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POISSON APPROXIMATION FOR POINT PROCESSES VIA

MONOTONE COUPLINGS

BY TIMOTHY C. BROWN AND DARRYL GREIG

University of Melbourne

Monotonicity properties of certain classes of point processes with

respect to the Palm measure are exploited to derive upper and lower

bounds on the total variation distance away from Poisson of these pro-

cesses. The results obtained are applied to new better than used and new

worse than used renewal processes and to a Cox process with rates given

by a two state Markov chain.

1. Introduction. Poisson approximation using the Stein]Chen method

has been the subject of much recent work. This method, introduced in Chen
Ž .1975 , produces remarkably accurate results for a wide range of processes;

Ž .see Barbour, Holst and Janson 1992 for an encyclopedia of applications. The

bounds that we produce here are based on an inequality in Theorem 3.1 of
Ž .Barbour and Brown 1992 which bounds the total variation distance of the

number of points in a point process, N, from Poisson by the average Wasser-

stein distance of N from its reduced Palm distribution. This bound is a point

process generalization of the bound which is often called the coupling method

in discrete time: coupling is also an important tool in the examples studied

here, but the bounds obtained are independent of these couplings, requiring

only the moments of the process to be calculated. Note that the reduced Palm

distribution is that of N y 1 given the existence of a point at a particular

location, and the Poisson process is characterized by the reduced Palm

distribution being identically that of the process itself.
wŽ . xIn Barbour, Holst and Janson 1992 , pages 24]26, 60]63 concepts of

positive and negative relationships between indicator random variables are

used to provide upper and lower bounds for the total variation distance

between a sum of indicators and the Poisson distribution. Although these

results do not immediately generalize to point processes on the continuum,

much of the underlying framework provides a helpful basis for deriving

general point process results. We demonstrate that if a given point process

satisfies either a positive or negative ordering condition with respect to its

Palm process, then the computation of bounds on the total variation distance

away from Poisson is greatly simplified, being expressed only in terms of the

first four cumulants of the process. The new definitions required for this also

afford a further benefit, namely, that the treatment of the positive and
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negative cases requires only a sign change, whereas the positive case is more

complicated in Barbour, Holst and Janson. The upper and lower bounds

under both kinds of monotonicity involve the variance to mean ratio of the

number of points minus 1; this quantity is an upper bound, while the lower
Ž .bound involves the fourth cumulant in a multiplying factor Theorem 2.1 . In

cases that are studied here the multiplying factor is bounded over large

ranges of the parameter space for the process, and thus the bounds are tight

up to constants. In particular, in the cases here, ‘‘two moments suffice’’ for
wtight bounds as well as for convergence Arratia, Goldstein and Gordon

Ž .x1989 . While complicated calculations are needed to compute the bounds,

the results are pleasingly simple.

� 4Let PP be the set of probability measures on N s 0, 1, 2, . . . , and for any

random variable X, denote its probability law by LL X. Define the total

variation distance d between two measures P, Q g PP byTV

`
11 d P, Q s P n y Q n s sup P A y Q A ,Ž . Ž . Ž . Ž . Ž . Ž .ÝTV 2

A;Nns0

and the Wasserstein distance d byW

` ` `

< <2 d P, Q s P m y Q m s inf E X y Y ,Ž . Ž . Ž . Ž .Ý Ý ÝW

msn msnns1

Ž .where the infimum is taken over all possible joint distributions of X, Y such

that LL X s P and LL Y s Q. The probability law of a Poisson random variable

with mean m is denoted by Poisson .m

Let XX be the state space for point processes on R
q. As usual, this can be

considered as a space of increasing nonnegative right-continuous functions

with value 0 at 0, or a space of nonnegative integer-valued measures. Both

representations will be convenient and the context should make it clear

which is being used.

� 4 sSuppose N is a point process on the line and that, for s G 0, N is at t G 0

point process with the Palm distribution of N conditional on a point at s. The
s w .defining equations for these processes N are that, for measurable f : 0, ` =

XX ª R
q and p the mean measure of N,

` `
s3 E f s, N N ds s E f s, N p ds .� 4Ž . Ž . Ž . Ž . Ž .H H½ 5

0 0

wŽ . xSee Kallenberg 1983 , page 84 for related theory. It will be convenient to

use the reduced Palm process N s y d which satisfiess

` `
s4 E f s, N y d N ds s E f s, N y d p ds .� 4Ž . Ž . Ž . Ž .Ž .H Hs s½ 5

0 0

Intuitively the Palm distributions of a point process N are the distributions

of N conditional on the presence of a point at a prescribed location. Further-

more, the reduced Palm distribution at s of N is the distribution of N

conditional on the presence of a point at s, with the atom at s removed.
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Ž .Equation 3 is thus a manifestation of the law of total probability, at least in

the case when N is simple.

In the examples considered in this paper the point process is simple and

also stationary. It is therefore convenient to use the formulation of Palm
Ž .probabilities given by Baccelli and Bremaud 1987 . This relies on station-´

Ž .arity of the whole probability space V, FF, P under translations. These are
� 4 Ž .represented by a measurable semigroup of automorphisms u on V, FF, Pt

such that for all t, P(uy1 s P, and furthermore for C a Borel subset of R,t

N u v , C s N v , C q t .Ž . Ž .t

That is, N(u has the points of N translated by t to the left. The Palmt

probability P
s in this context may be defined for any event A g FF by

1 1
s w x5 P A s E I A (u N du ,Ž . Ž . Ž .H uys½ 5m 0

where m s E N . The Palm process N s is then a point process with law given1
s Ž .by the law of N under P , but it will be important in Section 3 that 5 is

used for another process X to construct a process X s whose law is that of X

under P
s.

Ž .We may now state Theorem 3.1 of Barbour and Brown 1992 .

� 4THEOREM 1.1. Let N be a simple point process defined as above andt t G 0

�Ž s . 4let N y d be its reduced Palm process. For some fixed t ) 0, lets t t G 0

l s E N . Thent

1 y eyl
t

sd LL N , Poisson F d LL N , LL N y d p ds ,Ž . Ž .Ž .Ž .HTV t l W t s tl 0

where p is the mean measure of N.

Ž .2. Of PIGS and PILS. The definition 2 of Wasserstein distance sug-

gests a class of point processes for which a straightforward application of the

upper bounds in Theorem 1.1 is possible. We say that a point process has the
Ž . w Ž .xproperty Palm is greater less stochastically PIGS PILS if, for 0 F s F t,

Ž s . Ž .the distribution of N y d is stochastically greater less than that of N .s t t

That is, for all m G 1,

6 P N s y d G m G F P N G m .Ž . Ž . Ž .Ž .Ž .s tt

These properties are quite strong, but the benefits in simplicity of Poisson

approximation are substantial and the examples illustrate that there are

many processes which satisfy these properties. Moreover, these properties are

related to the positive and negative dependence of Barbour, Holst and Janson
Ž .1992 in the discrete case, and there are many examples of that dependence

in Barbour, Holst and Janson.
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� 4THEOREM 2.1. Let N be a point process and, for some fixed t ) 0, lett t G 0

Ž .l s E N . Let k N denote the fourth cumulant of N , which is assumedt 4 t t

finite. If N has the PIGS property, let

k N var N hŽ .4 t t
h s y 1, « s y 1, c s max 0, q 3« ;ž /l l l«

if N has the PILS property, let

k N var N hŽ .4 t t
h s 1 y , « s 1 y , c s max 0, y 3« .ž /l l l«

In either case,

«
yl7 F d LL N , Poisson F 1 y e « .Ž . Ž . Ž .TV t l

11 q 3c

PROOF. Let N have the property PIGS: the proof for PILS only requirest

Ž .sign changes. Now, using the PIGS property 6 , the upper bound in Theorem

1.1 may be simplified, since
`

s sd LL N , LL N y d s P N G m y P N y d G mŽ .Ž . Ž .Ž . Ž .ÝW t s t st t

ms1

`
ss P N y d G m y P N G mŽ .� 4Ž .Ž .Ý s tt

ms1

s E N s y d y l.Ž .s t

Hence,

1 y eylŽ . t
s 28 d LL N , Poisson F E N y d p ds y lŽ . Ž . Ž .Ž .HTV t l s tž /l 0

Ž . Ž . w xand, from 4 , with f s, j s j for s g 0, t ,t

t t
s

E N y d p ds s E N y 1 N dsŽ . Ž . Ž .Ž .H Hs tt ½ 5
0 0

s E N 2 y E N ,� 4t t

so

1 y eylŽ .
d LL N , Poisson F var N y l ,Ž . Ž .TV t l t

l

as required.

To derive the lower bound we follow an argument similar to that of
wŽ . xBarbour, Holst and Janson 1992 , Theorem 3.D , with appropriate changes

for the different context here. Let u ) 0 be fixed and define f : R ª R by
Ž . Ž . Ž Ž .2 .f z s z y l exp y z y l rul . Then by Lemma 3.2.1 of Barbour, Holst

Ž .and Janson 1992 the following holds for all y G x:

y3 y x 3

9 f y q l y f x q l G y y x y .Ž . Ž . Ž .
ul
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wŽ . Ž .xAlso the derivation of Barbour, Holst and Janson 1992 , equation 3.2.7

remains unchanged for continuous time. Thus, for u G e,

E l f N q 1 y N f N� 4Ž . Ž .t t t
10 d LL N , Poisson G .Ž . Ž .Ž .TV t l y3r2 y12l 2 e q u eŽ .

Ž .Now from 4 it follows that

t t
E N f N y l f N q 1 s E f N N ds y E f N q 1 p ds� 4 � 4Ž . Ž . Ž . Ž . Ž . Ž .H Ht t t t t½ 5

0 0

t
ss E f N y d q 1 y f N q 1 p ds .Ž . Ž .� 4Ž .Ž .H s tt

0

Ž s .Let F and F be the distribution functions of N and N y d , respectively,s t s t

w x y1Ž . � Ž . 4and for y g 0, 1 , let F y s inf x: F x ) y . If U has a uniform distribu-
w x y1Ž .tion on 0, 1 , then W s F U has the same distribution as N , and simi-t

y1Ž . Ž s .larly V s F U has the same distribution as N y d . Moreover, by thes s s t

PIGS property, V G W. Hences

t
s

E f N y d q 1 y f N q 1 p dsŽ . Ž .� 4Ž .Ž .H s tt
0

t
s E f V q 1 y f W q 1 p ds� 4Ž . Ž . Ž .H s

0

t
G E V q 1 y l y W q 1 y lŽ . Ž .H s½

0

3 3
V q 1 y l y W q 1 y lŽ . Ž .s

y p dsŽ .5ul

Ž . Ž . Ž s .by 9 . However, by applying 4 to terms involving N y d , the right-hands

side of the last inequality becomes

3 3sN y d q 1 y l y N q 1 y lŽ .Ž .Ž .t s tts
E N y d y N y p dsŽ .Ž .H s tt½ 5ul0

1
3 3� 4s var N y l y E N N y l y lE N q 1 y lŽ .� 4½ 5t t t t

ul

1
4 2

s var N y l y E N y l y 3 var N y lŽ . Ž .� 4½t t t
ul

q3 var N y l var NŽ . 5t t

hrl« q 3 q 3«Ž . .
s l« 1 y ,ž /u
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so

l« 1 y hrl« q 3 q 3« ruŽ .Ž .Ž .
d LL N , Poisson GŽ .TV t l y3r2 y12l 2 e q u eŽ .

« 1 y c q 3 ruŽ .Ž .
G .

y3r2 y14e q 2u eŽ .

Ž .This lower bound achieves its maximum at approximately u s 2c q 6, so by
Ž .choosing u to be this value, it follows from 10 that
« «

d LL N , Poisson G G . IŽ .TV t l y3r2 y1 y1 11 q 3c8e q 24e q 8e c

Those processes for which the PIGS or PILS properties can be established

are thereby shown to achieve the best upper bounds obtainable under the

application of the Stein]Chen method in Theorem 3.1 of Barbour and Brown
Ž .1992 , since Theorem 2.1 evaluates the upper bound expression exactly.

We also note here that if a process may be shown to be PIGS or PILS, then

Theorem 2.1 reduces the computation of the upper and lower bounds away

from Poisson to the computation of the first four cumulants of N for somet

fixed t ) 0. It has to be said that for many point processes this will prove to

be a rather nontrivial problem, and perhaps intractable in some cases. In the

next two sections of the paper we present some applications of Theorem 2.1 to

specific examples and include some techniques for computing cumulants that

may be more generally applied. In the next section we are able to derive an

exact form for the first four cumulants of a Cox process, which appears to be

extendible to general finite state Markov processes, for cumulants of any

order. On the other hand, Section 4 involves some processes for which a direct

computation of the cumulants does not seem feasible, and so some asymptotic

results are derived which demonstrate the behavior of the Poisson approxi-

mation as t ª `.

It is instructive to compare Theorem 2.1 with Theorems 3D and 3E of
Ž .Barbour, Holst and Janson 1992 , whose proofs have much in common with

the above proof. In the case of PILS, the result is of the same form. Indeed, if
Ž � 4.the indicator random variables I , b g 0, 1, . . . , t are negatively relatedb

� 4and for C : 0, 1, . . . , t ,

N C s N ,Ž . Ý b

bgC

w Ž . xthen it is easy to see using 2.1.3 of Barbour, Holst and Janson that N is

PILS.

In the case of PIGS, Theorem 2.1 is simpler and of a similar form to that of

the PILS case, whereas Theorem 3E of Barbour, Holst and Janson has an

extra term in the upper bound. This term appears because the positive

relationship used there implies that

P N s y d G m G P N y d G m ,Ž .Ž . Ž .Ž .s st t

but not necessarily

P N s y d G m G P N G m ,Ž .Ž .Ž .s tt
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which is the PIGS property. On the other hand, it is not necessarily true that

the PIGS property implies the positive relationship of Barbour, Holst and

Janson, being formulated for continuous processes rather than indicators.

� 4 Ž .3. A two state Cox process which is PIGS. Let a , b, a, b ; 0, ` ,
� 4a - b. Let X be a stationary alternating continuous time Markov pro-t t G 0

cess with states a and b and associated rates a and b, respectively. The
� 4process N is defined in the following way: when X is in state j fort t G 0 t

� 4j g a , b , then N evolves as a Poisson process with rate j . Because N can

be defined using X to change time randomly for an independent standard
w Ž .Poisson process, N is an example of a Cox process see Snyder 1977 and

Ž .xDaley and Vere-Jones 1988 . Throughout this section, let m s E N andw0, 1x

assume that l, « , c and h are defined as in Theorem 2.1.

LEMMA 3.1. For t ) 0, the random variable N has first, second andt

fourth cumulants given by

ba q a b tŽ .
k s l s mt s ,1

a q bŽ .

2d exp y a q b t y 1Ž .Ž .Ž .
k s mt q t q ,2 ½ 5a q b a q bŽ . Ž .

2d exp y a q b t y 1Ž .Ž .Ž .
k s mt q n t q4 1 ½ 5½a q b a q bŽ . Ž .

qn t exp y a q b t y 1 q n t 2 exp y a q b tŽ . Ž .Ž . Ž .Ž .2 3

2
qn exp y a q b t y 1 ,Ž .Ž .Ž .4 5

where

2
ab b y aŽ .

d s ,
2

a q bŽ .
22 236 b y a b y a 36 a y 3ab q b b y aŽ . Ž . Ž . Ž .

n s 7 q q ,1 2 4
a q b a q bŽ . Ž .

22 224 a y 3ab q b b y a 18 b y a b y aŽ . Ž . Ž . Ž .
n s q ,2 4 2

a q b a q bŽ . Ž .
2 2

6 b y a b y aŽ . Ž .
n s ,3 3

a q bŽ .

6d
n s y .4 3

a q bŽ .
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Ž .PROOF Sketch . We find an expression for the moment generating func-

tion of N by conditioning on the state of N at time t, that is,t t

w x w x11 E exp u N s E exp u N I X s a q E exp u N I X s b .� 4 � 4Ž . Ž . Ž . Ž .t t t t t

Ž . ŽLet FF s s N , X , z F t . Then the conditional intensity of N which wet z z

. w xdenote by l relative to FF is X . For the process I X s a we can alsos y s

define a conditional intensity f vias

w x � 4E Y d I X s a s E Y f dsŽ .H Hs s s s½ 5
w xfor bounded previsible Y. Thus the conditional intensity is f s bI X s bs sy

w xy a I X s a . Furthermore, D N D X s 0 a.e. Hence,sy s s

w xE exp u N I X s a y P X s a� 4Ž . Ž .t t 0

t
w xs E exp u N I X s a exp u y 1 dNŽ . Ž .Ž .H sy sy s½ 5

0

t
w xq E exp u N d I X s aŽ . Ž .H sy s½ 5

0

t
w xs E exp u N I X s a l exp u y 1 ds� 4Ž . Ž .Ž .H s s s

0

t
w x w xq E exp u N bI X s b y aI X s a ds� 4Ž . Ž .H s s s

0

t
w xs E exp u N I X s a exp u y 1 a y a ds� 4Ž . Ž .Ž .Ž .H s s

0

t
w xq E exp u N I X s b b ds,� 4Ž .H s s

0

w Ž .where the first equality follows from integration by parts Bremaud 1981 ,´
xAppendix A.4.2 and the second from the previsibility of the argument and

ŽFubini’s theorem noting that N is bounded above by a Poisson random
� 4.variable with mean sup a , b .

� Ž . w x4An analogous expression for E exp u N I X s b may be derived in at t

Ž . � Ž . w x4 � 4similar fashion. Then, letting x t s E exp u N I N s j for j g a , b ,j t t

X ux t e y 1 a y a b x tŽ . Ž . Ž .a a
12 s .Ž . X ux t a e y 1 b y b x tŽ . Ž . Ž .b b

The solution of this equation is then

x tŽ .a
s u exp z t q u exp z t ,Ž . Ž .1 1 2 2x tŽ .b

Ž . Ž .where u , z is the ith eigenvector]eigenvalue pair of the matrix in 12 andi i

u , u satisfy the extra constraint that1 2

br a q bŽ .
u q u s .1 2 ar a q bŽ .
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Assume that z ) z and let f be the sum of the terms in the ith eigenvec-1 2 i

Ž .tor. Then by 11 ,

E exp u N s exp z t f q f exp y z y z t ,� 4Ž . Ž . Ž .Ž .Ž .t 1 1 2 1 2

so the cumulant generating function is

13 log E exp u N s z t q log f q f exp y z y z t .� 4Ž . Ž . Ž .Ž .Ž .t 1 1 2 1 2

Note that both u and z are functions of u . The cumulants are thereforei i

obtained by calculating the eigenvalues and eigenvectors and differentiating
Ž .13 with respect to u and evaluating the resulting expression at u s 0.

Details are available from the authors on request. I

For any simple point process driven by a finite state Markov process an
Ž .equation similar to 11 may be written down. If the appropriate conditional

Ž .intensities can be derived, one would expect a matrix equation like 12 and,
Ž . Ž .consequently, a cumulant generating function CGF of the form of 13 . Note

also that the form of this CGF implies that, as t ª `, any such point process

will have its cumulants dominated by a linear term involving the derivatives

of the largest eigenvalue of the matrix obtained.

THEOREM 3.1. The process N has the PIGS property.t

PROOF. The theorem is proved by specifying a coupling of N with itst

Ž s .reduced Palm process N y d , for some 0 F s F t, that demonstrates thes t

necessary monotonicity requirements. Let P
s be the Palm probability condi-

tional on a point occurring at time s. Furthermore let X s be a process which

has the law of X under P
s.

s wTo begin with we couple X with X . Papangelou’s formula Bremaud,´
Ž .x sŽ . sŽ .Kannurpatti and Mazumdar 1992 implies that P X s a s P X s asq sy

Ž .s a br a b q ba , and it follows from standard Markov chain theory that
Ž . Ž . w xP X s a s br a q b . Let U be a uniform 0, 1 random variable. Then thes

values of X and X s are assigned according to the position of U in thes s

w x Ž .partition of 0, 1 given in Figure 1. Note that the positions of br a q b and
Ž .a br a b q ba are as shown in the diagram. So, for example, if a ) b, then

Ž . s Ž .with probability br a q b , X s X s a , with probability bar a b q ba ,s s

FIG. 1.
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s Ž . Ž . sX s X s b and with probability a br a b q ba y br a q b , X s b, X ss s s s

a . Clearly this coupling preserves the correct marginal probabilities for N
Ž s .and N y d at time s.s

If we condition on the event X s X s we can take X s X s for all t and Ns s t t t

Ž s .and N y d will be stochastically indistinguishable. In this instance,s t

Ž s .therefore, we define N y d s N in both cases of Figure 1.s t t
s Ž .Now assume that a ) b. If X / X , then the coupling of Figure 1 as s

ensures that X s b and X s s a . Let T , i g N, be the time of the iths s i

� s4 stransition of X after time s. We define the analogous times T for X inj jg N

the following way.

Ž . sLet A ; exp a be independent of X. If A ) T , then let T s T for1 i iq1

i G 1. If A F T , then let T s s A and T s s T for i G 2. Note that X and1 1 i iy1

X s are coupled after the first transition time T s T n T s, and consequently1 1

Ž s . Ž s .so are N and N y d . That is, ; u ) T, N s N y d .s wT , u. s wT , u.

w .Assume that the points of N in the interval s, T are determined by a
Ž . � 4 Ž s .sequence of exp b random variables, B . Then the points of N y d ini s

�Ž . 4the same interval may be defined by the sequence bra B . Since a ) b, iti

Ž s .follows that N y d G N ; s F u F T.s w s, u. w s, u.

For u F s we need only to notice that N is reversible, and hence the abovet

coupling may be used in reversed time. Hence, if a ) b, we have that
Ž s .N y d G N for all 0 F s F t.s t t

The coupling is essentially the same in the case b G a , with X s s b,s

w xX s a the only nontrivial outcome from the initial uniform 0, 1 realization;s

Ž s .the rest of the argument follows mutatis mutandis. Intuitively, N y d wills

Ž s .still dominate N since the greater of b and a is again the state of N y ds

at time s when a mismatch occurs. I

COROLLARY 3.1. Let d and n be defined as in Lemma 3.1. Then for N wei t

have

2d exp y a q b t y 1Ž .Ž .
« s g t , where g t s t q .Ž . Ž . ½ 5mt a q b a q bŽ . Ž .

Let

3ey3n 3c a q b 18dŽ .3 1
< < < <c s n q n q , c s 11 q q ,1 1 2 2

a q b 2m m a q bŽ . Ž .

7n 33m 81d3
< < < <c s n q 7 n q , c s q 3c q .3 1 2 4 3 2a q b a q bŽ . Ž . a q bŽ .

Ž .Then, if t ) 3r a q b ,

«
ym t14 F d LL N , Poisson F 1 y e «Ž . Ž . Ž .TV t l

c2

Ž . Ž .2 Ž .2and, in particular, if t G 3c rm q 1r a q b and b y a F a q b =1

Ž . Ž .ba q a b r 18ab ,

«
15 F d LL N , Poisson F « .Ž . Ž .TV t l

13
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Ž .Also for t F 3r a q b ,

2
2 216 d t F d LL N , Poisson F d t .Ž . Ž .TV t l

7c4

Ž . Ž .NOTE. Equations 14 ] 16 show that the upper and lower bounds are

tight up to a constant order both for small and large t. Note, however, that
Ž .the bounds are of a different character in the two different cases: those in 14

Ž .and 15 being essentially constant in t, while those for small t are quadratic

in t.

PROOF OF COROLLARY 3.1. The value of « follows directly from the defini-

tions of Theorem 2.1 and the results of Lemma 3.1. Furthermore,

h 1 n n exp y a q b t y 1Ž .Ž .Ž .1 2
s q½l« m t g tŽ .

17Ž .
2

n t exp y a q b t n exp y a q b t y 1Ž . Ž .Ž . Ž .Ž .3 4
q q .5g t tg tŽ . Ž .

Clearly these functions may be directly applied to the results of Theorem 2.1

and the most accurate bounds allowed by that theorem obtained. However, a
Ž .careful analysis of 17 provides the more appealing and easily applied

bounds given above.

Ž . Ž . Ž .In the first instance, let t ) 3r a q b . Note that t y 1r a q b - g t F t.
Ž .It follows from 17 and the fact that n - 0 that4

h 1
< < < <F n q n q n t exp y a q b t� 4Ž .Ž .1 2 3

l« m g tŽ .

1 3ey3n c3 1
< < < <F n q n q s1 2½ 5m t y 1r a q b a q b m t y 1r a q bŽ . Ž . Ž .Ž . Ž .

and so

y1
3c «1

d LL N , Poisson G « 11 q q 9« G .Ž .TV t l ½ 5m t y 1r a q b cŽ .Ž . 2

Ž .The lower bound in 15 follows from noticing that under the conditions there,
� Ž Ž ..4y1 Ž Ž ..3c m t y 1r a q b F 1 and 9« F 18dr m a q b F 1.1

Ž . Ž .Now assume 0 - t F 3r a q b . By expanding the exponential term of g t

we have that

2 32 2 3a q b t a q b t a q b t a q b tŽ . Ž . Ž . Ž .
1 y q y½ 52 3 12 60

18Ž .
a q b t 2Ž .

F g t FŽ .
2
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Since the bracketed function in the lower bound is decreasing, it achieves its
Ž .minimum at t s 3r a q b , so

3 a q b t 2 a q b t 2Ž . Ž .
19 g t G G .Ž . Ž .

20 7

Thus

< < < <h 1 n 7 n 1 y exp y a q b t 7n exp y a q b tŽ . Ž .Ž . Ž .Ž .1 2 3
F q q

2½ 5l« m t a q b ta q b t Ž .Ž .

1 7n 3
< < < <F n q 7 n q1 2½ 5mt a q b

and again applying Theorem 2.1,

mt«
d LL N , Poisson GŽ .TV t l

11mt q 3c q 9«mt3

2 d g tŽ .
s

a q b 11mt q 3c q 9«mtŽ . Ž .3

2 d g t 2Ž .
2G G d t ,

a q b c 7cŽ . 4 4

Ž .where the last equality follows from 19 .

The upper bound in this case comes directly from the expansion of the
Ž .exponential term in the upper bound of 7 :

2 d g t 2 d g tŽ . Ž .
ym t 2d LL N , Poisson F 1 y e « F mt s F d t ,Ž . Ž .TV t l

a q b mt a q bŽ .

Ž .where the last inequality follows from 18 . I

4. A monotone coupling for NBU and NWU renewal processes.

The results of Theorem 2.1 may also be applied to two classes of renewal

processes that are characterized by a weak ordering condition on the renewal

distribution.

Let N be a renewal process with interpoint distribution F concentrated on
Ž .0, ` . Let s G 0 be fixed and let D and B be the forward and backwards s

recurrence times of N at s. That is,

D s inf y : N s, s q y ) 0 , B s inf x : N s y x , s ) 0 .� 4 � 4Ž Žs s

� 4Now D : s G 0 is a Markov process such that at time s, D only depends ons s

the past of the renewal process through B . Thus, if Y is some F-randoms

variable,

< <F y s P D F y B s x s P Y F y Y ) xŽ . Ž .Ž .x def s s

F x q y y F xŽ . Ž .
s .

1 y F xŽ .
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For any distribution function H, we define its inverse Hy1 by

y1 w xH y s inf x : H x G y , y g 0, 1 .� 4Ž . Ž .

Ž s .We may now define a coupling of N with its reduced Palm process N y d .s

w x � 4Let U , U be independent U 0, 1 random variables and let Y be a1 2 i ig N
y1Ž .sequence of independent F random variables. Let X s F U , B s1 1 s

y1Ž . y1Ž . y1Ž . � 4G U , X s F U and D s F U . Let T be the renewal times1 2 2 s B 2 i ig Ns

of N with respect to s. That is, T is the time of the ith renewal of N afteri

time s and T is the time of the ith renewal of N counting back from s. Letyi

� s4 Ž s .T be the analogous times for N y d .i ig N s

Let T s s q D , T s s s q X , T s s y B , T s s s y X and, for i ) 1,1 s 1 2 y1 s y1 1

define the times by T s T q Y , T s s T s q Y , T s T y Yi iy1 iy1 i iy1 iy1 yi yiq1 yiq1
s s Ž s .and T s T y Y . Note that both N and N y d have the correctyi yiq1 yiq1 s

Ž .marginal distributions under this coupling and that to establish say the

PILS property for N it is certainly sufficient to show that for all i G 1,t

T n t F T s n t and T k 0 G T s k 0.i i yi yi

Ž .A distribution F is said to be new better than used NBU if

F x q t y F tŽ . Ž .
G F x for all x G 0, t ) 0.Ž .

1 y F tŽ .

Ž .The class new worse than used NWU is defined by the obvious reversal of

inequality. These distributions belong to the so-called aging and antiaging
Ž .hierarchies of distributions from the increasing failure rate IFR and in-

Ž .creasing failure rate average IFRA classes, and NWU contains the decreas-
Ž . Ž .ing failure rate DFR and decreasing failure rate average DFRA classes.

Ž . Ž .See Barlow and Proschan 1975 and Stoyan and Daley 1983 for definitions

and examples.

� 4THEOREM 4.1. Let N be a stationary renewal process with renewalt t G 0

Ž . Ž .distribution F. If F is NBU NWU , then N has the PILS PIGS propertyt

and
«

yt r mF d LL N , Poisson F 1 y e « ,Ž .Ž .TV t tr m
11 q 3c

`Ž Ž ..where m s H 1 y F x dx and « and c are defined as in Theorem 2.1 with0

l s trm.

PROOF. We shall establish PILS for NBU only and note that the PIGS
Ž .case NWU follows from the obvious sign changes.

wIf N is stationary, then standard renewal theory see Daley and Vere-Jones
Ž .x1988 gives the marginal distribution of both D and B for N ass s

1 t
G t s 1 y F x dx .Ž . Ž .Ž .H

m 0

As stated above, N will be PILS, if for all i G 1, T n t F T s n t andt i i

Tyi k 0 G T s k 0. However, from the coupling, this reduces to demonstrat-yi
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Ž .ing that B F X and D F X or, equivalently, that for all x, y G 0, G x Gs 1 s 2

Ž . Ž . Ž .F x and F x G F x .y

The second of these inequalities is exactly the definition of F NBU.

The first follows by noticing that the NBU property may be restated as
Ž Ž .. Ž Ž ..Ž Ž ..1 y F x q t F 1 y F x 1 y F t . Thus,

` `1 1
1 y G x s 1 y F t dt s 1 y F t q x dt F 1 y F x .Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .H H

m mx 0

The bounds are then a direct application of Theorem 2.1. I

Clearly the usefulness of this corollary depends on our ability to compute

the cumulants of the specific renewal process under review. In particular, the

behavior of c is of interest since if c can be bounded above by a constant,

then the correct order of magnitude of the total variation distance is shown to

be « for all t.

For a specific renewal distribution F, an exact computation of cumulants

may be possible; however, in cases where this is not possible, then asymptotic
Ž . Ž .bounds as t ª ` may still be obtained. In fact, Cox and Miller 1965

demonstrated that the first four cumulants of a general renewal process Nt

are asymptotically

t k 3k 2 k k 15k 3 10k k2 2 3 4 2 2 3
, t , t y , t q y ,

3 5 4 5 7 6ž / ž /k k k k k k k1 1 1 1 1 1 1

where k represents the ith cumulant of the distribution F.i

The upper and lower bounds of Theorem 4.1 may now be evaluated directly

in terms of the cumulants of the renewal distribution. Let d be defined as

k rk2 y 1 in the PIGS case and 1 y k rk2 in the PILS case. Then2 1 2 1

20 lim sup d LL N , Poisson F d .Ž . Ž .TV t tr m
tª`

Furthermore,

d
lim inf d LL N , Poisson G ,Ž .TV t tr m

9d q 11tª`
21Ž .

d
lim inf d LL N , Poisson GŽ .TV t tr m

11tª`

for the PIGS and PILS cases, respectively.

From this argument we see that if, for a given PIGS or PILS process, it can

be shown that as t ª ` the cumulants of the process are of the same order of
w Ž .xmagnitude in t or at least that hrl« is o 1 , then c ª 3« in the PIGS case

and c ª 0 in the PILS case. Hence the upper and lower bounds are of the

same order of magnitude for sufficiently small « and may be written in the
Ž . Ž .form of 20 and 21 .
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The PIGS property for processes with DFR or increasing mean residual life
Ž .IMRL interarrival distributions may be immediately inferred from an ele-

w Ž .xgant coupling due to Brown Theorem 1 of Brown 1980 in which the Palm

process and stationary process are shown to differ by only a finite number of

points over the whole real line. The coupling used for Theorem 4.1 does not

have Brown’s strong pointwise matching property and thus admits a wider

class of distributions.

5. Conclusions and comments. We have given general conditions un-

der which both upper and lower bounds of the same order of magnitude on

the total variation distance of a point process away from Poisson may be

immediately written down. However, as is clear from the examples of Sec-

tions 3 and 4, these conditions are not always trivial to verify for a given
Ž .process. The definition of PIGS and PILS given in 6 seems to require quite

fine knowledge of the probability mass function of both the process and its

Palm process, which is not at all easy to come by in many instances. Thus one

is left to coupling arguments which may prove rather involved for complex

processes, although we reiterate that the bounds obtained are dependent only

on the existence of a satisfactory coupling and not on the specific coupling

chosen.

Of course, the results are particularly interesting when both upper and

lower bounds can be shown to be of the same order of magnitude, at least

asymptotically in t, as in the examples here.

Note that the point processes in these examples are stationary, whereas

neither Theorem 1.1 nor 2.1 requires stationarity. If a point process is

assumed to be stationary, then one may use the Baccelli and Bremaud´
formulation of Palm probability described in the Introduction to compute the

necessary probabilities. In the case of the Cox process this allows a suitable

coupling of X with X s from which the PIGS property follows. On the other

hand, the stationarity in Theorem 4.1 serves only to link the result with the

well known NBU and NWU renewal processes. The PIGS and PILS proper-

ties for nonstationary renewal processes should follow directly from a similar
Ž .and, one would imagine, stronger condition on the residual life and age

distributions of a nonstationary renewal process.

It is not known at this stage just how extensive the class of PIGS and PILS

processes are, although the NBU and NWU renewal processes examined in
Ž .Section 4 are a large and well known class. Barbour and Brown 1996 have

shown that the process counting transitions between queues in a Jackson

network is also PIGS, and work is currently in progress to establish lower

bounds complementing the upper bounds given.
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