# PACKING RANDOM INTERVALS ${ }^{\mathbf{1}}$ 

By WanSoo T. Rhee and Michel Talagrand

Ohio State University


#### Abstract

A packing of a collection of subintervals of $[0,1]$ is a pairwise disjoint subcollection of the intervals; its wasted space is the measure of the set of points not covered by the packing.

Consider $n$ random intervals, $I_{1}, \ldots, I_{n}$, chosen by selecting endpoints independently from the uniform distribution. We strengthen and simplify the results of Coffman, Poonen and Winkler, and we show that, for some universal constant $K$ and for each $t \geq 1$, with probability greater than or equal to $1-1 / n^{t}$, there is a packing with wasted space less than or equal to $K t(\log n)^{2} / n$.


1. Introduction. Packing problems are of fundamental importance, in particular, in computer science [1]. If $I_{1}, \ldots, I_{n}$ are intervals contained in $[0,1]$, a packing of these intervals in $[0,1]$ is a disjoint subcollection of these intervals. The wasted space is the length of the part of $[0,1]$ that is not covered by this subcollection. The optimal packing minimizes wasted spaces. (So, in other words, one tries to cover as much as possible of [ 0,1 ] using disjoint intervals of the given family.) Coffman, Poonen and Winkler [2] prove the remarkable fact that an optimal packing of $n$ random intervals $I_{1}, \ldots, I_{n}$ in $[0,1]$ wastes a space $W_{n}$ of order $(\log n)^{2} / n$. They prove that, for every $\varepsilon>0, W_{n} \geq(1 / 8-\varepsilon)(\log n)^{2} / n$ with a probability that goes to 1 as $n \rightarrow \infty$, and they prove that $E\left(W_{n}\right) \leq K(\log n)^{2} / n$ for some universal constant $K$. In this paper, we strengthen this latter result and we prove the following theorem.

Theorem 1. For all $1 \leq t \leq n /(\log n)^{3}$, we have

$$
\begin{equation*}
P\left(W_{n} \geq K t \frac{(\log n)^{2}}{n}\right) \leq\left(\frac{1}{n}\right)^{t}, \tag{1}
\end{equation*}
$$

where $K$ does not depend on $n$.
While the proof of [2] uses the second moment method via a rather delicate computation, our approach is considerably more straightforward.
2. Poissonization. Consider $D=\left\{(x, y) \in[0,1]^{2} ; x \leq y\right\}$. There is an obvious bijection between the points of $D$ and the subintervals of $[0,1]$.

[^0]Through this bijection, the intervals $I_{1}, \ldots, I_{n}$ appear as $n$ points uniformly distributed over $D$. Following a well-known scheme, let us consider a homogeneous Poisson point process of uniform intensity $\lambda$. The process generates a finite subset $\Pi$ of $D$, that is, a finite collection of intervals $I_{1}, \ldots, I_{r}$ of $[0,1]$. We denote by $V_{\lambda}$ the space wasted by an optimal packing of $[0,1]$ by these intervals. We claim that, for each $n$,

$$
\begin{equation*}
P\left(W_{n} \geq a\right) \leq P\left(V_{\lambda} \geq a\right)+P(\operatorname{card} \Pi \geq n) . \tag{2}
\end{equation*}
$$

Indeed, if we condition with respect to the cardinal of $\Pi=m, V_{\lambda}$ is distributed like $W_{m}$ and (considering only the first $m$ intervals) $P\left(W_{n} \geq a\right) \leq$ $P\left(W_{m} \geq a\right)$ when $n \geq m$.

Now we fix $\lambda=n / 2$, so that (as is well known)

$$
P(\operatorname{card} \Pi \geq n) \leq \exp \left(-\frac{n}{K}\right) .
$$

(There, as well as in the rest of the paper, $K$ denotes a universal constant, not necessarily the same at each occurrence.) Thus it suffices to prove that, for $1 \leq t \leq n /(\log n)^{3}$,

$$
\begin{equation*}
P\left(V_{\lambda} \geq K t \frac{(\log n)^{2}}{n}\right) \leq\left(\frac{1}{n}\right)^{t}, \tag{3}
\end{equation*}
$$

where $K$ does not depend on $n$.
3. The idea. Consider a parameter $u$ and $q=\lfloor n /(u \log n)\rfloor$. We divide $[0,1]$ into the $q$ consecutive intervals $[k / q,(k+1) / q[, 0 \leq k<q$, which for simplicity we will call atoms. For an atom $A$, we denote by $A^{-}$(resp. $A^{+}$) the atom to the left (right) when it exists.

We set $m_{1}=\lfloor\log n\rfloor$. We divide the set of atoms into $3 m_{1}+2$ consecutive blocks. The first and the last blocks consist, respectively, of the first $m_{1}$ and the last $m_{1}$ atoms. The $q-2 m_{1}$ atoms left are divided into $3 m_{1}$ blocks $B_{2}, \ldots, B_{3 m_{1}+1}$ of consecutive atoms, each of them containing either $p=$ $\left\lfloor\left(q-2 m_{1}\right) / 3 m_{1}\right\rfloor$ or $p+1=\left\lceil\left(q-2 m_{1}\right) / 3 m_{1}\right\rceil$ atoms. Now, when $u \leq$ $n / 3(\log n)^{2}$ (and $n$ is larger than some fixed integer $n_{0}$ ), we have $p \geq$ $n / 4 u(\log n)^{2}$.

We now define, by induction over $k$, the set of atoms contained in the block $B_{k}$ that are alive. For $k=1$, all the atoms contained in $B_{k}$ are alive. Now we say that an atom $A$ contained in $B_{k+1}$ is alive if there is an atom $A_{0}$ contained in $B_{k}$ that is alive and such that, among the intervals $I_{1}, \ldots, I_{r}$, we can find one with endpoints in $A_{0}^{+}$and $A$.

Thus an atom $A$ of $B_{k+1}$ is alive if, among $I_{1}, \ldots, I_{r}$, we can find intervals $J_{1}, \ldots, J_{k}$ with the following properties:
(4) The left endpoint of $J_{1}$ belongs to $B_{1}$.

For $2 \leq l \leq k$, the right endpoint of $J_{l-1}$ and the left endpoint of $J_{l}$ belongs to two consecutive atoms of $B_{l}$.

What this means is that we have succeeded in constructing a "partial packing" $J_{1}, \ldots, J_{k}$ of $[0,1]$ starting at 0 and up to $A$. This partial packing is efficient in the sense that the following occurs:

At most $m_{1} / q \leq 2 u(\log n)^{2} / n$ space is not covered at the left of the left endpoint of $J_{1}$.
(7) The gap between $J_{l}$ and $J_{l+1}$ is at most $2 / q$.

Suppose now that we can prove the following for $u \geq K, u \leq n /(\log n)^{3}$ :
With probability at least $1-3 \exp (-u \log n / K)$, the number $\dot{M}_{k}$ of live intervals in $B_{k}$ satisfies $M_{k} \geq$ $\min \left\{3^{k-1} m_{1}, 2 p / 3\right\}$ for each $k \leq 2 m_{1}$.
Then we observe that $3^{k-1} m_{1} \geq n$ for $k \geq \log n$; thus $M_{k} \geq 2 p / 3$ for $k \geq$ $\log n$. This implies that, if we consider a block $B$ near the center of [ 0,1 ], at least (approximately) $2 / 3$ of its atoms contain the right endpoint of the last interval of a partial efficient packing [in the sense that (6) and (7) hold]. Now we could have constructed these partial efficient packings starting at the right of $[0,1]$ rather than the left, and again at least $2 / 3$ (approximately) of the atoms of $B$ would contain the left endpoint of the last (starting from the right) interval of such a packing. So we can find an atom $J$ of $B$ that contains the end of a partial efficient packing starting from the left, while $J^{+}$contains the end of a partial efficient packing starting from the right. The union of these two packings wastes at most

$$
4 u \frac{(\log n)^{2}}{n}+\frac{3 m_{1}}{q} \leq K u \frac{(\log n)^{2}}{n}
$$

Combining this with (8) shows that, for $u \leq n /(\log n)^{3}$,

$$
P\left(V_{\lambda} \geq K u \frac{(\log n)^{2}}{n}\right) \leq 4\left(\frac{1}{n}\right)^{u / K}
$$

This implies (1).
4. End of the proof. Let us denote by $b_{k}$ the right endpoint of $B_{k}$, and set $\Pi_{k}=\Pi \cap\left(\left[0, b_{k}\right] \times[0,1]\right)$. We observe that the set of live atoms of $B_{k}$ depends on $\Pi_{k-1}$ only. First, we show that, to prove (8), it suffices to prove the following:

$$
\begin{align*}
& P\left(M_{k+1} \geq \min \left\{3 M_{k}, 2 p / 3\right\} \mid \Pi_{k-1}\right)  \tag{9}\\
& \quad \geq 1-\exp \left(-u \min \left\{3 M_{k}, 2 p / 3\right\} / K\right)
\end{align*}
$$

Indeed, using (9), we get, setting $n_{k}=\min \left\{3^{k-1} m_{1}, 2 p / 3\right\}$, that

$$
P\left(M_{k+1} \geq n_{k+1}\right) \geq P\left(M_{k} \geq n_{k}\right)-\exp \left(-n_{k} u / K\right)
$$

so that

$$
P\left(\forall k \leq 2 m_{1}, M_{k} \geq n_{k}\right) \geq 1-\sum_{l \leq 2 m_{1}} \exp \left(-n_{l} u / K\right)
$$

and the latter sum is bounded by $\exp \left(-u m_{1} / K\right)$ if $u \leq N / \log N$. Thus the only task left is to prove (9).

There is a set $\mathscr{A}$ of atoms of $B_{k}$ such that card $\mathscr{A} \geq M_{k}-1 \geq M_{k} / 2$ and that, whenever $A \in \mathscr{A}, A^{-}$is alive. Consider for an atom $B$ of $B_{k+1}$ the random variable $\delta_{A B}$ that is equal to 1 if $\Pi \cap(A \times B) \neq \varnothing$, and is 0 otherwise. The set of atoms of $B_{k+1}$ that are alive is

$$
\mathscr{B}=\left\{B \in B_{k+1}: \exists A \in \mathscr{A}, \delta_{A B}=1\right\} .
$$

Conditionally on $\Pi_{k-1}$, the random variables $\delta_{A B}$ are independent and

$$
P\left(\delta_{A B}=0\right)=\exp (-\lambda \operatorname{Area}(A \times B)) \leq \exp \left(-u^{2}(\log n)^{2} /(2 n)\right) .
$$

Thus

$$
\begin{gathered}
\forall B \in B_{k+1}, \\
P\left(B \notin \mathscr{B} \mid \Pi_{k-1}\right) \leq \exp \left(-u^{2}(\log n)^{2} M_{k} /(4 n)\right) \leq \exp \left(-u M_{k} /(16 p)\right):=\tau .
\end{gathered}
$$

Thus, conditionally on $\Pi_{k-1}$, the number of live atoms in $B_{k+1}$ dominates the number $H(p, 1-\tau)$ of outcomes of a sequence of $p$ independent Bernoulli trials, each with probability $1-\tau$ of success. We need the following lemma which is a very weak form of the Chernoff bounds [3].

Lemma 1. For some universal constant $K_{0}$, we have

$$
\begin{gather*}
a \geq 3 / 4 \Rightarrow P(H(p, a) \leq 2 p / 3) \leq \exp \left(-p / K_{0}\right),  \tag{10}\\
P(H(p, a) \leq a p / 2) \leq \exp \left(-a p / K_{0}\right) . \tag{11}
\end{gather*}
$$

We finish the proof. For clarity, we distinguish two cases.
CASE 1. In this case $u M_{k} /(16 p) \geq 2$. Then $1-\tau \geq 3 / 4$, and the conclusion holds by (10).

CASE 2. In this case $u M_{k} /(16 p) \leq 2$. Here, we use that $1-\exp (-x) \geq$ $x / 4$ for $x \leq 2$ to get $1-\tau \geq u M_{k} /(64 p)$. We use (11) with $a=u M_{k} /(64 p)$, so that $a p / 2 \geq 3 M_{k}$ provided $u \geq 384$. Also, $a p=u M_{k} / 64$, and $3 M_{k}=$ $\min \left(3 M_{k}, 2 p / 3\right)$ since $M_{k} \leq 32 p / u$. This completes the proof.

## REFERENCES

[1] Coffman, E. G., Jr. and Lueker, G. S. (1991). Probabilistic Analysis of Packing and Partitioning Algorithms. Wiley, New York.
[2] Coffman, E. G., Jr., Poonen, B. and Winkler, P. Packing random intervals. Probab. Theory Related Fields. To appear.
[3] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30.

Department of Management Sciences Department of Mathematics
Ohio State University
1775 College Road
Columbus, Ohio 43210
E-MAIL: rhee.1@osu.edu
Ohio State University
231 West 18th Avenue
Columbus, Ohio 43210
AND
Equipe d'Analyse-Tom 46
U.A. AU CNRS

Universite Paris VI
4 Place Jussieu
75230 Paris Cedex 05
France
E-MAIL: talagrand.1@osu.edu


[^0]:    Received September 1995; revised January 1996.
    ${ }^{1}$ This research was supported in part by an NSF grant.
    AMS 1991 subject classifications. 60G55, 90B05.
    Key words and phrases. Wasted space, packing, random intervals, asymptotic estimate.

