PACKING RANDOM INTERVALS¹

BY WANSOO T. RHEE AND MICHEL TALAGRAND

Ohio State University

A *packing* of a collection of subintervals of [0, 1] is a pairwise disjoint subcollection of the intervals; its *wasted space* is the measure of the set of points not covered by the packing.

Consider *n* random intervals, I_1, \ldots, I_n , chosen by selecting endpoints independently from the uniform distribution. We strengthen and simplify the results of Coffman, Poonen and Winkler, and we show that, for some universal constant *K* and for each $t \ge 1$, with probability greater than or equal to $1 - 1/n^t$, there is a packing with wasted space less than or equal to $Kt(\log n)^2/n$.

1. Introduction. Packing problems are of fundamental importance, in particular, in computer science [1]. If I_1, \ldots, I_n are intervals contained in [0, 1], a packing of these intervals in [0, 1] is a disjoint subcollection of these intervals. The wasted space is the length of the part of [0, 1] that is not covered by this subcollection. The optimal packing minimizes wasted spaces. (So, in other words, one tries to cover as much as possible of [0, 1] using disjoint intervals of the given family.) Coffman, Poonen and Winkler [2] prove the remarkable fact that an optimal packing of n random intervals I_1, \ldots, I_n in [0, 1] wastes a space W_n of order $(\log n)^2/n$. They prove that, for every $\varepsilon > 0$, $W_n \ge (1/8 - \varepsilon)(\log n)^2/n$ with a probability that goes to 1 as $n \to \infty$, and they prove that $E(W_n) \le K(\log n)^2/n$ for some universal constant K. In this paper, we strengthen this latter result and we prove the following theorem.

THEOREM 1. For all $1 \le t \le n/(\log n)^3$, we have

(1)
$$P\left(W_n \ge Kt \frac{\left(\log n\right)^2}{n}\right) \le \left(\frac{1}{n}\right)^t,$$

where K does not depend on n.

While the proof of [2] uses the second moment method via a rather delicate computation, our approach is considerably more straightforward.

2. Poissonization. Consider $D = \{(x, y) \in [0, 1]^2; x \le y\}$. There is an obvious bijection between the points of D and the subintervals of [0, 1].

Received September 1995; revised January 1996.

¹This research was supported in part by an NSF grant.

AMS 1991 subject classifications. 60G55, 90B05.

Key words and phrases. Wasted space, packing, random intervals, asymptotic estimate.

⁵⁷²

Through this bijection, the intervals I_1, \ldots, I_n appear as n points uniformly distributed over D. Following a well-known scheme, let us consider a homogeneous Poisson point process of uniform intensity λ . The process generates a finite subset Π of D, that is, a finite collection of intervals I_1, \ldots, I_r of [0, 1]. We denote by V_{λ} the space wasted by an optimal packing of [0, 1] by these intervals. We claim that, for each n,

(2)
$$P(W_n \ge a) \le P(V_\lambda \ge a) + P(\operatorname{card} \Pi \ge n).$$

Indeed, if we condition with respect to the cardinal of $\Pi = m$, V_{λ} is distributed like W_m and (considering only the first *m* intervals) $P(W_n \ge a) \le P(W_m \ge a)$ when $n \ge m$.

Now we fix $\lambda = n/2$, so that (as is well known)

$$P(\operatorname{card} \Pi \ge n) \le \exp\left(-\frac{n}{K}\right).$$

(There, as well as in the rest of the paper, *K* denotes a universal constant, not necessarily the same at each occurrence.) Thus it suffices to prove that, for $1 \le t \le n/(\log n)^3$,

(3)
$$P\left(V_{\lambda} \geq Kt \frac{\left(\log n\right)^{2}}{n}\right) \leq \left(\frac{1}{n}\right)^{t},$$

where K does not depend on n.

3. The idea. Consider a parameter u and $q = \lfloor n/(u \log n) \rfloor$. We divide [0, 1] into the q consecutive intervals $\lfloor k/q, (k + 1)/q \rfloor$, $0 \le k < q$, which for simplicity we will call *atoms*. For an atom A, we denote by A^- (resp. A^+) the atom to the left (right) when it exists.

We set $m_1 = \lfloor \log n \rfloor$. We divide the set of atoms into $3m_1 + 2$ consecutive blocks. The first and the last blocks consist, respectively, of the first m_1 and the last m_1 atoms. The $q - 2m_1$ atoms left are divided into $3m_1$ blocks B_2, \ldots, B_{3m_1+1} of consecutive atoms, each of them containing either $p = \lfloor (q - 2m_1)/3m_1 \rfloor$ or $p + 1 = \lfloor (q - 2m_1)/3m_1 \rfloor$ atoms. Now, when $u \le n/3(\log n)^2$ (and n is larger than some fixed integer n_0), we have $p \ge n/4u(\log n)^2$.

We now define, by induction over k, the set of atoms contained in the block B_k that are *alive*. For k = 1, all the atoms contained in B_k are alive. Now we say that an atom A contained in B_{k+1} is alive if there is an atom A_0 contained in B_k that is alive and such that, among the intervals I_1, \ldots, I_r , we can find one with endpoints in A_0^+ and A.

Thus an atom A of B_{k+1} is alive if, among I_1, \ldots, I_r , we can find intervals J_1, \ldots, J_k with the following properties:

(4) The left endpoint of J_1 belongs to B_1 .

(5) For $2 \le l \le k$, the right endpoint of J_{l-1} and the left endpoint of J_l belongs to two consecutive atoms of B_l .

What this means is that we have succeeded in constructing a "partial packing" J_1, \ldots, J_k of [0, 1] starting at 0 and up to A. This partial packing is efficient in the sense that the following occurs:

- (6) At most $m_1/q \le 2u(\log n)^2/n$ space is not covered at the left of the left endpoint of J_1 .
- (7) The gap between J_l and J_{l+1} is at most 2/q.

Suppose now that we can prove the following for $u \ge K$, $u \le n/(\log n)^3$:

With probability at least
$$1 - 3 \exp(-u \log n/K)$$
, the

(8) number \dot{M}_k of *live* intervals in B_k satisfies $M_k \ge \min\{3^{k-1}m_1, 2p/3\}$ for each $k \le 2m_1$.

Then we observe that $3^{k-1}m_1 \ge n$ for $k \ge \log n$; thus $M_k \ge 2p/3$ for $k \ge \log n$. This implies that, if we consider a block *B* near the center of [0, 1], at least (approximately) 2/3 of its atoms contain the right endpoint of the last interval of a partial efficient packing [in the sense that (6) and (7) hold]. Now we could have constructed these partial efficient packings starting at the right of [0, 1] rather than the left, and again at least 2/3 (approximately) of the atoms of *B* would contain the left endpoint of the last (starting from the right) interval of such a packing. So we can find an atom *J* of *B* that contains the end of a partial efficient packing starting from the left, while J^+ contains the end of a partial efficient packing starting from the right. The union of these two packings wastes at most

$$4u\frac{\left(\log n\right)^2}{n} + \frac{3m_1}{q} \le Ku\frac{\left(\log n\right)^2}{n}$$

Combining this with (8) shows that, for $u \leq n/(\log n)^3$,

$$P\left(V_{\lambda} \ge Ku \, rac{\left(\log n\right)^2}{n}
ight) \le 4 \left(rac{1}{n}
ight)^{u/K}$$

This implies (1).

4. End of the proof. Let us denote by b_k the right endpoint of B_k , and set $\Pi_k = \Pi \cap ([0, b_k] \times [0, 1])$. We observe that the set of live atoms of B_k depends on Π_{k-1} only. First, we show that, to prove (8), it suffices to prove the following:

(9) $P(M_{k+1} \ge \min\{3M_k, 2p/3\} | \Pi_{k-1}) \ge 1 - \exp(-u \min\{3M_k, 2p/3\} / K).$

Indeed, using (9), we get, setting $n_k = \min\{3^{k-1}m_1, 2p/3\}$, that

$$P(M_{k+1} \ge n_{k+1}) \ge P(M_k \ge n_k) - \exp(-n_k u/K),$$

so that

$$P(\forall k \le 2m_1, M_k \ge n_k) \ge 1 - \sum_{l \le 2m_1} \exp(-n_l u/K)$$

and the latter sum is bounded by $\exp(-um_1/K)$ if $u \leq N/\log N$. Thus the only task left is to prove (9).

There is a set \mathscr{A} of atoms of B_k such that card $\mathscr{A} \ge M_k - 1 \ge M_k/2$ and that, whenever $A \in \mathscr{A}$, A^- is alive. Consider for an atom B of B_{k+1} the random variable δ_{AB} that is equal to 1 if $\Pi \cap (A \times B) \neq \emptyset$, and is 0 otherwise. The set of atoms of B_{k+1} that are alive is

$$\mathscr{B} = \{ B \in B_{k+1} : \exists A \in \mathscr{A}, \, \delta_{AB} = 1 \}.$$

Conditionally on Π_{k-1} , the random variables δ_{AB} are independent and

$$P(\delta_{AB} = 0) = \exp(-\lambda \operatorname{Area}(A \times B)) \le \exp(-u^2(\log n)^2/(2n)).$$

Thus

$$\forall B \in B_{k+1},$$

$$P(B \notin \mathscr{B}|\Pi_{k-1}) \leq \exp\left(-u^2(\log n)^2 M_k/(4n)\right) \leq \exp\left(-u M_k/(16p)\right) \coloneqq \tau.$$

Thus, conditionally on Π_{k-1} , the number of live atoms in B_{k+1} dominates the number $H(p, 1 - \tau)$ of outcomes of a sequence of p independent Bernoulli trials, each with probability $1 - \tau$ of success. We need the following lemma which is a very weak form of the Chernoff bounds [3].

LEMMA 1. For some universal constant K_0 , we have

(10)
$$a \ge 3/4 \Rightarrow P(H(p,a) \le 2p/3) \le \exp(-p/K_0),$$

(11)
$$P(H(p,a) \le ap/2) \le \exp(-ap/K_0).$$

We finish the proof. For clarity, we distinguish two cases.

CASE 1. In this case $uM_k/(16p) \ge 2$. Then $1 - \tau \ge 3/4$, and the conclusion holds by (10).

CASE 2. In this case $uM_k/(16p) \le 2$. Here, we use that $1 - \exp(-x) \ge x/4$ for $x \le 2$ to get $1 - \tau \ge uM_k/(64p)$. We use (11) with $a = uM_k/(64p)$, so that $ap/2 \ge 3M_k$ provided $u \ge 384$. Also, $ap = uM_k/64$, and $3M_k = \min(3M_k, 2p/3)$ since $M_k \le 32p/u$. This completes the proof. \Box

REFERENCES

- COFFMAN, E. G., JR. and LUEKER, G. S. (1991). Probabilistic Analysis of Packing and Partitioning Algorithms. Wiley, New York.
- [2] COFFMAN, E. G., JR., POONEN, B. and WINKLER, P. Packing random intervals. Probab. Theory Related Fields. To appear.
- [3] HOEFFDING, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30.

DEPARTMENT OF MANAGEMENT SCIENCES OHIO STATE UNIVERSITY 1775 COLLEGE ROAD COLUMBUS, OHIO 43210 E-MAIL: rhee.1@osu.edu DEPARTMENT OF MATHEMATICS OHIO STATE UNIVERSITY 231 WEST 18TH AVENUE COLUMBUS, OHIO 43210 AND EQUIPE D'ANALYSE-TOM 46 U.A. AU CNRS UNIVERSITE PARIS VI 4 PLACE JUSSIEU 75230 PARIS CEDEX 05 FRANCE E-MAIL: talagrand.1@osu.edu