .m m mq1

S [ r : u r - v , r F m ,� 4Ž .m m mq1

I [ r : u r s v , r F m .� 4Ž .m m mq1

These three sets can be used to describe the structure of optimal rank
Ž . Ž .stopping rules. Proposition 3 iii implies that A , R are independent ofm m

R , . . . , R ; the next result is a consequence of this and well-known results1 my1
from optimal stopping.

PROPOSITION 4. For any choice of J ; I , . . . , J ; I , the stopping rule of1 1 n n
the form

� 43 t s min k : R g S j J , m F k F nŽ . m k k k

is optimal in RR .m

Given that the first m y 1 observations have been passed, it is optimal to
stop at the mth observation if R assumes a value in S and to continue ifm m
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R g C . For R g I , it makes no difference whether one stops or contin-m m m m
� 4ues. Obviously, S s 1, . . . , n and C s I s B.n n n

Standard backward induction for optimal stopping proves also that the
sequence v , . . . , v is a solution to the recursion1 n

m
y14 v s m min u r , v .Ž . Ž .Ž .Ým m mq1

rs1

In some cases all rank rules have the same risk, and the optimal stopping
problem in RR turns out to be trivial.

Ž .DEFINITION 5. A loss function q ? is said to be singular if constant
stopping rules are optimal in RR.

This definition makes sense, because the risk of all constant rules is the
y1Ž Ž . Ž ..same, namely, equal to n q 1 q ??? qq n . More explicitly, singular losses

can be characterized as solutions of the linear system
nr n y r 1

5 q r q 1 q q r s q k , r s 1, . . . , n y 1,Ž . Ž . Ž . Ž .Ýn n n ks1

Ž .obtained by equating u r and v . It is not hard to show that the algebraicny1 n
rank of the system is n y 2. Thus the solutions form a two-dimensional linear
space, including the one-dimensional subspace of constant loss functions.

Ž .PROPOSITION 6. The loss function q ? is singular iff any of the following
conditions holds:

Ž . Ž .i q satisfies 5 ;
Ž .ii a constant rule is optimal in RR for some m - n;m
Ž . � 4iii I j S s 1, . . . , m for some m - n.m m

PROOF. If some constant rule is optimal in RR , then, by exchangeability,m
any constant rule in RR is optimal in this class. Therefore all three condi-m
tions are equivalent and follow from the singularity of q.

Ž .Now let us prove that i implies that q is singular. We say that a stopping
rule t g RR ignores the kth observation, k - n, if t / k a.s. and for i ) k a

Ž .weaker measurability condition holds: each event t s i , i ) k, is measur-
able w.r.t. the variables R , . . . , R , RX , . . . , RX , where RX , k - j F i, is1 ky1 kq1 i j
the rank of the jth observation among the observations numbered 1, . . . , k y
1, k q 1, . . . , j.

Ž . Ž .Assume 5 holds. By Proposition 3 and 4 this means exactly that the
constant rules t ' n y 1 and t ' n are optimal in RR , or, equivalently,ny1

� 4I s 1, . . . , n y 1 . Note that t s n y 1 ignores the nth observation. Forny1
m - n y 1, we can find, by Proposition 4, an optimal rule t in RR whichm m
ignores the nth observation. By symmetry, exchanging the mth and the nth
observations, we see that there exists also an optimal rule t X in RR , whichm m
ignores the mth observation. To construct this rule explicitly, represent t asm
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a function of R , . . . , R and set1 ny2

t X r , . . . , r s t r , . . . , r q 1.Ž . Ž .m 1 ny2 m 1 ny2

Clearly, t X is also in RR . We see that there is a stopping rule in RR ,m mq1 mq1
which is optimal in RR . Iterating this argument with m s 1, . . . , n y 2, wem
prove that t ' n is optimal in RR; that is, q must be singular. I

The next assertion explains the main reason why we need to distinguish
the class of singular losses.

Ž . Ž .PROPOSITION 7. If q ? is not singular, then P t s n ) 0 for any optimal
stopping rule t g RR.

PROOF. If q is not singular, then C / B ; m - n, as a consequence ofm
Proposition 6. Therefore

P t s n G P R g C , . . . , R g CŽ . Ž .1 1 ny1 ny1

s aC ? aC ? ??? ? aC r n y 1 !) 0. IŽ . Ž .1 2 ny1

None of the nonconstant monotone loss functions is singular. For n s 3, all
Ž . Ž . w Ž . Ž .such q ’s satisfy q 1 s q 3 e.g., q ? s 1, 0, 1 can be interpreted as ‘‘pay

xnothing if you select the second best or a dollar otherwise’’ .
The nonuniqueness of optimal rank rules is the case exactly when some of

the indifference sets turn out to be nonempty, as stated next.

PROPOSITION 8. An optimal rule in RR is unique if and only if I s ??? sm m
I s B.n

Ž .PROOF. If there is a single optimal optimal rule t g RR , then q ? cannotm
be singular. Therefore, by Proposition 7,

P t ) k y 1, R s r s ky1P t ) k y 1 ) 0, k s m, . . . , n y 1.Ž . Ž .k

It follows that the conditions

t ) k y 1, R s r « t s k for r g S ,Ž . Ž .k k

t ) k y 1, R s r « t ) k for r g CŽ . Ž .k k

determine the optimal rank rule uniquely. The ‘‘only if’’ part of the statement
follows from Proposition 4. I

4. Overall optimality of rank rules. To discuss optimality of the rank
rules among general stopping rules, we need to proceed in a direction which
is opposite to the usual setting of optimal stopping theory. Assuming overall
optimality of appropriate rank rules, we will draw some inferences about the
process X , . . . , X . Analogous to the RR ’s introduced earlier, let XX [1 n m m
� 4t g XX : t G m . Our main tool is the following general result, inverting
standard backward induction arguments.
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PROPOSITION 9. Assume t g XX , . . . , t g XX is a sequence of stopping1 1 n n
rules satisfying

6 t ) m « t s t ; m - n.Ž . m m mq1

The following conditions are equivalent:

Ž .i t is optimal in XX for m s 1, . . . , n;m m
Ž .ii t satisfies the inequalitiesm

< <7 t s m « E q A X , . . . , X F E q A X , . . . , X ,Ž . Ž .Ž . Ž .Ž .m m 1 m t 1 mmq 1

< <8 t ) m « E q A X , . . . , X G E q A X , . . . , XŽ . Ž .Ž . Ž .Ž .m m 1 m t 1 mmq 1

for m s 1, . . . , n.

PROOF. Assume t is optimal in XX , then, for any t g XX ,m m m

< <9 E q A X , . . . , X F E q A X , . . . , X ,Ž . Ž .Ž .Ž .Ž .t 1 m t 1 mm

because otherwise t could be improved by a combination of t and t .m m
Substituting t for t and restricting the conditional expectations to themq 1

Ž . Ž . Ž .event t s m yields 7 . Substituting the constant rule t ' m in 9 re-m
Ž . Ž . Ž .stricted to t ) m and using the compatibility condition 6 yields 8 .m

Ž . Ž .Therefore i implies ii .
Ž . Ž .Use induction to derive the converse implication. Suppose 7 and 8 hold

Ž .and that for some m the rule t is optimal. Under these assumptions 9m
Ž . Ž . Ž .holds. For arbitrary s g XX and t s max m, s , it follows from 7 and 8my 1

that

<E q A X , . . . , XŽ .Ž .s 1 my1

< <s E q A X , . . . , X 1 q E q A X , . . . , X 1Ž . Ž .Ž . Ž .my 1 1 my1 Ž ssmy1. t 1 my1 Ž sG m.

< <G E q A X , . . . , X 1 q E q A X , . . . , X 1Ž .Ž . Ž .Ž .my 1 1 my1 Ž ssmy1. t 1 my1 Ž sG m.m

< <G min E q A X , . . . , X , E q A X , . . . , XŽ .Ž . Ž .Ž .ž /my 1 1 my1 t 1 my1m

<s E q A X , . . . , X .Ž .Ž .t 1 my1my 1

This implies that also t is optimal in XX and justifies the inductionmy 1 my1
step from m to m y 1. I

It is intuitively clear that exchangeability of the sequence X , . . . , X1 n
makes it possible to ignore the order in which the first m y 1 variables have
been observed, when deciding whether to stop at X or to proceed further.m

PROPOSITION 10. For any m s 2, . . . , n, there exists an optimal stopping
Ž .rule s in XX , which is independent of the relative ranks R , . . . , R .m m 1 my1

PROOF. We will prove first the stronger assertion that s as a function ofm
Ž .X , . . . , X can be selected symmetric in the first m y 1 components.1 n
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The proof is by backward induction. Assume s is optimal in XX andmq 1 mq1
invariant under permutations of X , . . . , X . Define s by setting s s m if1 m m m

< <E q A X , . . . , X F E q A X , . . . , X ,Ž .Ž . Ž .Ž .m 1 m s 1 mmq 1

and s s s otherwise. Any event of the formm mq1

s s k ; A s a , . . . , A s aŽ .mq 1 m m n n

Žis invariant under the permutations of X , . . . , X . We identify the events1 my1
.with their indicators, and the indicators with functions of the X ’s. There-i

fore, by exchangeability, the regular conditional probability

<P s s k ; A s a , . . . , A s a X , . . . , XŽ .mq 1 m m n n 1 m

is a symmetric function of X , . . . , X . It follows that both conditional1 my1
expectations appearing in the above inequality defining s are symmetric inm
X , . . . , X .1 my1

Now independence is easy. By exchangeability and invariance of s underm
Ž . Žpermutations of X , . . . , X , all m y 1 ! probabilities P s s k; R s1 my1 m 1

.r , . . . , R s r with k fixed and admissible r ’s are equal; hence the1 my1 my1 i
Ž . Ž .probability of the event s s k conditioned on R s r , . . . , R s rm 1 1 my1 my1

coincides with its unconditional probability, and the independence follows.
The optimality of s follows from Proposition 9. Im

Next we show that if there exist rank rules which are optimal in XX , then
there are also rank rules optimal in XX .m

Ž .PROPOSITION 11. The distribution of X , . . . , X is q-noninformative if1 n
and only if any sequence of stopping rules t g RR , m s 1, . . . , n, determinedm m

Ž .through a choice of the indifference sets in 3 has the property that t ism
optimal in XX .m

Ž .PROOF. For singular losses the statement is obvious, so suppose that q ?
is nonsingular.

Assume DD is q-noninformative. Then t must be optimal in XX . Given1
� 4m g 2, . . . , n , we can choose by Proposition 10 a rule s g XX , which ism m

Ž .optimal in this class and independent of R , . . . , R . Note that t also1 my1 m
has this independence property. Decompose and estimate the expected loss

Ž .using the independence and measurability of the event t ) m y 1 with1
Ž .respect to R , . . . , R as follows:1 my1

Eq A s E q A 1 q E q A 1Ž . Ž . Ž .Ž . Ž .t t Žt ) my1. t Žt - m.1 1 1 1 1

s E q A 1 q E q A 1Ž . Ž .Ž . Ž .t Žt ) my1. t Žt - m.m 1 1 1

s P t ) m y 1 Eq A q E q A 1Ž . Ž . Ž .Ž .1 t t Žt - m.m 1 1

G P t ) m y 1 Eq A q E q A 1Ž . Ž . Ž .Ž .1 s t Žt - m.m 1 1

s E q A 1 q E q A 1 s Eq A ,Ž .Ž . Ž .Ž . Ž .s Žt ) my1. t Žt - m. tm 1 1 1
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where t s t 1 q s 1 . Optimality of t implies that equality1 Žt - my1. m Žt G m. 11 1
Ž . Ž .holds. By Proposition 7, we have P t ) m y 1 ) 0; therefore Eq A s1 t m

Ž .Eq A and the optimality of t follows. Is mm

We are able now to derive some conditions characterizing q-noninforma-
tive distributions. Using regular conditional probabilities, define

u r ; X , . . . , XŽ .m 1 m

nymqr

[ q a P R s r , . . . ,Ž . ŽÝ Ý mq 1 mq1
asr Ž .SS r , am

10Ž .

<R s r X , . . . , X ..n n 1 m

Ž . Ž .Here SS r, a is defined as the set of all integer sequences r , . . . , rm mq1 n
Ž . Ž .satisfying 1 F r F i and F r, r , . . . , r s a , . . . , a with a s a,i m mq1 n m n m

where F is the bijection defined in Proposition 2. Further setm

v X , . . . , XŽ .m 1 m

n n

[ q a P R s r , . . . ,Ž . ŽÝ Ý Ý mq 1 mq1
as1 ksmq1 Ž .CC k , am

11Ž .

<R s r X , . . . , X ,.n n 1 m

Ž . Ž .where CC k, a is the set of trajectories r , . . . , r of the relative rankm mq1 n
process satisfying

r g C , . . . , r g C , r g S j Imq 1 mq1 ky1 ky1 k k k

and

F r , . . . , r s a , . . . , a with a s a.Ž . Ž .mq 1 mq1 n mq1 n k

Ž . Ž . Ž .By Proposition 3 v the functions u r; ? and v ? are symmetric; theym m
are uniquely determined by both q and DD. Our characterization of q-nonin-
formative distributions is based on these functions.

Ž .THEOREM 12. The distribution of X , . . . , X is q-noninformative if and1 n
only if the following relations hold for all 1 F m F n y 1 with probability 1:

12 r g S « u r ; X , . . . , X F v X , . . . , X ,Ž . Ž . Ž .m m 1 m m 1 m

13 r g C « u r ; X , . . . , X G v X , . . . , X ,Ž . Ž . Ž .m m 1 m m 1 m

14 r g I « u r ; X , . . . , X s v X , . . . , X .Ž . Ž . Ž .m m 1 m m 1 m

PROOF. Let DD be q-noninformative. Choose indifference sets J ;2
Ž .I , . . . , J ; I and consider stopping rules t , . . . , t given by 3 . To2 ny1 ny1 1 n

compute the conditional risks for stopping and continuing, we need to sum
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Ž .over appropriate trajectories of the rank process R , . . . , R . On R s rmq 1 n m
we have

<E q A X , . . . , X s u r ; X , . . . , X ,Ž . Ž .Ž .m 1 m m 1 m

Ž .because the trajectories weighted with q a are exactly those relative rank
sequences which correspond to the values R s r and A s a. The structurem m
of the second expectation,

<E q A X , . . . , X s v X , . . . , X ,Ž .Ž .Ž .t 1 m m 1 mmq 1

Ž .is more involved, because in 11 the summation is over the set of trajectories
indexed by possible values of t and A . A particular choice of indiffer-mq 1 t mq 1

ence sets is immaterial. By Propositions 9 and 11 the overall optimality of the
Ž . Ž .rank rules is valid iff the inequalities 12 and 13 hold for appropriate

Ž . Ž . Ž .events R s r . Because the functions u r; ? and v ? are symmetric, them m m
Ž . Ž .restriction R s r can be omitted. For r g I , we get 12 by including thism m

Ž . Ž .value into J and 13 otherwise, whence 14 . Im

Using this criterion in particular problems is in no way easy. For a given
Ž .q ? , just finding the summation domains SS and CC involves solving them m

optimal stopping problem in RR. The problem is less complicated for monotone
� 4losses, because the continuation sets have the form C s l , . . . , n , whichm m

Ž .follows from the fact that v decreases and u r increases in m.m m
Ž . Ž . Ž .Taking expectations in 12 , 13 and 14 , we obtain some relations which

are valid for any exchangeable sequence. These relations stem from the
Ž .optimality of t in RR see Proposition 4 and the obvious equalities1

E u r ; X , . . . , X s u r ; E v X , . . . , X s v .Ž . Ž . Ž .Ž . Ž .m 1 m m m 1 m m

Ž . Ž .If the random variables u r ; X , . . . , X y v X , . . . , X were constantsm 1 m m 1 m
with probability 1, DD would obviously be q-noninformative. It follows from
the results of the next section that at least some of these differences are
nonconstant for any exchangeable distribution.

5. Impossibility results. Our next goal is to characterize q-noninforma-
tive distributions by certain conditions on the cumulative distribution of the

Ž .order statistics of the random vector X , . . . , X .1 n
Ž . Ž . Ž . Ž .Rearranging terms in 12 , 13 and 14 , we obtain n y 1 nr2 relations of

the form

<b r , . . . , r P R s r , . . . , R s r X , . . . , XŽ . Ž .Ý m , r mq1 n mq1 mq1 n n 1 m
r , . . . , rmq1 n

G 0 or s 0 .Ž .

Ž .The coefficients b ? are determined solely by the loss function and not bym , r
Ž . Ž .the distribution, because the sets SS r, a and CC k, a depend only on q.m m
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These relations can be written in the form

b r , . . . , rŽ .Ý m , r mq1 n
r , . . . , rmq1 n15Ž .

=P R s r , . . . , R s r , X , . . . , X g B G 0 or s 0 ,Ž . Ž .Ž .mq 1 mq1 n n 1 m

where B runs over the family of all Borel sets in R m. By exchangeability, it is
sufficient to consider B in the smaller class, BB , of Borel subsets of the space)

R m of strictly descending m-tuples of reals.)

Let M , . . . , M be the descending sequence of order statistics of X , . . . , X .1 n 1 n
Given r , . . . , r , setmq 1 n

16 a , . . . , a s F r , . . . , rŽ . Ž . Ž .mq 1 n mq1 mq1 n

and let i , . . . , i be the increasing sequence of integers satisfying1 m

� 4 � 4 � 417 i , . . . , i j a , . . . , a s 1, . . . , n .Ž . 1 m mq1 n

Ž .For B g BB , the probabilities entering 15 can be written as)

P R s r , . . . , R s r , X , . . . , X g BŽ .Ž .mq 1 mq1 n n 1 m

s P X s M , . . . , X s M ,Ž mq 1 a n amq 1 n

M s X , . . . , M s X , M , . . . , M g BŽ . .i 1 i m i i1 m 1 m

y1s n! P M , . . . , M g B .Ž . Ž .Ž .i i1 m

The last step is justified via exchangeability and invariance of the event
ŽŽ . . Ž .M , . . . , M g B w.r.t. permutations of the X ’s. Now 15 takes the formi i i1 m

18 c i , . . . , i P M , . . . , M g B G 0 or s 0 ,Ž . Ž . Ž .Ž .Ž .Ý m , r 1 m i i1 m
i , . . . , i1 m

with

c i , . . . , i [ b r , . . . , r ,Ž . Ž .Ým , r 1 m m , r mq1 n
r , . . . , rmq1 n

Ž .the sum being extended over the n y m ! values of relative ranks
Ž . Ž . Ž .r , . . . , r found from 16 and 17 .mq 1 n

Note that exchangeability of the X ’s imposes no restrictions on thei
Ž . Ždistribution of M , . . . , M , which can be arbitrary except that we always1 n

.require that there are no ties . Given such a distribution, an exchangeable
sequence can be constructed via symmetrization. The problems of the exis-
tence of q-noninformative distributions is therefore reduced to the question
whether certain signed linear combinations of marginal distributions of a
probability measure on R n can be nonnegative or 0. It is certainly a deep and)

appealing question, which linear combinations can be nonnegative or 0. Here
Ž .we will give only some examples and prove that linear dependence of n y 1 -

Ž .dimensional marginals of M , . . . , M is impossible.1 n
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LEMMA 13. The equality

19 c P M , . . . , M g B s 0,Ž . Ž .Ž .Ý i i i1 ny1
1Fi - ??? -i Fn1 ny1

� 4 � 4 �where the c ’s are constant coefficients indexed by i s 1, . . . , n R i , . . . ,i 1
4 ny1i , holds for all Borel sets B ; R if and only if c s ??? s c s 0. Inny1 ) 1 n

Ž .other words, the n y 1 -dimensional marginal distributions of M , . . . , M1 n
are linearly independent.

PROOF. Let T be a random variable with everywhere positive density
Ž . Ž .e.g., normally distributed , independent of M , . . . , M . Because M , . . . , M1 n 1 n
tie only with probability 0,

20 P M - T - M ) 0, m - n.Ž . Ž .mq 1 m

ny1 Ž .Substitute B s R in 19 to see that c q ??? qc s 0. We will prove1 n
that c q ??? qc s 0 along with c s ??? s c s 0 implies c s 0. The1 m mq1 n m
assertion will then follow by induction in m from m s n to m s 2.

Ž .Assume c q ??? qc s 0 and c s ??? s c s 0. Since 19 holds for any1 m mq1 n
w .my 1fixed Borel set, the same equality is also valid for random sets T, ` =

Ž .nymy`, T . This follows from Fubini’s theorem and because T is indepen-
Ž .dent of the M ’s. We have then by 19i

m
nymmy1w x0 s c P M , . . . , M g T , ` = y`, TŽ .Ž .Ý ž /i i i1 ny1

is1
m

nymmy1s c P M , . . . , M g T , ` = y`, T , M ) T. Ž .Ž .Ý ž /i i i i1 ny1
is1

m
nymmy1q c P M , . . . , M g T , ` = y`, T , M - T. Ž .Ž .Ý ž /i i i i1 ny1

is1

m

s c P M - T - M q c P M - T - M ,Ž . Ž .Ý i mq1 m m m my1ž /
is1

Ž .and therefore the induction hypothesis along with 20 implies c s 0. Im

COROLLARY 14. Given n ) 1, there is no exchangeable sequence X , . . . , X1 n
Ž < .without ties such that, for some r F n, the equality P R s r X , . . . , X sn 1 ny1

ny1 holds with probability 1.

Ž < .PROOF. Because the probabilities P R s i X , . . . , X , i s 1, . . . , n,n 1 ny1
sum to 1, the equality in Corollary 14 implies that they are linearly depen-

Ž .dent. By the argument in the beginning of the section, the m y 1 -
Ž .dimensional marginal distributions of M , . . . , M must be linearly depen-1 n

dent as well, but by Lemma 13 this is impossible. I

The case r s 1 is of special interest for extreme value theory. The event
Ž .R s 1 occurs when the nth observations is an upper record of the X , thatn i
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is, n is a record time. The above result says that having observed some values
of an exchangeable sequence we can always draw some inference regarding
the future stream of records in the sense that the posterior distribution of

Žrecord times turns out to be different from the unconditional distribution see
.also Remark 1 in Section 8 .

COROLLARY 15. If n ) 1 and X , . . . , X are exchangeable without ties,1 n
Ž .then R cannot be independent of X , . . . , X .n 1 ny1

PROOF. Indeed, by Corollary 14 the conditional distribution of R cannotn
coincide with the unconditional distribution. I

Ž < . y1REMARK. The system of n equalities P R s r X , . . . , X s n , r sn 1 ny1
Ž .1, . . . , n, was studied by Hill 1968 in connection with some problems of

Bayesian nonparametric statistics. In Section 6 of his 1968 paper he proved
that this system cannot be satisfied for exchangeable X ’s by showing thati
this is impossible for n s 2 and then using backward induction. Our Lemma
13 should be regarded as a stronger impossibility result. Corollary 14 says
that none of these n equalities can hold.

Ž .Lane and Sudderth 1978 proved the existence of finitely additive ex-
Ž .changeable distributions such that R is independent of X , . . . , X ,m 1 my1

Žm s 1, 2, . . . . These distributions have rather exotic properties like P M y1
.M - « s 1 ; « ) 0. Therefore, in the finitely additive scenario, the firstn

question we posed in the Introduction has a positive solution, general for all
losses.

We prefer to stay within the familiar framework of the countably additive
probabilities and formulate next a condition when the answer to our first
question is negative. Keep in mind that we do not consider constant loss
functions.

THEOREM 16. If the indifference set I is nonempty, then q-noninforma-ny1
tive distributions do not exist.

PROOF. Assume r g I and there is a q-noninformative distribution. Byny1
Ž .Theorem 12, 14 holds with m s n y 1. Obviously,

n

<v s q i P R s i X , . . . , X .Ž . Ž .Ýny1 n 1 ny1
is1

The absolute rank of the r th largest value among X , . . . , X equals either1 ny1
r or r q 1; therefore

<u r ; X , . . . , X s q r P R ) r X , . . . , XŽ . Ž . Ž .ny1 1 ny1 n 1 ny1

<q q r q 1 P R F r X , . . . , X .Ž . Ž .n 1 ny1

Ž .Now it is easy to show that 19 holds with coefficients

q r q 1 y q i , for i s 1, . . . , r ,Ž . Ž .
c si ½ q r y q i , for i s r q 1, . . . , n.Ž . Ž .
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In view of Lemma 13, we have c s ??? s c s 0. It follows that the loss1 n
function must be constant: a contradiction. I

REMARK. The particular values of the coefficients are not important here
Ž .provided some of these values are different from 0 . Only the linear depen-
dence has been used. This kind of argument does not work for m - n y 1,

Ž .because lower-dimensional marginal distributions of M , . . . , M can be1 n
linearly dependent for n G 3, as the following construction shows.

Take two one-dimensional distribution functions F and F satisfying1 3
Ž . Ž . Ž .F x - F x everywhere and set F s F q R r2. Then F is also a1 3 2 1 3 2

Ž . Ž . Ž .distribution function, F x - F x - F x , and all three are linearly de-1 2 3
pendent. Consider the unit interval with Lebesgue measure as the probability

Ž . ¤ Ž . ¤space and set M v s F v , i s 1, 2, 3, where F is the generalizedi i i
Ž .inverse of F . By the construction, M ) M ) M ; hence M , M , M arei 1 2 3 1 2 3

Ž .order statistics of an exchangeable triple X , X , X without ties. This1 2 3
Ž < .example corresponds to the curious equality P R s 2 X s 1r3 a.s.; that is,3 1

whatever the first observation is, the conditional probability that it is the
wsample median is always 1r3. To prove that this equality is equivalent to

F q F s 2 F , rewrite it as1 3 2

< < <2 P R s 2 X F x s P R s 1 X F x q P R s 3 X F x ; xŽ . Ž . Ž .3 1 3 1 3 1

and substitute the formula

P R s i , X F x s F x q F x r6,Ž . Ž . Ž .Ž .3 1 j k

� 4 � 4 xwhich holds, via exchangeability, for all i, j, k s 1, 2, 3 .
Ž < . ŽIt is worth mentioning that neither P R s 1 X s 1r3 a.s. nor P R s3 1 3

< .3 X s 1r3 a.s. is possible.1
A construction of distributions in R n with linearly dependent marginals)

for some values of m and n can be obtained in a similar manner, namely, by
first assuming appropriate marginals and then using general methods found

Ž . Ž .in Vorob’ev 1962 or Kamae, Krengel and O’Brien 1977 .
We give next some examples of losses which do not admit q-noninforma-

tive distributions.

EXAMPLE 1. The problem with general loss function for n s 2 is reduced
readily to the case of the best choice problem. The class RR consists of two
constant rules. Therefore Cover’s rule described in the Introduction beats the

Ž .rank rules for any exchangeable X , X .1 2

EXAMPLE 2. For any n, there are no q-noninformative distributions for
Ž Ž . Ž . Ž .. Ž .singular losses. For n s 3, this is the case for q 1 , q 2 , q 3 s 1, 0, 1 or,

Ž Ž . Ž . Ž .. Ž .what is essentially the same, for q 1 , q 2 , q 3 s 0, 1, 0 .

EXAMPLE 3. For general n, the loss functions which do not admit q-nonin-
formative distributions can be found as solutions of one of the equations in

Ž . Ž . Ž .system 5 for q 1 , . . . , q n , with r fixed. For n ) 3, there exists an increas-
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ing loss function with this property; we can find such a function as a solution
Ž .to 5 with r s 2.

6. The minimal rank problem: n even. The well-known minimal rank
Ž .problem found in Chow, Moriguti, Robbins and Samuels 1964 corresponds

Ž .to the loss function q a s a. Here we consider the case of n even. We show
that there are randomized stopping rules based on the X ’s which are strictlyi
better than the relative rank rules for any exchangeable distribution DD. Thus
we will be able to conclude that q-noninformative distributions for linear loss
functions do not exist.

First of all, note that nr2 g I becauseny1

u nr2 s v s n q 1 r2,Ž . Ž .ny1 n

as an easy computation shows. Let t X be an optimal rule in RR which stops
with R s nr2. That is,ny1

t X G n y 1, R s nr2 « t X s n y 1 ,Ž . Ž .ny1

Let

n , if t X G n y 1, R s nr2,Y ny1t [ X½ t , otherwise

be a modification of t X which does not stop with this rank value. By
Proposition 4,

21 EA X s EA Y ,Ž . t t

and t Y is optimal as well.
The method we used in Lemma 13 extends the idea of a splitting variable

Ž .due to Cover 1987 and suggests the following randomized stopping rule. Let
T be an arbitrary real random variable independent of X , . . . , X , with1 n
everywhere positive density. Set

n , if t X G n y 1, R s nr2 and X - T ,ny1 ny122 r [Ž . X½ t , otherwise.

By definition, r coincides with t X if X ) T and coincides with t Y ifny1
X - T.ny1

� 4Let N [ a i: i F n, X ) T be the number of exceedances over T. Permu-i
tations of the X ’s do not change the value of N; therefore N is independenti

Ž .of A , . . . , A . Furthermore,1 n

23 P N s k ) 0, k s 0, 1, . . . , n ,Ž . Ž .
because T falls with positive probability in any of the n q 1 intervals
obtained by partitioning of the real line by the order statistics M , . . . , M .1 n

Ž .For the event N ) nr2, R s nr2 , we have X ) T ; therefore N )ny1 ny1
nr2 implies r s t X. Similarly, N - nr2 implies r s t Y. It follows that

24 E A 1 s E A X1 .Ž . Ž . Ž .r ŽN ) n r2. t ŽN ) n r2.
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The independence of N and the A ’s implies that N is independent of thei
Y Ž .R ’s and hence of t . Hence by 21 we havei

E A 1 s E A Y1Ž . Ž .r ŽN - n r2. t ŽN - n r2.

s EA Y ? P N - nr2 s E A X1 .Ž . Ž .t t ŽN - n r2.

25Ž .

X Ž X . Ž XWe have also r s t for the events N s nr2, t - n y 1 , N s nr2, t G
. Ž X .n y 1, R / nr2 and N s nr2, t G n y 1, R s nr2, X ) T .ny1 ny1 ny1

Consider the event

H [ N s nr2, t X G n y 1, R s nr2, X - T .Ž .ny1 ny1

Assuming that H occurs, the number of exceedances over T among
X , . . . , X is nr2 y 1, because X falls below T and has relative rank1 ny1 ny1
nr2. It follows that X exceeds T, and thus A s nr2 q 1 holds alongn ny1
with A F nr2; that is, proceeding to X is better than stopping with X .n n ny1
Clearly, for this event r s n, t X s n y 1 and thus r beats t X.

Ž . Ž .Putting this all together along with 24 and 25 , we obtain

EA s E A 1 c q E A 1Ž . Ž .r r H r H

s E A X1 c y E A 1Ž . Ž .t H n H

- E A X1 c q E A 1 s EA X .Ž . Ž .t H ny1 H t

Ž .The inequality is strict, because, by 23 and Proposition 7,

P H s P N s nr2, t X ) n y 2, R s nr2, R F nr2Ž . Ž .ny1 n

1
Xs P N s nr2 P t ) n y 2 ) 0.Ž . Ž .

2 n y 1Ž .

The rule r always is strictly better than all relative rank rules. For any
given DD, there are also nonrandomized rules in XX which improve strictly the

Ž .rank rules: take t such that the interval between the nr2 th and the
Ž .nr2 q 1 th order statistics of X , . . . , X covers t with positive probability1 n

Ž .and substitute this t into 22 instead of T.

Ž .REMARKS i The advantage of r over the rank rules can be arbitrarily
small for some exchangeable sequences. To see this, take DD concentrated
near the diagonal x s ??? s x . Then the X ’s are clustered in a small1 n i
interval, and T with probability close to 1 does not split them.

Ž .ii For the minimal rank problem and n odd, we have I s B, becauseny1
there is no middle value for R ; thus the method does not work. Samuelsny1
Ž .1994 discussed the failure of similar rules for n s 3.

Ž .iii Our construction of a randomized rule which beats the rank rules is
easily generalized to all increasing loss functions satisfying I / B.ny1
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Ž .7. Googol. Ferguson 1989 interpreted M. Gardner’s Googol as a game
Ž .version of the best choice problem, with the loss function q k s 1 . In�k )14

� 4this game, Player 1 selects an exchangeable distribution for the X , andi
Player 2 picks a stopping rule from XX . Any q-noninformative distribution is a
minimax strategy of Player 1.

It is well known that, for n ) 2, I s ??? I s B, S s ??? s S s B1 ny1 1 dy1
� 4and S s ??? s S s 1 , where d is the integer satisfyingd ny1

1 1 1 1 1 1
q q ??? q - 1 - q q ??? q ,

d d q 1 n y 1 d y 1 d n y 1
y1 Ž . Ž .drn ª e , n ª `. The inequalities 13 and 12 describing q-noninforma-

tive distributions turn into

<P R / 1, . . . , R / 1 X , . . . , XŽ .mq 1 n 1 m

<F P exactly one of R , . . . , R is 1 X , . . . , X , m s 1, . . . , d y 1,Ž .d n 1 m

and

<P R / 1, . . . , R / 1 X , . . . , XŽ .mq 1 n 1 m

<G P exactly one of R , . . . , R is 1 X , . . . , X , m s d , . . . , n y 1,Ž .mq 1 n 1 m

respectively. The first system of inequalities is equivalent to the single
inequality with m s d y 1, because the right-hand side there does not de-
pend on m and the events on the left-hand side are decreasing in m. This
description does not seem useful to find a q-noninformative distribution
explicitly.

Ž .Tedious but straightforward calculations along the lines of Gnedin 1994
<show that, for n G 3, these inequalities are satisfied if X , . . . , X u are iid,1 n

w xuniformly distributed on 0, u , and the parameter u has a prior distribution
with density

« «
«y1 y«y126 f u s u 1 u q u 1 u ,Ž . Ž . Ž . Ž .Ž0, 1. w1, `.2 2

where « ) 0 should be sufficiently small.
Ž .A more delicate analysis shows that, given N, « s « N can be selected

the same for all n s 3, . . . , N. In other words, there exists an infinite ex-
changeable sequence such that each subsequence of length 2 - n F N is
q-noninformative. A game-theoretic meaning of this result is that Player 1
has a minimax strategy which does not depend on the particular value of n,
subject to a restriction like n - 10100. This is an improvement of the result

Ž .found in Gnedin 1994 , where the mixing density was dependent on n.

8. Final remarks.

Ž . Ž .REMARK 1. Samuels 1981 and Berezovskiy and Gnedin 1984 used the
invariance principle to show that, in the best choice problem, the optimal
rank rule is minimax. The invariance ideas can be applied also to the
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following version of Googol: Player 1 picks u and samples the X ’s indepen-i
w xdently from the uniform distribution on 0, u , while Player 2 picks a stopping

rule. In this form, the game remains essentially the same if we rescale with a
positive factor the values on the u and x scales. It is therefore natural to
expect that both players have minimax strategies, invariant w.r.t. these
transformations.

By Corollary 14, no DD satisfies

y1<27 P R s 1 X , . . . , X s m q 1 .Ž . Ž .Ž .mq 1 1 m

Ž . y1However, mixing uniforms on 0, u with the infinite measure u du yields a
Ž .sequence which in a sense does satisfy 27 for all m. The formal posterior

distribution of u after one observation has already a probability density, and
Ž .27 can be given a proper interpretation via the Bayesian prior-to-posterior
transformation. Recall that uy1 du is the invariant measure on the multi-
plicative group of positive reals. Thus the corresponding improper DD can be
regarded as a formal minimax strategy of Player 1. The exchangeable distri-

Ž .bution related to the prior 26 might be interpreted as a proper approxima-
tion to the improper invariant minimax strategy.

REMARK 2. One might seek in higher dimensions for improper exchange-
able distributions satisfying the condition ‘‘R is independent of X , . . . ,n 1
X .’’ For example, consideration of the group of monotone affine transfor-ny1
mations of R leads, for n s 3, to the improper distribution with density
Ž Ž . Ž ..y2max x , x , x y min x , x , x . For general n, such distributions seem1 2 3 1 2 3
to be unknown.

REMARK 3. In the best choice problem with n ) 2, the set of all q-nonin-
formative distributions, which are representable as mixtures of products,
form a proper subset of the set of all q-noninformative distributions. The
q-noninformative distributions, which are not mixtures, can be found among

Ž .those described in Gnedin 1995 . In this respect the mixtures do not play a
special role.

REMARK 4. As DD varies, the minimal risk V assumes the values betweenXX
Ž .the rank stopping value V and min q k , the lower bound being attained,RR k F n

for example, in the case when X , . . . , X is a random permutation of1 n
� 4 Ž .1, . . . , n . Let U denote the value of V DD in the iid case. It is evident that UXX

is none of the extremes in the range of the V -values.XX

An extremal property of the iid case appears if we restrict attention to the
DD’s representable as mixtures of product distributions. Clearly, U is then a
lower bound. Indeed, consider the values X , . . . , X coming from a mixture1 n
as a two-stage choice. A univariate continuous distribution is chosen accord-
ing to some ‘‘prior,’’ and then the X ’s are sampled independently from thei
resulting distribution. If the result of the first choice is known and can be
used in the stopping rules, then we are exactly in the iid case, where the
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minimal risk does not depend on the particular distribution of the X ’s. Oni
the other hand, we cannot do better if the result of the first choice is

Ž .unknown. This argument has an interesting consequence. If V DD - U,RR

then DD cannot be represented as a mixture of continuous product distribu-
tions with identical factors.
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