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We discuss the problem of pricing contingent claims, such as Euro-
pean call options, based on the fundamental principle of “absence of ar-
bitrage” and in the presence of constraints on portfolio choice, for exam-
ple, incomplete markets and markets with short-selling constraints. Under
such constraints, we show that there exists an arbitrage-free interval which
contains the celebrated Black–Scholes price (corresponding to the uncon-
strained case); no price in the interior of this interval permits arbitrage, but
every price outside the interval does. In the case of convex constraints, the
endpoints of this interval are characterized in terms of auxiliary stochastic
control problems, in the manner of Cvitanić and Karatzas. These charac-
terizations lead to explicit computations, or bounds, in several interesting
cases. Furthermore, a unique fair price p̂ is selected inside this interval,
based on utility maximization and “marginal rate of substitution” princi-
ples. Again, characterizations are provided for p̂, and these lead to very
explicit computations. All these results are also extended to treat the prob-
lem of pricing contingent claims in the presence of a higher interest rate
for borrowing. In the special case of a European call option in a market
with constant coefficients, the endpoints of the arbitrage-free interval are
the Black–Scholes prices corresponding to the two different interest rates,
and the fair price coincides with that of Barron and Jensen.

1. Introduction and summary. The famous Black and Scholes (1973)
formula provides the unique price of a European contingent claim in an ideal,
complete and unconstrained market, as laid out in Sections 2 and 3 of the
present paper, based on the fundamental principle of “absence of arbitrage
opportunities.” In other words, this price is the unique one for which there are
no arbitrage opportunities by taking either a short or a long position in the
claim and investing wisely in the market. This price coincides with the mini-
mal initial capital, starting with which one can exactly duplicate the claim at
the terminal time, and also with the expectation of the claim’s discounted value
under the unique, “risk-neutral” equivalent probability measure [cf. Merton
(1973), Cox and Ross (1976), Cox and Rubinstein (1984), Harrison and Kreps
(1979), Harrison and Pliska (1981) and Karatzas (1989); see also Section 4 of
this paper for a brief survey].

Received December 1994; revised November 1995.
1Research supported by NSF Grant DMS-93-19816.
AMS 1991 subject classifications. Primary 90A09, 93E20, 60H30; secondary 60G44, 90A10,

90A16, 49N15.
Key words and phrases. Pricing of contingent claims, constrained portfolios, incomplete

markets, two different interest rates, Black–Scholes formula, utility maximization, stochastic
control, martingale representations, equivalent martingale measures, minimization of relative
entropy.

321



322 I. KARATZAS AND S. G. KOU

However, in the presence of constraints on portfolio choice (e.g., constraints
on borrowing, on short-selling of stocks, even on accessing certain stocks at all,
as in the case of “incomplete markets”), there ceases to exist a unique price
for a contingent claim based solely on the principle of absence of arbitrage.
Instead, there appears an “arbitrage-free” interval �hlow; hup� which contains
the Black–Scholes price u0; see the following figure:

-r r r r
0 hlow u0 hup

Here, hup represents the least price the seller can accept without risk, and
hlow the greatest price the buyer can afford to pay without risk. This interval
has the following properties:

1. Every price level outside the interval leads to an arbitrage opportunity.
2. There are no arbitrage opportunities for price levels in the interior of the

interval.

These facts are demonstrated, to our knowledge for the first time, in Sec-
tion 5 of this paper. Furthermore, if the constraints on portfolio choice are con-
vex, it turns out that the endpoints of the arbitrage-free interval can be char-
acterized as the values of certain suitable stochastic control problems, as in
Cvitanić and Karatzas (1993), or El Karoui and Quenez (1995) for incomplete
markets; see Section 6 and, in particular, Theorem 6.1. Roughly speaking, the
upper (resp., lower) endpoint of the interval is equal to the supremum (resp.,
infimum) of the Black–Scholes prices of the claim over a family of auxiliary
markets, which are slightly more complicated in structure but unconstrained.

There remains the question of how to choose a unique price for the claim in
the presence of constraints on portfolio choice. There seems to be no definitive
answer to this question, although several approaches have been suggested—
most of them in the context of incomplete markets [e.g., Föllmer and Sonder-
mann (1986), Foldes (1990), Föllmer and Schweizer (1991), Duffie and Skiadas
(1991), Davis (1994), etc.] and some in different but related contexts [different
interest rates for borrowing and saving, Barron and Jensen (1990); transac-
tion costs, Hodges and Neuberger (1989)]. We adopt in Section 7 the approach
of Davis (1994), which is based on utility maximization and on the principle
of “zero marginal rate of substitution.”

These considerations lead to the notion of a fair price p̂ (Definition 7.3),
which, under certain mild conditions (cf. Assumptions 7.1 and 7.2), is shown
to lie within the arbitrage-free interval (Theorem 7.1). Counterexamples for
which the fair price lies outside the arbitrage-free interval are also given in
Section 8.3. In the special case of convex constraints, we show that the fair
price admits a Black–Scholes representation under a certain “minimal” or
“least-favorable” equivalent probability measure (Theorem 7.4). In the deriva-
tion of this latter result, we draw on the powerful results of Cvitanić and
Karatzas (1992) for utility maximization under convex portfolio constraints [cf.
Karatzas, Lehoczky, Shreve and Xu (1991) for the special case of incomplete
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markets]. The representation of Theorem 7.4 leads to explicit computations
of the fair price p̂ (Examples 7.1–7.4) for rather general portfolio constraints,
including incomplete markets, short-selling or borrowing constraints, and so
on. In particular, it is shown that p̂ is independent of both initial wealth
and utility function in a market with deterministic coefficients and in the
presence of cone constraints on portfolios and, in this case, the corresponding
equivalent martingale measure is also obtained by means of relative entropy
minimization.

Section 8 offers a host of explicit computations for hlow, hup and p̂ in the spe-
cial but important case of a European call option, for a market with constant
coefficients and under various kinds of constraints; these computations are
tabulated in Section 10, and constitute one of the main results of this paper.
Explicit computations are also possible for a path-dependent (or “look-back”)
option; see Example 7.4.

A most interesting result, from a practical point of view, is that the same
ideas and techniques can also treat the problem of pricing contingent claims
in a market with higher interest rate for borrowing than for saving. More pre-
cisely, it is shown in Section 9 that in this case there also exists an arbitrage-
free interval and a fair price p̂ which always lies within that interval. In the
special case of European call option in a market with constant coefficients,
the endpoints of the arbitrage-free interval are the two Black–Scholes prices
corresponding to the two different interest rates, and the fair price p̂ coincides
with the so-called minimax price in Barron and Jensen (1990) if a power-type
utility function is employed.

2. The financial market model. In this paper we shall deal exclusively
with a financial market M in which d+1 assets (or “securities”) can be traded
continuously. One of them is a nonrisky asset, called the bond (also frequently
called “savings account”), with price P0�t� given by

dP0�t� = P0�t�r�t�dt; P0�0� = 1:(2.1)

The remaining d assets are risky; we shall refer to them as stocks and as-
sume that the price Pi�t� per share of the ith stock is governed by the linear
stochastic differential equation

dPi�t� = Pi�t�
[
bi�t�dt+

d∑
j=1

σij�t�dWj�t�
]
;

Pi�0� = pi; i = 1;2; : : : ; d:

(2.2)

In this model, W�t� = �W1�t�; : : : ;Wd�t��∗ is a standard Brownian motion
in Rd, whose components represent the external, independent sources of un-
certainty in the market M ; with this interpretation, the volatility coefficient
σij�·� in (2.2) models the instantaneous intensity with which the jth source of
uncertainty influences the price of the ith stock.
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As is standard in the literature, M is assumed to be an ideal market; in
other words, we have infinitely divisible assets, no constraints on consumption
and no transaction costs or taxes. We shall allow, however, for constraints on
portfolio choice, such as limitations on borrowing (from the savings account)
or on short-selling (of stocks), and so on; see the examples in Section 6.

The probabilistic setting will be as follows: the Brownian motion W will be
defined on a complete probability space ��;F ;P�, and we shall denote by �Ft�
the P-augmentation of the natural filtration F W

t = σ�W�s�y 0 ≤ s ≤ t�. The
coefficients of M , that is, the interest rate process r�t�, the appreciation rate
vector process b�t� = �b1�t�; : : : ; bd�t��∗ of the stocks and the volatility matrix-
valued process σ�t� = �σij�t��1≤i; j≤d, will all be assumed to be progressively
measurable with respect to �Ft� and bounded uniformly in �t;ω� ∈ �0;T�×�.
We shall also impose that the following strong nondegeneracy condition on
the matrix a�t� 4= σ�t�σ∗�t�,

ξ∗a�t�ξ ≥ ε � ξ �2 ∀ �t; ξ� ∈ �0;T� ×Rd;(2.3)

holds almost surely for a given real constant ε > 0. All processes encoun-
tered throughout the paper will be defined on the fixed, finite horizon �0;T�,
and adapted to the filtration �Ft�. We shall introduce also the “relative risk”
process

θ�t� 4= σ−1�t��b�t� − r�t�1�;(2.4)

where 1 = �1;1; : : : ;1�∗. The exponential martingale

Z0�t�
4= exp

{
−
∫ t

0
θ∗�s�dW�s� − 1

2

∫ t
0
� θ�s� �2 ds

}
;(2.5)

the discount process

γ0�t�
4= exp

{
−
∫ t

0
r�s�ds

}
(2.6)

and the Brownian motion with drift

W0�t�
4=W�t� +

∫ t
0
θ�s�ds; 0 ≤ t ≤ T(2.7)

will be employed quite frequently.

Remark 2.1. It is a straightforward consequence of the strong nondegen-
eracy condition (2.3) that the matrices σ�t�, σ∗�t� are invertible and that the
norms of �σ�t��−1 and �σ∗�t��−1 are bounded above and below by δ and 1/δ,
respectively, for some δ ∈ �1;∞�; compare with Karatzas and Shreve [(1991),
page 372]. The boundedness of b�·�, r�·� and �σ�·��−1 implies that of θ�·�; there-
fore, the process Z0�·� of (2.5) is indeed a martingale and not just a local
martingale.
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3. Portfolio, consumption and wealth processes. Consider now a
small economic agent, whose actions cannot affect market prices and who
can decide, at any time t ∈ �0;T�, (1) how many shares of the bond φ0�t�
and how many shares of stocks �φ1�t�; φ2�t�; : : : ; φd�t��∗ to hold and (2) what
amount of money C�t+h�−C�t� ≥ 0 to withdraw for consumption during the
interval �t; t + h�, h > 0. Of course, all these decisions can only be based on
the current information Ft, without anticipation of the future. More precisely,
we have the following definitions.

Definition 3.1. A trading strategy in the market M is a progressively
measurable vector process �φ0�t�; φ1�t�; : : : ; φd�t�� such that

∫ T
0 φ

2
i �t�dt <∞,

0 ≤ i ≤ d, almost surely.

The processes φ0 and φi represent the number of shares of the bond and
the ith stock, respectively, 1 ≤ i ≤ d, which are held or shorted at any given
time t. A short position in the bond (resp., the ith stock), that is, φ0 < 0 (resp.,
φi < 0), should be thought of as a loan.

Definition 3.2. A cumulative consumption process is a nonnegative pro-
gressively measurable process �C�t�, 0 ≤ t ≤ T� with paths on �0;T� which
are increasing, right continuous with left limits (RCLL) and with C�0� = 0,
C�T� <∞ a.s.

A basic assumption in the market M is that trading and consumption
strategies should satisfy the so-called self-financing condition

d∑
i=0

φi�t�Pi�t� =
d∑
i=0

φi�0�Pi�0�

+
d∑
i=0

∫ t
0
φi�u�dPi�u� −C�t�; 0 ≤ t ≤ T;

(3.1)

almost surely. The meaning of the equation is that, starting with an initial
amount x = φ0�0� +

∑d
i=1φi�0�pi of wealth, all changes in wealth are due to

capital gains (appreciation of stocks and interest from the bond) minus the
amount consumed.

For both economic and mathematical considerations, it is useful to introduce
wealth and portfolio processes.

Definition 3.3. A portfolio process is a progressively measurable process
π�·� = �π1�·�; : : : ; πd�·��: �0;T� ×�→Rd.

Definition 3.4. For a given initial capital x, a portfolio process π�·� as in
Definition 3.3 and a cumulative consumption process C�·� as in Definition 3.1,
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consider the wealth equation

dX�t� =X�t�
[
1−

d∑
i=1

πi�t�
]
dP0�t�
P0�t�

+
d∑
i=1

X�t�πi�t�
dPi�t�
Pi�t�

− dC�t�

=X�t�
[
1−

d∑
i=1

πi�t�
]
r�t�dt

+
d∑
i=1

X�t�πi�t�
[
bi�t�dt+

d∑
j=1

σij�t�dWj�t�
]
− dC�t�;

=X�t�r�t�dt+X�t�π∗�t�σ�t�dW0�t� − dC�t�; X�0� = x;

(3.2)

or equivalently

γ0�t�X�t� = x−
∫ t

0
γ0�s�dC�s�

+
∫ t

0
γ0�s�X�s�π∗�s�σ�s�dW0�s�; 0 ≤ t ≤ T;

(3.3)

in the notation of (2.1), (2.2) and (2.5)–(2.7). If this equation has a unique
solution X�·� ≡Xx;π;C�·�, this is then called the wealth process corresponding
to the triple �x;π;C�.

The interpretation here is that the components of π�·� represent the pro-
portions of the wealth X�·� which are invested in the respective stocks i =
1; : : : ; d.

Remark 3.1. In the setup of Definition 3.4, notice that for the stochastic
integral to be well defined we must have

∫ T
0 X

2�t���π�t���2 dt < ∞, a.s. Fur-
thermore, if we define

φi�t� =
{
X�t�πi�t�/Pi�t�; i = 1; : : : ; d;

X�t�
(
1−∑d

j=1 πj�t�
)
/P0�t�; i = 0;

for 0 ≤ t ≤ T;

then φ�·� = �φ0�·�; φ1�·�; : : : ; φd�·��∗ constitutes a trading strategy in the sense
of Definition 3.1 and we have

X�t� =
d∑
i=0

φi�t�Pi�t�; 0 ≤ t ≤ T;(3.4)

as well as the self-financing condition (3.1), which follows then from the wealth
equation (3.2). Notice that the wealth process X�·� can clearly take both pos-
itive and negative values.
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Equation (3.3) leads us to consider the process

N0�t�
4= γ0�t�X�t� +

∫ t
0
γ0�s�dC�s�

= x+
∫ t

0
γ0�s�X�s�π∗�s�σ�s�dW0�s�; 0 ≤ t ≤ T;

(3.5)

which is seen to be a continuous local martingale under the so-called risk-
neutral probability measure (or “equivalent martingale measure”)

P0�A� 4= E�Z0�T�1A�; A ∈ FT;(3.6)

in the notation of (2.5).

Definition 3.5. A portfolio–consumption process pair �π;C� is called ad-
missible for the initial capital x ∈ R, and we write �π;C� ∈ A �x�, if the
following statements hold:

(i) The pair π�·�;C�·� obeys the conditions of Definitions 3.2–3.4.
(ii) The solution Xx;π;C�·� ≡X�·� of (3.2) satisfies, almost surely,

Xx;π;C�t� ≥ −3 ∀ 0 ≤ t ≤ T:(3.7)

Here, 3 is a nonnegative random variable with E0�3p� <∞ for some p > 1.

The admissibility requirements in Definition 3.5 are imposed in order to
prevent pathologies like doubling strategies [cf. Harrison and Pliska (1981)
and Karatzas and Shreve (1997)]; such strategies achieve arbitrarily large
levels of wealth at t = T, but require X�·� to be unbounded from below on
�0;T�.

If �π;C� ∈ A �x�, the P0-local martingale N0�·� of (3.5) is also bounded
uniformly from below and is thus a P0-supermartingale. Consequently,

E0
[
γ0�T�Xx;π;C�T� +

∫ T
0
γ0�t�dC�t�

]
≤ x ∀ �π;C� ∈ A �x�:(3.8)

Here E0 denotes the expectation operator corresponding to the probability
measure P0 of (3.6); under this measure the process W0�·� of (2.7) is standard
Brownian motion, by the Girsanov theorem [e.g., Karatzas and Shreve (1991),
Section 3.5], and the discounted stock processes γ0�·�Pi�·� are martingales,
since

dPi�t� = Pi�t�
[
r�t�dt+

d∑
j=1

σij�t�dW
�j�
0 �t�

]
; Pi�0� = pi; i = 1; : : : ; d;(3.9)

from (2.2) and (2.7), where W�j�0 is the jth component of W0.

Remark 3.2. For any x ∈ R and �π;C� ∈ A �x�, let F =Xx;π;C�T�. Then
for any a 6= 0, we have Xax;π; aC�·� = a ·Xx;π;C�·� from (3.2). In particular:

(i) If a > 0, �π;aC� ∈ A �ax� and Xax;π; aC�T� = aF a.s.
(ii) If a = −1 and C�·� ≡ 0, X−x;π;0�T� = −F.
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4. Contingent claims and arbitrage in the unconstrained market.
The dynamics of the market M become more interesting once we introduce
contingent claims such as options. Suppose, in particular, that at time t = 0
we sign a contract which gives us the right (but not the obligation, whence the
term option) to buy, at the specified time T (“expiration date”), one share of the
stock i = 1 at a specified price q (“exercise price”). At expiration t = T, if the
priceP1�T;ω� of the share is below the exercise price, the contract is worthless
to us; on the other hand, ifP1�T;ω� > q, we can exercise our option at time t =
T, which means to buy one share of the stock at the exercise price q and then
sell the share immediately in the market for P1�T;ω�. In other words, this
contract entitles its holder to a payment of B�T� ≡ B�T;ω� = �P1�T;ω�−q�+
at time t = T; it is called a European call option, in contradistinction to an
“American call option” that can be exercised at any stopping time (with values)
in �0;T�. See Myneni (1992) for a survey on the pricing of American options
with unconstrained portfolios. In this paper we shall deal primarily with the
pricing problem under constraints on portfolio choice and confine ourselves to
European options; the similar problem for American options will be treated
elsewhere.

The following definition generalizes the concept of European call option.

Definition 4.1. A European contingent claim (ECC) is a financial instru-
ment consisting of a payment B�T� at maturity time T; here, B�T� is a non-
negative, FT-measurable random variable with E��B�T��1+ε� < ∞ for some
ε > 0.

We shall denote the price at time t = 0 of the ECC by B�0�. The main
purpose of this paper is to find out what B�0� should be in the market M ; in
other words, how much an agent should charge for selling such a contractual
obligation and how much another agent could afford to pay for it.

It turns out that the answer depends on the structure of the market M . In
this section, we consider the simplest case: that of a complete, unconstrained
market, that is, one in which every asset can be traded and unlimited short-
selling of both the bond and stocks is also permitted (subject to the admissibil-
ity requirements of Definition 3.5). More precisely, πi�·� takes values in R for
each 1 ≤ i ≤ d. In this case the answer to the pricing problem is well known.
A standard approach to this problem is to utilize the concept of arbitrage in
the market M with the ECC, denoted by �M ;B� for short, with B standing
for the pair �B�0�; B�T��.

Definition 4.2. There is an arbitrage opportunity in �M ;B� if there exist
an initial wealth x ≥ 0 (respectively, x ≤ 0), an admissible pair �π;C� ∈ A �x�
and a constant a = −1 (respectively, a = 1), such that

x+ aB�0� =Xx;π;C�0� + aB�0� < 0

at time t = 0 and

Xx;π;C�T� + aB�T� ≥ 0 a.s.
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at time t = T. The values a = ±1 indicate long or short positions in the ECC,
respectively.

This definition of arbitrage is standard in the literature; see, for example,
Duffie [(1992), Chapter 6] and Myneni (1992). Such an arbitrage opportunity
represents a riskless source of generating profit, strictly greater than the profit
from the bond, by the combination of a trading–consumption strategy and the
ECC. Furthermore, from the scaling properties in Remark 3.2, we know then
that the profits from such a scheme are limitless. Such opportunities should
not exist in a well-behaved, rational market.

One of the most interesting “classical” results on option pricing is that
by only excluding such arbitrage opportunities, the price of the ECC can be
uniquely determined, namely, as

u0
4= E0�γ0�T�B�T�� = E�γ0�T�B�T�Z0�T��:(4.1)

More precisely, if the ECC has a price B�0� > u0 at time t = 0, then
there is an arbitrage opportunity involving a trading–consumption strategy
�φ0; : : : ; φd;0�∗ and a short position in the ECC. Conversely, for any ECC
having price B�0� < u0, there is also an arbitrage opportunity using exactly
�−φ1; : : : ;−φd;0�∗ and taking a long position in the ECC. Hence the price
for the ECC has to be u0 if no arbitrage is allowed in M . This price is called
the arbitrage-free price, also known as the Black–Scholes price. Furthermore,
corresponding to the Black–Scholes price u0, there is a “hedging portfolio” pro-
cess π�·� [hence also a corresponding trading process φ�·�] and a consumption
process C�·� ≡ 0, such that

Xu0; π;0�T� = B�T�:(4.2)

With the same portfolio π�·� [hence the opposite trading strategy −φ�·�], we
have

X−u0; π;0�T� = −B�T�:(4.3)

Remark 4.1. We have u0 < ∞ in (4.1); indeed, with c < ∞ denoting a
common upper bound on ��θ�·��� and �r�·��, and with p = 1+ ε, 1/p+ 1/q = 1,

u0 ≤ exp�−cT��E�B�T��p�1/p�E�Z0�T��q�1/q

≤ exp�−cT+ �q− 1�c2T/2��E�B�T��p�1/p <∞:

If M is a market with constant coefficients b, r, σ in (2.1) and (2.2), then
explicit calculations are possible for u0 of (4.1) in the following cases.

Example 4.1. European call option, B�T� = �P1�T� − q�+. Then

u0 = p8�µ+�T;p�� − qe−rT8�µ−�T;p��; p = P1�0�;(4.4)
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where

µ±�t; p�
4= 1

σ
√
t

[
log

(
p

q

)
+
(
r±

(
σ2

2

))
t

]
and

8�z� = 1√
2π

∫ z
−∞

exp
(−u2

2

)
du

(4.5)

is the cumulative standard normal distribution function; we have set σ =
σ11 > 0. Furthermore, the portfolio process in (4.2) and (4.3) satisfies

π1�t� > 1 and πi�t� = 0; 2 ≤ i ≤ d a.s.(4.6)

We refer the reader to Harrison and Pliska (1981), Cox and Rubinstein (1984),
Karatzas (1989), Karatzas and Shreve (1997) or Duffie (1992) for details.

Example 4.2. Path-dependent (“look-back”) option, B�T� = max0≤t≤TP1�t�
of Goldman, Sosin and Gatto (1979). Then the price of (4.1) is given by

u0 = pe−rT
∫ ∞

0
f�T;ξyρ�eσξ dξ; p = P1�0�;

where σ = σ11 > 0, ρ 4= r/σ − σ/2 and

f�t; ξyρ� 4= 1−8
(
ξ − ρt√

t

)
+ e2ξρ

[
1−8

(
ξ + ρt√

t

)]
:(4.7)

Further, the portfolio π�·� of (4.2) and (4.3) is given by πi�t� ≡ 0, i = 2; : : : ; d,
and

π1�t� =
eσϒ�t�f�T− t; ϒ�t�yρ� + σ

∫∞
ϒ�t� f�T− t; ξyρ�eσξ dξ

eσϒ�t� + σ
∫∞
ϒ�t� f�T− t; ξyρ�eσξ dξ

(4.8)

for 0 ≤ t ≤ T, where

ϒ�t� 4= max
0≤s≤t
�W0�s� + ρs� − �W0�t� + ρt� =

1
σ

log
(

max0≤s≤tP1�s�
P1�t�

)
:

We refer the reader to Karatzas and Shreve [(1997), Section 2.4] for the details.

A main drawback in the above classical argument is its dependence on
the assumptions of completeness and unconstrainedness for the market M .
More to the point, as we have seen in the above discussion, it is critical to be
able to use −φ as a trading strategy, if φ is permitted in the market, and to
trade in all �d + 1� assets if necessary. However, if we are in a constrained
market, for instance, a market in which short-selling of stocks is prohibited
[i.e., with φi�·� ≥ 0 for each i = 1; : : : ; d], then the admissibility of the strat-
egy �φ0; : : : ; φd�∗ does not imply that of �−φ0; : : : ;−φd�∗. Furthermore, in an
incomplete market, not all the assets are accessible.

A general arbitrage argument is needed to cover these cases as well as the
classical unconstrained case.
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5. Upper and lower arbitrage prices. Let us introduce further con-
straints on portfolio choice, in addition to those of Definition 3.5. Suppose
that we are given two nonempty Borel subsets K+ and K− of Rd; for any
x ∈R, we shall consider portfolio–consumption pairs in the class

A ′�x� 4= ��π;C� ∈ A �x�: π�t� ∈K+ ifXx;π;C�t� > 0, and
π�t� ∈K− if Xx;π;C�t� < 0, ∀ t ∈ �0;T� a.s.�.

(5.1)

In other words, K+ (resp., K−) represents our constraint on portfolio choice
when the wealth is positive (resp., negative). We shall see examples in Sec-
tion 6 where such different constraints on portfolio, depending on the sign of
the level of wealth, arise quite naturally.

Definition 5.1. Given a European contingent claim B�T� as in Defini-
tion 4.1, introduce the lower hedging class

L
4= �x ≥ 0: ∃ �π̌; Č� ∈ A−�−x� such that X−x; π̌; Č�T� ≥ −B�T� a.s.�(5.2)

and the upper hedging class

U
4= �x ≥ 0: ∃ �π̂; Ĉ� ∈ A+�x�; such that Xx; π̂; Ĉ�T� ≥ B�T� a.s.�:(5.3)

Here we have set

A−�y�
4= ��π̌; Č� ∈ A �y�: π̌�t� ∈K− and

Xy; π̌; Č�t� ≤ 0; ∀ 0 ≤ t < T a.s.� for y ≤ 0;

A+�z�
4= ��π̂; Ĉ� ∈ A �z�: π̂�t� ∈K+ and

Xz; π̂; Ĉ�t� ≥ 0; ∀ 0 ≤ t < T; a.s.� for z ≥ 0:

The elements �π̌; Č� [resp., �π̂; Ĉ�] in the definitions of the classes L and U
are called lower (resp., upper) hedging strategies for the ECC.

Clearly, the set L contains the origin. On the other hand, it is a straight-
forward consequence of Definition 5.1 that both sets L and U are (connected)
intervals. More precisely, we have the following result.

Proposition 5.1. For any x1 ∈ L , 0 ≤ y1 ≤ x1 implies y1 ∈ L . Similarly,
for any x2 ∈ U, y2 ≥ x2 implies y2 ∈ U.

Proof. Suppose �π2;C2� ∈ A �x2� satisfies the conditions of (5.3). Then,
with y2 ≥ x2, one “just consumes immediately the amount y2 − x2”; in
other words, with Ĉ2�t� = C2�t� + �y2 − x2�1�0;T��t�, we have Xy2; π2; Ĉ2�t� ≡
Xx2; π2;C2�t� for all 0 < t ≤ T, and thus y2 ∈ U. A similar argument works for
L . 2
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The purpose of this section is to show that, in the presence of constraints
as in (5.1), the Black–Scholes price u0 = E0�γ0�T�B�T�� is replaced by an
interval �hlow; hup� which contains u0 and is defined by (5.4) below, in the
following sense: (i) if B�0�, the price of the ECC at time t = 0, does not belong
to �hlow; hup�, then there exists an arbitrage opportunity (Theorem 5.2); (ii) if
it belongs to the interior �hlow; hup� of this interval or if B�0� = hlow = hup,
then arbitrage opportunities do not exist (Theorem 5.3 and Corollary 5.1).

Definition 5.2. The lower arbitrage and the upper arbitrage prices are
defined by

hlow
4= sup�x: x ∈ L �; hup

4= inf�x: x ∈ U�;(5.4)

respectively.

Here we adopt the convention that inf \ = +∞. In Section 6 we shall pro-
vide characterizations of the numbers hlow, hup in terms of suitable stochastic
control problems, which lead to explicit computation in several interesting
special cases (cf. Section 8).

Remark 5.1. Heuristically, the upper arbitrage price may be viewed as the
minimal amount necessary for the seller of the ECC to set aside at time t = 0,
in order to make sure that he will be able to cover his obligation at time t = T.
Similarly, the lower arbitrage price can be viewed as the maximal amount that
the buyer of the ECC is willing to pay at t = 0 and still be sure that he will
be able to cover, at time t = T, the debt he incurred at t = 0 by purchasing
the ECC.

This intuition suggests that the lower arbitrage price hlow cannot be larger
than the upper arbitrage price hup. The following theorem shows, in fact, that
for general constraint sets K+ and K−, a stronger result holds.

Theorem 5.1. We have for any nonempty constraint sets K+ and K− in
B�Rd�;

0 ≤ hlow ≤ u0 ≤ hup;

where u0 = E0�γ0�T�B�T�� is the Black–Scholes price of (4.1).

Proof. By (3.8) and the definition of U, we get

x ≥ E0
[
γ0�T�Xx; π̂; Ĉ�T� +

∫ T
0
γ�s�dĈ�s�

]
≥ E0�γ0�T�B�T�� = u0 ∀ x ∈ U:

Hence, hup ≥ u0. Similarly,

−y ≥ E0
[
γ0�T�X−y; π̌; Č�T� +

∫ T
0
γ0�s�dČ�s�

]

≥ E0�γ0�T��−B�T��� = −u0; ∀ y ∈ L ;

whence y ≤ u0 and hlow ≤ u0. 2
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One feature of the above theorem is that it holds for any constraint sets;
therefore it is applicable to many situations. For instance, in the case of a
European call option B�T� = �P1�T� − q�+ on the first stock, assuming that
this stock can be traded, we have P1�0� ∈ U and thus 0 ≤ hlow ≤ u0 ≤ hup ≤
P1�0� <∞.

We define the notion of arbitrage with portfolios constrained as in (5.1), by
analogy with Definition 4.2.

Definition 5.3. We say that there exists in �M ;B� an arbitrage opportu-
nity with constrained portfolios if there exists an initial wealth x ≥ 0 (resp.,
x ≤ 0), an admissible portfolio–consumption process pair �π;C� in the class
A+�x� [resp., A−�x�] of Definition 5.1 and a constant a = −1 (resp., a = 1)
such that

x+ aB�0� =Xx;π;C�0� + aB�0� < 0(5.5)

and

Xx;π;C�T� + aB�T� ≥ 0 a.s.(5.6)

Again, the values a = ±1 represent long or short positions in the ECC, re-
spectively.

Theorem 5.2. For any ECC price B�0� > hup; there exists an arbitrage
opportunity in the sense of Definition 5.3; similarly for any ECC price B�0� <
hlow.

Proof. Suppose that B�0� > hup. Then for any x1 ∈ �hup;B�0�� we know
that x1 ∈ U, by the definition of hup. Thus there exists a �π̂; Ĉ� ∈ A+�x1� such
that

Xx1; π̂; Ĉ�0� −B�0� = x1 −B�0� < 0

and

Xx1; π̂; Ĉ�T� −B�T� ≥ B�T� −B�T� = 0 a.s.

Hence (5.5) and (5.6) in Definition 5.3 are satisfied with a = −1.
For the case B�0� < hlow, there is an arbitrage opportunity which satisfies

(5.5) and (5.6) with a = 1. The argument is similar to the first one and we
omit the details. 2

Theorem 5.3. For any ECC price B�0� 6∈ �U ∪L �; there is no arbitrage in
�M ;B� with constrained portfolios.

Proof. We shall prove this by contradiction. Suppose B�0� 6∈ U, B�0� 6∈
L and that there is an arbitrage opportunity in �M ;B� with constrained
portfolios. Two cases may arise.

Case 1. The arbitrage opportunity satisfies (5.5) and (5.6) with a = −1. In
this case, there exist an initial wealth x ∈ �0;∞� and a pair �π1;C1� ∈ A+�x�
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such that

x =Xx;π1;C1�0� < B�0� and

Xx;π1;C1�T� ≥ B�T� a.s.
(5.7)

From (5.7) and the definition of U we know that x =Xx;π1;C1�0� ∈ U, whence
B�0� ∈ U, thanks to x < B�0� and Proposition 5.1, a contradiction.

Case 2. The arbitrage opportunity satisfies (5.5) and (5.6) with a = 1. The
proof is similar to that of Case 1, so we omit the details. 2

Corollary 5.1. If hlow < hup; then for any price B�0� ∈ �hlow; hup� of the
ECC there is no arbitrage opportunity in �M ;B� with constrained portfolios.

In view of Theorems 5.2 and Corollary 5.1, the interval �hlow; hup� is the
best possible interval for the ECC price that one can obtain by using only
arbitrage arguments. We shall call �hlow; hup� the arbitrage-free interval.

Remark 5.2. In an unconstrained market, that is, with K+ = K− = Rd,
we know from the classical results that the Black–Scholes price u0 belongs to
both the lower hedging class L and the upper hedging class U [see Chapter 6
in Duffie (1992)]; thus we have hlow = hup = u0 according to Theorem 5.1.

Remark 5.3. If the option price is equal to one of the two endpoints hlow
or hup, it may well be that in some situations there is no arbitrage, while in
others there may be an arbitrage opportunity, depending on the consumption
process. For example, in the unconstrained case, if B�0� = hup = u0, there is
no arbitrage, as it can be shown that the consumption process for the hedging
strategy is almost surely zero (see KS, page 378). On the other hand, if B�0� =
hup, hup ∈ U and Ĉ�T� > 0 a.s. (for instance, as in Remark 8.1), then this
consumption can be viewed as a kind of arbitrage opportunity.

Within the arbitrage-free interval, a unique fair price might be determined
by considerations based on utility maximization or on a stochastic game be-
tween the buyer and the seller. An approach using utility maximization, orig-
inally due to Davis (1994), is discussed in detail in Section 7.

6. Representations for convex constraints. We shall concentrate in
this section on the important special case where the constraint sets K+ and
K− of (5.1) are nonempty closed, convex sets in Rd. For such sets, we shall
obtain in this section representations of hlow and hup in terms of auxiliary
stochastic control problems [cf. (6.7) and (6.8)], which will lead in turn to
explicit computations in Section 8.

We start by introducing the functions

δ�x� 4= sup
π∈K+
�−π∗x�: Rd 7→R ∪ �+∞�
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and

δ̃�x� 4= inf
π∈K−
�−π∗x�: Rd 7→R ∪ �−∞�:

In the terminology of convex analysis, δ�·� and −δ̃�·� are the support func-
tions of the convex sets −K+ and K−, respectively; they are closed, positively
homogeneous, proper convex functions on Rd [Rockafellar (1970), page 114].
The support functions δ�·� and −δ̃�·� are finite on their effective domains K̃+
and K̃−, respectively, where,

K̃+
4= �x ∈Rdy ∃ β ∈R s.t. − π∗x ≤ β; ∀ π ∈K+�
= �x ∈Rdy δ�x� <∞�;

K̃−
4= �x ∈Rdy ∃ β ∈R s.t. − π∗x ≥ β; ∀ π ∈K−�
= �x ∈Rdy δ̃�x� > −∞�:

Notice that both K̃+ and K̃− are convex cones. The following two assumptions
will be imposed throughout this section.

Assumption 6.1. The functions δ�·� and δ̃�·� are continuous on K̃+ and
K̃−, respectively.

Assumption 6.2. The function δ�·� is bounded uniformly from below by
some real constant.

These two assumptions are satisfied by all of the examples below. In partic-
ular, Theorem 10.2 in Rockafellar [(1970), page 84] guarantees that Assump-
tion 1 is satisfied, if K̃+ and K̃− are locally simplicial, and Assumption 6.2 is
satisfied if and only if K+ contains the origin.

The convex constraints are perhaps among the most important constraints
that arise in practice. A few of them are listed below.

Example 6.1. All of the following examples satisfy Assumptions 6.1 and 6.2.

(i) Unconstrained case: φ ∈Rd+1. In other words, K+ =K− =Rd. Then
K̃+ = K̃− = �0� and δ = δ̃ ≡ 0 on K̃+ and K̃−, respectively.

(ii) Prohibition of short-selling of stocks: φi ≥ 0, 1 ≤ i ≤ d. In other words,
K+ = �0;∞�d and K− = �−∞;0�d. Then K̃+ = K̃− = �0;∞�d and δ ≡ 0 on
K̃+, δ̃ ≡ 0 on K̃−.

(iii) Constraints on the short-selling of stocks. A generalization of (ii) is
K+ = �−k;∞�d for some k ≥ 0 and K− = �−∞; l�d for some l ∈ R. Then
K̃+ = K̃− = �0;∞�d and δ�x� = k∑d

i=1 xi, δ̃�x� = −l
∑d
i=1 xi on K̃+ and K̃−,

respectively.
(iv) Incomplete market, in which only the first m stocks can be traded:

φi = 0; ∀ i = m + 1; : : : ; d, for some fixed m ∈ �1; : : : ; d − 1�, d ≥ 2. In
other words, K+ = K− = �π ∈ Rdy πi = 0; ∀ i = m + 1; : : : ; d�. Then
K̃+ = K̃− = �x ∈Rdy xi = 0; ∀ i = 1; : : : ;m� and δ = δ̃ ≡ 0 on K̃+ and K̃−.
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(v) Incomplete market, with prohibition of investment in the firstm stocks:
φi = 0; 1 ≤ i ≤m for some 1 ≤m ≤ d, d ≥ 2. In other words,K+ =K− = �π ∈
Rdy πi = 0; 1 ≤ i ≤ m�. Then K̃+ = K̃− = �x ∈ Rdy xm+1 = · · · = xd = 0�
and δ = δ̃ ≡ 0 on K̃+ and K̃−.

(vi) Both K+ and K− are closed, convex cones in Rd. Then K̃+�K̃−� =
�x ∈ Rdy π∗x ≥ 0; ∀ π ∈ K+�K−�� and δ (δ̃) ≡ 0 on K̃+ �K̃−�. This clearly
generalizes all the previous examples except (iii).

(vii) Prohibition of borrowing: φ0 ≥ 0. In other words, K+ = �π ∈
Rd:

∑d
i=1 πi ≤ 1� and K− = �π ∈ Rdy ∑d

i=1 πi ≥ 1�. Then K̃+ = K̃− = �x ∈
Rd: x1 = x2 = · · · = xd ≤ 0� and δ�x� = −x1 on K̃+, δ̃�x� = −x1 on K̃−.

(viii) Constraints on borrowing. A generalization of (vii) is K+ = �π ∈
Rd:

∑d
i=1 πi ≤ k� for some k ≥ 1 and K− = �

∑d
i=1 πi ≥ l� for some l ∈ R.

Then K̃+ = K̃− = �x ∈ Rd: x1 = · · · = xd ≤ 0�, δ�x� = −kx1 on K̃+ and
δ̃�x� = −lx1 on K̃−.

Explicit formulae or bounds for hlow and hup for all these examples, in the
case of a European call option in a market with constant coefficients, will be
presented in detail in Section 8. It is interesting to notice that, for all these
examples, K̃+ is equal to K̃− (in this connection, see also Proposition 7.2). In
general, this will not be the case; see Example 8.8.

The technique to handle such convex constraints is developed in Cvitanić
and Karatzas (1993). The basic idea is to introduce a family of auxiliary mar-
kets, in which the unconstrained (hedging) problem is relatively easy to solve,
and then try to come back to the original market. This basic idea will help us
here to give representations for the lower arbitrage price hlow and the upper
arbitrage price hup, in terms of appropriate stochastic control problems which
involve optimization with respect to “parameters” of the auxiliary markets.

In order to introduce these families of auxiliary markets, the notation of
Sections 5 and 6 in Cvitanić and Karatzas (1993) will be carried over here for
K+; in addition, we shall consider the analogous notation for K−. Define the
class H (resp., H̃ ) to be the set of progressively measurable processes ν =
�ν�t�; 0 ≤ t ≤ T� with values in K̃+ (resp., K̃−), which satisfy E

∫ T
0 ���ν�t���2 +

δ�ν�t���dt <∞ [resp., E
∫ T

0 ���ν�t���2+δ̃�ν�t���dt <∞]; also introduce, for every
ν ∈ H ∪ H̃ , the analogues

θν�t�
4= θ�t� + σ−1�t�ν�t�;

γν�t�
4= exp

[
−
∫ t

0
�r�s� + δ�ν�s���ds

]
;(6.1)

γ̃ν�t�
4= exp

[
−
∫ t

0
�r�s� + δ̃�ν�s���ds

]
;

Zν�t�
4= exp

[
−
∫ t

0
θ∗ν�s�dW�s� − 1

2

∫ t
0
�θν�s��2 ds

]
;(6.2)

Wν�t�
4=W�t� +

∫ t
0
θν�s�ds;(6.3)
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of the processes in (2.4)–(2.7), as well as the measure

Pν�A� 4= E�Zν�T�1A� = Eν�1A�; A ∈ FT;(6.4)

by analogy with (3.6). Finally, denote by D (resp., D̃ ) the subset consisting of
the processes ν ∈ H (resp., H̃ ) such that ν is bounded uniformly in �t;ω� ∈
�0;T� ×�:

sup
�t;ω�∈�0;T�×�

��ν�t;ω��� <∞:(6.5)

Therefore, for every ν ∈ D∪D̃ , the exponential local martingaleZν�·� of (6.2) is
actually a martingale, from which we conclude that the measure Pν of (6.4) is
a probability measure and the process Wν�·� of (6.3) is a Pν-Brownian motion,
by the Girsanov theorem. In terms of this new Brownian motion Wν�·�, the
stock price (2.2) can be rewritten as

dPi�t� = Pi�t�
[
�r�t� − νi�t��dt+

d∑
j=1

σij�t�dW�j�ν �t�
]
; i = 1; : : : ; d:(6.6)

In the special case of an incomplete market [Example 6.1(iv)], this equation
shows that the discounted prices γ0�·�Pi�·�, i = 1; : : : ; n, are martingales un-
der every probability measure in the class �Pν�ν∈D of (6.4).

Theorem 6.1. With the above notation, we have the following statements:

(i) The lower arbitrage price is given by

hlow = inf
ν∈D̃

Eν�γ̃ν�T�B�T�� =x g(6.7)

provided that the function δ̃�·� is bounded uniformly from below by some real
constant.

(ii) The upper arbitrage price is given by

hup = sup
ν∈D

Eν�γν�T�B�T��(6.8)

and if the right-hand side of (6.8) is finite, then hup ∈ U.

In particular, taking ν ≡ 0 in (6.7) and (6.8), we recover the result 0 ≤ hlow ≤
u0 ≤ hup of Theorem 5.1. For ν ∈ D (resp. ν ∈ D̃ ), observe that the number
Eν�γν�T�B�T�� (resp. Eν�γ̃ν�T�B�T��) is exactly the Black–Scholes price of the
contingent claim in a new auxiliary market with unconstrained portfolios.

Notice that δ̃ ≥ 0 in all the cases of Example 6.1, except in (iii) when
l > 0 and in (viii) when l < 0. We shall treat these two cases separately (see
Examples 8.1 and 8.2) by employing the definition of hlow directly.

The representation (6.8) for hup is proved as in Cvitanić and Karatzas
(1993), although a set bigger than our D is used there, so we only need to
establish (6.7). As in Cvitanić and Karatzas (1993), the proof uses the mar-
tingale representation and Doob–Meyer decomposition theorems and relies on
the construction of a submartingale with regular sample paths.



338 I. KARATZAS AND S. G. KOU

Let us denote by S the set of all �Ft�-stopping times τ with values in
�0;T�, and by Sρ; ξ the subset of S consisting of stopping times τ such that
ρ�ω� ≤ τ�ω� ≤ ξ�ω�, ∀ ω ∈ �, for any two stopping times ρ ∈ S and ξ ∈ S
such that ρ ≤ ξ a.s. For every τ ∈ S , consider also the Fτ-measurable random
variables

Ṽ�τ� 4= ess inf ν∈D̃ Eν
[
B�T� exp

{
−
∫ T
τ
�r�s� + δ̃�ν�s���ds

}∣∣∣Fτ

]
(6.9)

and

Q̃ν�τ�
4= Ṽ�τ� exp

(
−
∫ τ

0
�r�u� + δ̃�ν�u���du

)
= Ṽ�τ�γ̃ν�τ�; ν ∈ D̃ :(6.10)

Lemma 6.1. For every ν ∈ D̃ ; τ ∈ S ; α ∈ Sτ;T we have the submartingale
property

Q̃ν�τ� ≤ Eν�Q̃ν�α��Fτ� a.s.

Lemma 6.2. There exists a RCLL modification Ṽ+�·� of the process Ṽ�·�.
Furthermore, if we define Q̃+ν �·� by analogy with (6.10), then �Q̃+ν �t�;Ft;0 ≤
t ≤ T� is a Pν-submartingale with RCLL paths.

The proofs of Lemmas 6.1 and 6.2 are carried out in a manner similar to
that of the Appendix in Cvitanić and Karatzas (1993).

Lemma 6.3. For the processes Ṽ�·� and Q̃ν�·� of (6.9) and (6.10) we have

E0
[

sup
0≤t≤T

�Ṽ�t��p
]
<∞ ∀ p ∈ �1;1+ ε�;(6.11)

Eν
[

sup
0≤t≤T

Q̃ν�t�
]
<∞ ∀ ν ∈ D̃:(6.12)

In particular, Eν�γ̃ν�T�B�T�� = Eν�Q̃ν�T�� <∞ ∀ ν ∈ D̃ .

Proof. From (6.9) it follows that

0≤Ṽ�t�≤E0
[
B�T� exp

(
−
∫ T
t
r�s�ds

)∣∣∣Ft

]
≤ exp�cT�B�t�; 0 ≤ t ≤ T;(6.13)

holds almost surely in the notation of Remark 4.1 and with B�t� 4=
E0�B�T��F �t��. Now with 1 < p < 1+ ε, r = �1+ ε�/p and 1/r+ 1/s = 1, we
have from the Hölder inequality and the Doob maximal inequality,

E0
[

sup
0≤t≤T

�B�t��p
]
≤ const. E0�B�T��p = const. E�Z0�T��B�T��p�

≤ const. �E��B�T��pr��1/r�E��Z0�T��s��1/s:
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Therefore,

E0
[

sup
0≤t≤T

�B�t��p
]
≤ const. �E��B�T��1+ε��1/r exp

(
s− 1

2
c2T

)
<∞;(6.14)

which proves (6.11) in conjuction with (6.13).
On the other hand, from (6.13), (6.10) and the assumption that δ̃�·� is uni-

formly bounded from below by some real constant, we obtain that

0 ≤ Q̃ν�t� = Ṽ�t� exp
[
−
∫ t

0
�r�s� + δ̃�ν�s���ds

]

≤ const.B�t�; 0 ≤ t ≤ T;
(6.15)

also holds almost surely. With 1 < p < 1+ ε and 1/p+ 1/q = 1 we get then,
for any fixed ν ∈ D̃,

Eν
[

sup
0≤t≤T

B�t�
]
= E0

[
Zν�T�
Z0�T�

sup
0≤t≤T

B�t�
]

≤
(

E0
[

sup
0≤t≤T

�B�t��p
])1/p

(
E0
(
Zν�T�
Z0�T�

)q)1/q

<∞:

We have used again the Hölder and Doob inequalities, (6.14), as well as the
uniform boundedness of the process σ−1�·�ν�·� in

Zν�t�
Z0�t�

= exp
{
−
∫ t

0
�σ−1�s�ν�s��∗ dW0�s� −

1
2

∫ t
0
��σ−1�s�ν�s���2 ds

}
; 0 ≤ t ≤ T:

In conjuction with (6.15), this leads then to (6.12). 2

Proof of Theorem 6.1. The proof is similar to Cvitanić and Karatzas
(1993). From now on we consider only the RCLL modifications of Ṽ and Q̃ν;
hence we can assume that these processes do have RCLL paths.

Part 1. We shall first prove the inequality hlow ≥ g. This is obvious if g = 0
so let us assume, for the remainder of this part of the proof, that g > 0 and
try to show that g ∈ L . From Lemma 6.2 and (6.12), Q̃ν�·� is a submartin-
gale of class D �0;T� under Pν, for every ν ∈ D̃. Thus from the martingale
representation theorem [Section 3.4 in Karatzas and Shreve (1991)] and the
Doob–Meyer decomposition for submartingales [Section 1.4 in Karatzas and
Shreve (1991)], we have for every ν ∈ D̃ ,

Q̃ν�t� = Ṽ�0� +Mν�t� +Aν�t�

= g +
∫ t

0
ψ∗ν�s�dWν�s� +Aν�t�; 0 ≤ t ≤ T;

(6.16)

where Mν�t� =
∫ t

0 ψ
∗
ν�s�dWν�s�, 0 ≤ t ≤ T, is an ��Ft�; Pν�-martingale, ψν�·�

is an Rd-valued, �Ft�-progressively measurable and almost surely square in-
tegrable process and Aν�·� is �Ft�-predictable with increasing, RCLL paths
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and Aν�0� = 0, EνAν�T� <∞. Introduce the negative process

X̌�t� 4= −Ṽ�t� = −Q̃ν�t�
γ̃ν�t�

; 0 ≤ t ≤ T; for every ν ∈ D̃ :(6.17)

Then

X̌�0� = −Ṽ�0� = −g and X̌�T� = −B�T�:

Hence, in order to show g ∈ L , it is enough to find an admissible pair �π̌; Č� ∈
A−�−g� such that X̌�·� =X−g; π̌; Č�·�. Recall from (6.11) that Ṽ�·� = −X̌�·� is
dominated by the random variable 3 = sup0≤t≤T Ṽ�t� ≥ 0 with E0�3p� < ∞
for some p > 1.

Let us start by observing that for any µ ∈ D̃ , ν ∈ D̃ , we have from (6.10)

Q̃µ�t� = Q̃ν�t� exp
[∫ t

0
δ̃�ν�u��du−

∫ t
0
δ̃�µ�u��du

]
; 0 ≤ t ≤ T:

Thus, from the differential form of (6.16) we get

dQ̃µ�t� = exp
[∫ t

0
δ̃�ν�s��ds−

∫ t
0
δ̃�µ�s��ds

]

× �Q̃ν�t��δ̃�ν�t�� − δ̃�µ�t���dt+ ψ∗ν�t�dWν�t� + dAν�t��

= exp
[∫ t

0
δ̃�ν�s��ds−

∫ t
0
δ̃�µ�s��ds

]

× �−X̌�t�γ̃ν�t��δ̃�ν�t�� − δ̃�µ�t���dt+ dAν�t�
+ ψ∗ν�t�σ−1�t��ν�t� − µ�t��dt+ ψ∗ν�t�dWµ�t��;

(6.18)

where the last equation comes from the definition of X̌�·� and the connection
between Wµ�·� and Wν�·� [cf. (6.3)]. Comparing (6.18) with the Doob–Meyer
decomposition

dQ̃µ�t� = ψ∗µ�t�dWµ�t� + dAµ�t�;(6.19)

we conclude from the uniqueness of this decomposition that

ψν�t� exp
[∫ t

0
δ̃�ν�s��ds

]
= ψµ�t� exp

[∫ t
0
δ̃�µ�s��ds

]
; 0 ≤ t ≤ T;

so that the process

h�t� 4= ψν�t� exp
[∫ t

0
δ̃�ν�s��ds

]
; 0 ≤ t ≤ T(6.20)

does not depend on ν. We claim that we also have, almost surely,
∫ T

0
1�X̌�t�=0���h�t���2 dt = 0:(6.21)
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Indeed, consider the nonnegative P0-submartingale Q�·� ≡ Q̃0�·� of (6.16).
From the Tanaka–Meyer formula [Meyer (1976), page 365, equations (12.1)
and (12.3)] we have

Q�t� = g +
∫ t

0
1�Q�s−�>0� dQ�s� + 3�t� +

∑
0<s≤t

1�Q�s−�=0� 1Q�s�;

where 3�·� is the local time of Q�·� at the origin: a continuous increasing
process, flat off the set �0 ≤ t ≤ Ty Q�t� = 0� a.s. Comparing this expression
with (6.16), we obtain that

M�t� 4=
∫ t

0
1�Q�s�=0� dM0�s�

= 3�t� +
∑

0<s≤t
1�Q�s−�=0� 1Q�s� −

∫ t
0

1�Q�s−�=0� dA0�s�; 0 ≤ t ≤ T;

is a continuous martingale of bounded variation. Thus, its quadratic variation

�M��T� =
∫ T

0
1�Q�t�=0� d�M0��t� =

∫ T
0

1�Q�t�=0���h�t���2 dt

is almost surely equal to zero, and (6.21) follows [recall here that M0�t� =∫ t
0 ψ
∗
0�s�dW0�s� =

∫ t
0 h
∗�s�dW0�s� from (6.16) and (6.20)].

Therefore, if we fix an arbitrary π̌ ∈K− and define

π̌�t� 4= −1

γ0�t�X̌�t�
�σ∗�t��−1h�t�1�X̌�t�<0� + π̌1�X̌�t�=0�;(6.22)

we obtain a portfolio process that satisfies almost surely

−γ0�t�X̌�t�π̌∗�t�σ�t� = h∗�t� a.e. on �0;T�:
From this and from (6.18)–(6.20), we have

exp
[∫ t

0
δ̃�ν�s��ds−

∫ t
0
δ̃�µ�s��ds

]

× �−X̌�t�γ̃ν�t��δ̃�ν�t�� − δ̃�µ�t���dt
+ dAν�t� + ψ∗ν�t�σ−1�t��ν�t� − µ�t��dt� = dAµ�t�;

whence

exp
[∫ t

0
δ̃�ν�s��ds−

∫ t
0
δ̃�µ�s��ds

]

× �−X̌�t�γ̃ν�t��δ̃�ν�t�� + π̌∗�t�ν�t�
− δ̃�µ�t�� − π̌∗�t�µ�t��dt+ dAν�t�� = dAµ�t�;

thanks to (6.22). Therefore, the process Č�·� defined as

Č�t� 4=
∫ t

0
γ̃−1
ν �s�dAν�s� −

∫ t
0
X̌�s��δ̃�ν�s�� + ν∗�s�π̌�s��ds; 0 ≤ t ≤ T;(6.23)
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is independent of ν ∈ D̃ . In particular, taking ν ≡ 0, we see that

Č�t� =
∫ t

0
γ−1

0 �s�dA0�s�; 0 ≤ t ≤ T;

is an increasing, adapted, RCLL process with Č�0� = 0 and Č�T� <∞ almost
surely. In other words, Č�·� is a consumption process.

The same argument as on page 664 of Cvitanić and Karatzas (1992) shows
then that

δ̃�ν�s�� + ν∗�s�π̌�s� ≤ 0; 0 ≤ s ≤ T;

holds almost surely, for every ν ∈ D̃ . Therefore, the proof in Cvitanić and
Karatzas [(1992), pages 782–783], and Theorem 13.1 in Rockafellar [(1970),
page 112], give us π̌�·� ∈ K− a.s. Notice that for these arguments to work
we need the continuity of δ̃�·� as well as the condition that δ̃�·� be bounded
uniformly from below by some real constant.

Now putting the various pieces together, we obtain

d�−X̌�t�γ̃ν�t�� = dQ̃ν�t� = ψ∗ν�t�dWν�t� + dAν�t�
= γ̃ν�t�

[
dČ�t� + X̌�t��δ̃�ν�t�� + ν∗�t�π̌�t��dt

− X̌�t�π̌∗�t�σ�t�dWν�t�
]
;

so that

d�X̌�t�γ̃ν�t�� = −γ̃ν�t�dČ�t� − γ̃ν�x�X̌�t��δ̃�ν�t�� + ν∗�t�π̌�t��dt
+ γ̃ν�t�X̌�t�π̌∗�t�σ�t�dWν�t�:

(6.24)

Taking ν ≡ 0 in (6.24), we obtain the wealth equation (3.2) in the form

d�γ0�t�X̌�t�� = −γ0�t�dČ�t� + γ0�t�X̌�t�π̌∗�t�σ�t�dW0�t�; X̌�0� = −g;

whence X̌�·� =X−g; π̌; Č�·�. The proof of hlow ≥ g is now complete.
Part 2. Let us consider the proof of the reverse inequality hlow ≤ g. This

is obvious if hlow = 0, so we assume that hlow > 0. Thus we have L 6= \ in
(5.2), and for any x ∈ L there exists �π;C� ∈ A−�−x� such that X−x;π;C�T� ≥
−B�T� almost surely. It is easy to see from (3.3) and (6.1) that the analogue
of (6.24) holds and thus

γ̃ν�t�X−x;π;C�t� +
∫ t

0
γ̃ν�s�dC�s�

+
∫ t

0
γ̃ν�s�X−x;π;C�s��δ̃�ν�s�� + π∗�s�ν�s��ds; 0 ≤ t ≤ T;

is actually a Pν-local martingale, whence a supermartingale. This is because
γ̃ν�·�X−x;π;C�·� is bounded from below by a Pν-integrable random variable,
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thanks to (3.7), (6.5) and the Hölder inequality. Therefore,

−x ≥ Eν
[
γ̃ν�T�X−x;π;C�T� +

∫ T
0
γ̃ν�s�dC�s�

+
∫ T

0
γ̃ν�s�X−x;π;C�s��δ̃�ν�s�� + π∗�s�ν�s��ds

]

≥ Eν�γ̃ν�T��−B�T���

for every x ∈ L , ν ∈ D̃ , or equivalently, x ≤ Eν�γ̃ν�T�B�T��, from which
hlow ≤ g follows. 2

7. A fair price. We have seen that if the upper arbitrage price hup is
strictly bigger than the lower arbitrage price hlow, then the arbitrage argument
alone is not enough to determine a unique price for the contingent claim. Sev-
eral approaches have been proposed to get around this problem in the special
case of incomplete markets [as in Example 6.1(iv)]; see, for example, Föllmer
and Sondermann (1986), Föllmer and Schweizer (1991), Duffie and Skiadas
(1991), Foldes (1990) and Davis (1994). There are also some approaches that
have been suggested in different, but related, contexts, such as pricing in the
presence of transaction costs [Hodges and Neuberger (1989)] or under dif-
ferent interest rates for borrowing and saving [Barron and Jensen (1990)].
Although perhaps none of these approaches is totally satisfactory, we shall
try in this section to generalize one of them, the Davis (1994) approach, to the
constrained setup of Section 5.

The purpose of this section is not to solve the problem completely (because
it might turn out that, from a practical point of view, the most convenient price
to use is still the Black–Scholes price u0; cf. Remark 11.4 in Section 11), but
rather to see when the generalization works and when it does not, and hope-
fully to focus attention on the study of possible connections between arbitrage
and utility maximization.

7.1. Definition. Davis’s “fair price” is only defined for an agent with posi-
tive wealth and involves the concept of utility function. Before presenting the
definition of the fair price, we shall briefly recall that of utility function.

Definition 7.1. A function U: �0;∞� →R will be called a utility function
if it is strictly increasing, strictly concave, of class C1 and satisfies

U′�0+� 4= lim
x↓0

U′�x� = ∞; U′�∞� 4= lim
x→∞

U′�x� = 0:

We shall denote by I�·� the inverse of the function U′�·�. Notice that the
function I�·� maps �0;∞� onto itself and satisfies

I�0+� = ∞; I�∞� = 0; U′�I�x�� = x:
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Consider the following “constrained portfolio” optimization problem,

V�x� 4= sup
�π;C�∈A+�x�

E
[
U
(
Xx;π;C�T�

)]
; 0 < x <∞;(7.1)

where one tries to maximize expected terminal utility over portfolio–
consumption pairs in the class A+�x� of Definition 5.1. Clearly, we have

V�x� ≥ EU
(
x exp

[∫ T
0
r�t�dt

])
≥ U�x exp�r0T�� > −∞;

where r0 is a lower bound on r�·�.

Assumption 7.1. For all x > 0, the value V�x� of (7.1) is attainable; in
other words,

V�x� = E
[
U
(
Xx
∗�T�

)]
where Xx

∗�T�
4=Xx;π∗;C∗�T�(7.2)

for some �π∗;C∗� ∈ A+�x�, and we assume that the derivative of V�·� exists
and is strictly positive: V′�·� > 0 on �0;∞�.

This assumption is satisfied in many interesting cases, in particular with
C∗�·� = 0. Indeed, it holds for all convex constraint sets K+, subject to the
rather mild Assumptions 6.1 and 6.2; see Section 7.3.

Suppose that at time t = 0, the price of the contingent claim is p = B�0�
and one diverts an amount δ, �δ� < x, of money into the contingent claim
B (i.e, buys δ/p shares of the contingent claim). Then one chooses an opti-
mal portfolio–consumption strategy to achieve maximal expected utility from
terminal wealth. Formally, one solves the stochastic control problem

W�δ;p; x� 4= sup
�π;C�∈A ′�x−δ�

EU
(
Xx−δ;π;C�T� + δ

p
B�T�

)
; �δ� < x;(7.3)

where we formally set U�x� = −∞ for x < 0. Notice that W�0; p; ·� coincides
with the function V�·� of (7.1) for every p > 0, and that we can actually take
Xx−δ;π;C�T� > 0 in (7.3) above. If the contingent claim price p is set so that
this small diversion of funds has a neutral effect on W, in the sense

∂W

∂δ
�0; p; x� = 0;(7.4)

then we tend to call this p the “fair price” of the contingent claim. Indeed,
Davis (1994) uses exactly (7.4) to define the fair price. However, the differ-
entiability of W�·; p; x� is often difficult to check directly. Here we shall use
a requirement weaker than differentiability and reminiscent of the notion of
“viscosity solutions” as in Crandall and Lions (1983).

Definition 7.2. For a given x > 0, we call p a weak solution of (7.4) if, for
every differentiable function φ�·; p; x� satisfying φ�δ;p; x� ≥ W�δ;p; x� for
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all δ ∈ �−x; x� and φ�0; p; x� =W�0; p; x� ≡ V�x�, we have

∂φ

∂δ
�0; p; x� = 0:

Notice the similarity of this notion with that of “viscosity subsolution” [see,
for example, Definition 7.2 in Shreve and Soner (1994) or Fleming and Soner
(1993), page 66].

Definition 7.3. Suppose that for any given x > 0, the weak solution p =
p̂�x� > 0 of (7.4) is unique. Then we call this p̂�x� the fair price for the
contingent claim at time t = 0, corresponding to initial wealth x > 0.

In economic terms, the requirement (7.4) postulates a “zero marginal rate
of substitution” for W�·; p̂�x�; x� at δ = 0. Generally speaking, Davis’s fair
price depends on the utility function U�·� and on the particular initial wealth
x > 0. However, for convex constraint sets K+ and K−, we shall present in
Section 7.3 conditions under which p̂�x� can be rendered independent of the
utility function U�·� and/or the initial wealth x > 0.

7.2. Connections with arbitrage. An immediate question that we have to
settle is whether there exist any arbitrage opportunities in �M ;B� if the con-
tingent claim priceB�0� is set to be p̂�x�. In other words, whether p̂�x� belongs
or not to the interval �hlow; hup�, for every initial wealth x > 0. In general, the
answer can be affirmative or negative, depending on the constraint sets K+
and K− (indeed, several counterexamples are given in Section 8.3); however,
if we adopt the fairly general Assumption 7.2 below, then the answer is always
affirmative.

Assumption 7.2. Suppose that �π�1�;C�1�� ∈ A ′�x� and �π�2�;C�2�� ∈
A ′�y�, for arbitrary but fixed x ∈ R, y ∈ R. Then there exists a �π;C� ∈
A ′�x + y� such that the corresponding terminal wealth Xx+y;π;C�T� is
obtained by superposition:

Xx+y;π;C�T� =Xx;π�1�;C�1��T� +Xy;π�2�;C�2��T� a.s.

Theorem 7.1. Suppose that Assumptions 7.1 and 7.2 are satisfied and that
the fair price p̂�x� exists for every x > 0. Then

∀ x > 0; hlow ≤ p̂�x� ≤ hup:(7.5)

The meaning of Assumption 7.2 is that whenever an agent chooses to in-
vest in two different accounts X1�·� ≡Xx;π�1�;C�1��·� and X2�·� ≡Xy;π�1�;C�2��·�
separately, then this is equivalent, in terms of terminal wealth, to investing
and consuming according to some strategy �π;C� which is admissible for the
initial wealth level x+y, for arbitrary real numbers x and y. This assumption
holds, in particular, if the pair

π = �π�1�X1 + π�2�X2�/�X1 +X2�; C = C�1� +C�2�
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is indeed in A ′�x+y�. A sufficient condition for Assumption 7.2 to hold in the
case of convex sets K± is given along these lines in Proposition 7.1.

Proof of Theorem 7.1. We establish the upper bound first. Suppose that
p̂�x� > 0 is the fair price of Definition 7.3 for the initial wealth x > 0. For arbi-
trary y ∈ U, we want to show that p̂�x� ≤ y. Now for any δ ∈ �−xp̂�x�/y;0�∩
�−x;0�, by Remark 3.2 and the definition of the class U in (5.3), there exists

an admissible pair �π�1�;C�1�� ∈ A+�ζ� with ζ
4= �−δy/p̂�x�� ∈ �0; x�, such

that

Xζ; π�1�;C�1��T� ≥ �−δ/p̂�x��B�T�(7.6)

holds almost surely. On the other hand, by Assumption 7.1, there is an admis-
sible pair �π�2�;C�2�� ∈ A+�w� which is optimal for the problem of (7.1) with
the initial wealth

w = x− δ+ δy/p̂�x� = x− δ− ζ > x− ζ > 0 (recall that δ < 0�;
that is, the resulting wealth process Xw;π�2�;C�2��·� ≥ 0 satisfies

V�w� = V�x− δ− ζ� = E
[
U
(
Xw;π�2�;C�2��T�

)]
:(7.7)

Thus, from Assumption 7.2, we know that there is an admissible pair
�π�3�;C�3�� ∈ A ′�x− δ� such that

Xx−δ;π�3�;C�3��T� =Xζ; π�1�;C�1��T� +Xw;π�2�;C�2��T�

≥Xw;π�2�;C�2��T� − δ

p̂�x�B�T�
(7.8)

by (7.6). Hence, by the definition of W in (7.3),

W�δ; p̂�x�; x� ≥ EU
(
Xx−δ;π�3�;C�3��T� + �δ/p̂�x��B�T�

)

≥ EU
(
Xw;π�2�;C�2��T�

)
= V

(
x− δ+ δy/p̂�x�

)

thanks to (7.8) and (7.7). Therefore, for any function φ as in Definition 7.2,
we have

φ�δ; p̂�x�; x� −φ�0; p̂�x�; x�
δ

≤ W�δ; p̂�x�; x� −V�x�
δ

≤ V�x− δ+ δy/p̂�x�� −V�x�
δ

;

since δ < 0, and in the limit, as δ ↑ 0,

0 = ∂φ
∂δ
�0; p̂�x�; x� ≤

(
y

p̂�x� − 1
)
V′�x�:

Since V′�x� > 0 by Assumption 7.1, we obtain y ≥ p̂�x�, from which the upper
bound in (7.5) follows.

Now consider the lower bound. For arbitrary z ∈ L , we want to show
z ≤ p̂�x�. Given any δ ∈ �0; x�, again by Remark 3.2 and the definition of L ,
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we know that there exists a pair �π�4�;C�4�� ∈ A−�−ξ� with ξ 4= δz/p̂�x� > 0
such that

X−ξ;π
�4�;C�4��T� ≥ �δ/p̂�x���−B�T�� a.s.(7.9)

Also by Assumption 7.1, there exists a pair �π�5�;C�5�� ∈ A+�η�, where η 4= x−
δ+ξ = x−δ+δz/p̂�x� > 0, with corresponding wealth processXη;π�5�;C�5��·� ≥ 0
which satisfies

V�η� = V�x− δ+ δz/p̂�x�� = E
[
U
(
Xη;π�5�;C�5��T�

)]
:(7.10)

From Assumption 7.2, we know that there exists a pair �π�6�;C�6�� ∈ A ′�x−δ�
such that

Xx−δ;π�6�;C�6��T� =X−ξ;π�4�;C�4��T� +Xη;π�5�;C�5��T�

≥Xη;π�5�;C�5��T� − δ

p̂�x�B�T� a.s.
(7.11)

Therefore,

W�δ; p̂�x�; x� ≥ EU
(
Xx−δ;π�6�;C�6��T� + �δ/p̂�x��B�T�

)

≥ EU
(
Xη;π�5�;C�5��T�

)
= V�x− δ+ δz/p̂�x��

via (7.9), (7.10) and (7.11). Thus, for any function φ as in Definition 7.2, we
have

φ�δ; p̂�x�; x� −φ�0; p̂�x�; x�
δ

≥ V�x− δ+ δz/p̂�x�� −V�x�
δ

∀ δ ∈ �0; x�;

and in the limit, as δ ↓ 0,

0 = ∂φ
∂δ
�0; p̂�x�; x� ≥

(
z

p̂�x� − 1
)
V′�x�:

Again, V′�x� > 0 leads to the lower bound z ≤ p̂�x� of (7.5). 2

Remark 7.1. It is readily seen that the first part of the proof of Theo-
rem 7.1 goes through and thus the upper bound p̂�x� ≤ hup of (7.5) is valid,
even in the absence of Assumption 7.2, provided that the set K+ is convex.

Proposition 7.1. If the constraint sets K+ and K− are convex, then a suf-
ficient condition for the validity of Assumption 7.2 is

∀ π+ ∈K+; π− ∈K−; λπ+ + �1− λ�π− ∈
{
K+; if λ ≥ 1;
K−; if λ ≤ 0:(7.12)

Proof. For xi ∈ R and �π�i�;C�i�� ∈ A ′�xi�, let Xi�·� ≡ Xxi; π
�i�;C�i��·�, i =

1;2; be the corresponding wealth processes and define C�·� 4= C�1��·� +C�2��·�,
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x = x1 + x2, X�·� 4=X1�·� +X2�·�. Then it is not hard to see from the wealth
equation (3.2) that X�·� =Xx;π;C�·�, where the portfolio π�·� is given by

π�t� 4= �λ�t�π�1��t� + �1− λ�t��π�2��t��1�X�t�6=0�; λ�t� =X1�t�/X�t�:(7.13)

To show that �π;C� ∈ A ′�x�, we have to check that

π�t� ∈K+ on �X�t� > 0� and π�t� ∈K− on �X�t� < 0�:(7.14)

Now on �X1�t� > 0;X2�t� = 0� we have π�t� = π�1��t� ∈ K+ in (7.13);
similarly, π�t� = π�2��t� ∈K+ on �X1�t� = 0;X2�t� > 0�. By analogy, we have
π�t� ∈ K− on �X�t� < 0; X1�t�X2�t� = 0�. It remains to see what happens
on �X1�t�X2�t� 6= 0�. We distinguish several cases.

(i) �X1�t� > 0; X2�t� > 0�: on this event, π�i��t� ∈ K+ �i = 1;2� and
0 < λ�t� < 1, so π�t� ∈K+ by the convexity of K+;

(ii) �X1�t� < 0; X2�t� < 0�: by similar arguments, π�t� ∈K−;
(iii) �X1�t� > 0 > X2�t�; X�t� > 0�: then π1�t� ∈K+, π2�t� ∈K−, λ�t� > 1

and π�t� ∈K+ by (7.12);
(iv) �X1�t� > 0 > X2�t�; X�t� < 0�: here λ�t� < 0, and (7.12) gives π�t� ∈

K−;
(v) �X2�t� > 0 > X1�t�; X�t� > 0� and

(vi) �X2�t� > 0 > X1�t�; X�t� < 0� can be treated by analogy with (iii)
and (iv).

In all these cases, (7.14) holds. 2

Condition (7.12) is satisfied in the context of Examples 6.1, for the cases
(i), (ii) and (iii) with l ≤ −k, (iv), (v) and (vi) with K− = −K+ and (vii) and
(viii) with l ≥ k. For a discussion of how things can go wrong in (7.5) if the
condition (7.12) fails, see the examples of subsection 8.3.

Proposition 7.2. For any two closed convex sets K+ and K− that satisfy

(7.12), we have K̃+ = K̃− and δ�·� ≤ δ̃�·� on K̃+ �= K̃−�; furthermore, if

K+
⋂
K− 6= \; then δ�·� = δ̃�·� on K̃+ �= K̃−�.

Proof. Fix an arbitrary x ∈ K̃+, so that δ�x� <∞. For λ > 1 and arbitrary
π+ ∈K+, π− ∈K−, we have

x∗�λπ+� + x∗��1− λ�π−� = x∗�λπ+ + �1− λ�π−� ≥ inf
π∈K+
�x∗π� = −δ�x�:

Therefore, taking infima and recalling the positive homogeneity properties of
δ�·� and −δ̃�·�, we get

−λδ�x� + �λ− 1�δ̃�x� ≥ −δ�x� > −∞:

It follows that δ̃�x� > −∞ (thus K̃+ ⊆ K̃−) and in fact δ�x� ≤ δ̃�x�.
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Now fix an arbitrary x ∈ K̃−, so that −δ̃�x� < ∞. For λ < 0 and arbitrary
π+ ∈K+ and π− ∈K− we have

x∗�λπ+� + x∗��1− λ�π−� = x∗�λπ+ + �1− λ�π−� ≤ sup
π∈K−
�x∗π� = −δ̃�x�:

Therefore, again by taking suprema and using the same homotheticity prop-
erties, we obtain

−λδ�x� − �1− λ�δ̃�x� ≤ −δ̃�x� <∞:

It follows that δ�x� <∞ (whence K̃+ ⊇ K̃−) and again δ�x� ≤ δ̃�x�.
The inequality δ̃�x� ≤ δ�x� on Rd follows directly from K+ ∩K− 6= \. 2

Remark 7.2. If the two closed convex sets K+ and K− satisfy the condi-
tions (7.12) and K+∩K− 6= \, then the endpoints of the arbitrage-free interval
�hlow; hup� are characterized solely in terms of the set K+ (recall Theorem 6.1
and the notation of Section 6).

7.3. A representation for convex constraints. The following result will be
used to obtain the representation (7.25) for the fair price p̂�x�. It was estab-
lished by Davis (1994), but we provide here an alternative argument, based
on our Definitions 7.3 and 7.2 for the fair price.

Theorem 7.2. Under Assumption 7.1, the fair price p̂�x� is uniquely deter-
mined by

p̂�x� = E�U′�Xx;π∗;C∗�T��B�T��
V′�x� ∀ x > 0:(7.15)

Proof. We shall use the inequalities

U�x� + �y− x�U′�x� ≥ U�y� ≥ U�x� + �y− x�U′�y�;
∀ 0 < x < y <∞;

(7.16)

which is a simple consequence of concavity. With the notation of (7.2), we have
from the second inequality in (7.16), for x > δ > 0, p > 0,

W�δ;p; x� ≥ E
[
U

(
Xx−δ
∗ �T� +

δ

p
B�T�

)]

≥ E�U�Xx−δ
∗ �T��� +

δ

p
E
[
U′
(
Xx−δ
∗ �T� +

δ

p
B�T�

)
B�T�

]
:

Since x 7→Xx
∗�T� is nondecreasing, we get

W�δ;p; x� ≥ V�x− δ� + δ

p
E
[
U′
(
Xx
∗�T� +

δ

p
B�T�

)
B�T�

]
:(7.17)
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Thus, from Fatou’s lemma,

lim inf
δ↓0

W�δ;p; x� −W�0; p; x�
δ

≥ lim
δ↓0

V�x− δ� −V�x�
δ

+ 1
p

lim inf
δ↓0

E
[
U′
(
Xx
∗�T� +

δ

p
B�T�

)
B�T�

]

≥ −V′�x� + 1
p

E�U′�Xx
∗�T��B�T��:

On the other hand, with δ < 0, p > 0, we have, from the first inequality in
(7.16), that (7.17) is valid again [with the interpretation U′�x� ≡ U′�0+� ≡ ∞
for x < 0], and thus by the monotone convergence theorem,

lim sup
δ↑0

W�δ;p; x� −W�0; p; x�
δ

≤ lim
δ↑0

V�x− δ� −V�x�
δ

+ 1
p

lim
δ↑0

E
[
U′
(
Xx
∗�T� +

δ

p
B�T�

)
B�T�

]

≤ −V′�x� + 1
p

E�U′�Xx
∗�T��B�T��:

Therefore, for all x > 0 and p > 0,

lim sup
δ↑0

W�δ;p; x� −W�0; p; x�
δ

≤ −V′�x� + 1
p

E�U′�Xx
∗�T��B�T��

≤ lim inf
δ↓0

W�δ;p; x� −W�0; p; x�
δ

:

(7.18)

Let φ denote an arbitrary function as in Definition 7.2; then (7.18) yields

∂φ

∂δ
�0; p; x� = −V′�x� + 1

p
E�U′�Xx

∗�T��B�T��;

from which it is easy to check that p̂�x� defined in (7.15) is the unique weak
solution of (7.4) in the sense of Definition 7.2. 2

To give an explicit form of the fair price for convex constraints, we need
a result from Cvitanić and Karatzas (1992) along with some additional no-
tation and assumptions. For each ν ∈ D , introduce the (continuous, strictly
decreasing) function

Jν�y�
4= Eν�γν�T�I�yγν�T�Zν�T���; 0 < y <∞;

along with its inverse

Yν�x�
4= J−1

ν �x�; 0 < x <∞:
Furthermore, let us impose, in addition to the requirements of Definition 7.1,
the following conditions on the utility function U:

U�∞� 4= lim
x→∞

U�x� = ∞;(7.19)
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U�0� > −∞ or U�x� = log x;(7.20)

x 7→ xU′�x� is nondecreasing on �0;∞�(7.21)

and

for some α ∈ �0;1�; γ ∈ �1;∞� we have αU′�x� ≥ U′�γx� ∀ x ∈ �0;∞�:(7.22)

The following result of Cvitanić and Karatzas (1992) describes the termi-
nal wealth corresponding to the optimal pair �π∗;0� ∈ A+�x� for the con-
strained portfolio optimization problem of (7.1) under conditions (7.19)–(7.22)
and shows that these guarantee the validity of Assumption 7.1.

Theorem 7.3. Suppose that the constraint set K+ is closed, convex and
satisfies Assumptions 6.1 and 6.2. Assume also that conditions (7.19)–(7.22)
hold. Then, for every x > 0; there exists a ν̂ = ν̂x ∈ D and a pair �π∗;0� ∈ A+�x�
with corresponding terminal wealth

Xx;π∗;0�T� = I�Yν̂�x�γν̂�T�Zν̂�T�� a.s.(7.23)

This pair attains the supremum V�x� of (7.2), that is, is optimal for the prob-
lem of (7.2). The value function V�·� is continuously differentiable, and its
derivative can be represented as

V′�x� = Yν̂�x� > 0 ∀ x > 0:(7.24)

The process ν̂�·� ∈ D is optimal in a dual (minimization) stochastic control
problem, whence the adjectives “minimal,” “dual-optimal” or “least-favorable.”
Now Theorem 7.3 leads directly to a representation for p̂�x� in the market
with convex constraints.

Theorem 7.4. We have, for all x > 0;

p̂�x� = Eν̂�γν̂�T�B�T��:(7.25)

Proof. We have for any given x > 0;

E�U′�Xx
∗�T��B�T�� = E�U′�Xx;π∗;0�T��B�T��

= E�U′�I�Yν̂�x�γν̂�T�Zν̂�T���B�T�� [by (7.23)]

= E�Yν̂�x�γν̂�T�Zν̂�T�B�T�� [using U′�I�x�� = x�
= V′�x�E�γν̂�T�Zν̂�T�B�T�� [by (7.24)]

= V′�x�Eν̂�γν̂�T�B�T��:
We can now apply Theorem 7.2 to get (7.25). 2

Remark 7.3. Combining the representation for p̂�x� in Theorem 7.4, the
representations for hlow and hup in Theorem 6.1, and Proposition 7.2, we re-
cover (7.5): namely, if the two closed convex sets K+ and K− satisfy the con-
dition (7.12), then p̂�x� ∈ �hlow; hup� for all x > 0.
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It follows from Theorem 7.4 that p̂�x� is the Black–Scholes price
Eν̂�γν̂�T�B�T�� of B�T� in an auxiliary unconstrained market Mν̂ with
interest rate r�·� + δ�ν̂�·��, appreciation rate vector b�·� + ν̂�·� + δ�ν̂�·��1 and
volatility matrix σ�·�, corresponding to the “minimal” (“dual-optimal”) process
ν̂�·� = ν̂x�·� of Theorems 7.3 and 7.4. Here are some examples from Cvitanić
and Karatzas (1992) in which this process can be computed explicitly.

Example 7.1. Logarithmic utility function, general random adapted coef-
ficients. If U�x� = log x, then it is shown in Cvitanić and Karatzas (1992),
page 790, that ν̂�·� is given by

ν̂�t� = arg min
y∈K̃+

�2δ�y� + ��θ�t� + σ−1�t�y��2�; 0 ≤ t ≤ T:(7.26)

Thus, ν̂�·� (as well as p̂) does not depend on the initial wealth x ∈ �0;∞�.
In particular, if K+ is a cone [thus δ̃�·� ≡ 0 on K̃+], the expression of (7.26)

becomes

�7:26′� ν̂�t� = arg min
y∈K̃+

��θ�t� + σ−1�t�y��2; 0 ≤ t ≤ Ty

this ν̂�·� also minimizes the relative entropy

H�P�Pν� 4= E
(

log
dP
dPν

)
= E�− logZν�T��

= E
[∫ T

0
θ∗ν�t�dW�t� +

1
2

∫ T
0
��θν�t���2 dt

]

= 1
2

E
∫ T

0
��θ�t� + σ−1�t�ν�t���2 dt

over ν ∈ D , answering a question of John van der Hoek.
Now consider the special case K+ = �π ∈ Rdy πi = 0; ∀ i = 1; : : : ;m� of

an incomplete market as in Example 6.1(v) for some m = 1; : : : ; d− 1, d ≥ 2.
Then (7.26′) becomes

ν̂�t� =
[
r�t�1m − b̂�t�

0n

]
; 0 ≤ t ≤ T;

where b̂�t� = �b1�t�; : : : ; bm�t��∗ and n = d−m; see Karatzas, Lehoczky, Shreve
and Xu [(1991), page 721] and Cvitanić and Karatzas (1992), pages 797–
798 [as well as Hofmann, Platen and Schweizer (1992), who show that Pν̂,
the “least-favorable” equivalent martingale measure of Karatzas, Lehoczky,
Shreve and Xu (1991), coincides in this case with the “minimal equivalent
martingale measure” in the sense of Föllmer and Schweizer (1991)].

Example 7.2. Deterministic coefficients, utility function of power-type. Sup-
pose that the coefficients r�·�, b�·� and σ�·� of the market M in (2.1) and (2.2)
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are nonrandom (deterministic) functions and that the utility function U�·� is
of the so-called “power-type”

Uα�x�
4=
{
xα/α; 0 < α < 1;

log x = limβ↓0 x
β/β; α = 0;

0 < x <∞:(7.27)

Then it is shown in Cvitanić and Karatzas (1992), page 802, that

ν̂�t� = arg min
y∈K̃+

�2�1− α�δ�y� + ��θ�t� + σ−1�t�y��2�; 0 ≤ t ≤ T;(7.28)

is again independent of the initial wealth; the same is thus true of p̂.

Example 7.3. Deterministic coefficients, cone constraints. Suppose again
that r�·�, b�·� and σ�·� are deterministic and that the constraint set K+ is a
(closed, convex) cone in Rd [as in Examples 6.1(i), (ii) and (iv)–(vi)], so that
δ̃�·� ≡ 0 on K̃+. Then it is shown in Cvitanić and Karatzas (1992), page 801,
that, under certain mild conditions on the utility function U�·�, the function

ν̂�t� = arg min
y∈K̃+

��θ�t� + σ−1�t�y��2; 0 ≤ t ≤ T;(7.29)

is independent, not only of the initial wealth x > 0, but also of the utility
functionU�·�; these same properties are inherited by p̂ as well. Notice that ν̂�·�
of (7.29) minimizes not only the relative entropy H�P�Pν� as in Example 7.1,
but also the relative entropy

H�Pν�P� 4= Eν
(

log
dPν

dP

)
= Eν

[
−
∫ T

0
θ∗ν�t�dW�t� −

1
2

∫ T
0
��θν�t���2 dt

]

= Eν
[
−
∫ T

0
θ∗ν�t�dWν�t� +

1
2

∫ T
0
��θν�t���2 dt

]

= 1
2

Eν
[∫ T

0
��θ�t� + σ−1�t�ν�t���2 dt

]

over ν ∈ D .

In any of Examples 7.1–7.3 and with deterministic market coefficients [r�·�,
b�·�, σ�·�], the process of (7.26), (7.28) or (7.29) is again a nonrandom (deter-
ministic) function ν̂: �0;T� 7→ K̃+. Suppose, furthermore, that

B�T� = ϕ�P�T��, where P�·� = �P1�·�; : : : ;Pd�·��∗ is the
vector of stock price processes and ϕ�p�: �0;∞�d 7→ �0;∞�
is a continuous function that satisfies polynomial growth
conditions in both ��p�� and 1/��p��.

(7.30)

Then from (7.25), (7.30), (6.6) and the Feynman–Kac theorem [cf. Karatzas
and Shreve (1991), page 366], we see that the fair price for B�T� is given by

p̂ = exp
(
−
∫ T

0
�r�s� + δ�ν̂�s���ds

)
Q�0;P�0��:(7.31)
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Here Q�t; p�: �0;T�× �0;∞�d 7→ �0;∞� is the solution of the Cauchy problem
for the linear parabolic equation

∂Q

∂t
+ 1

2

d∑
i=1

d∑
j=1

aij�t�pipj
∂2Q

∂pi ∂qj

+
d∑
i=1

�r�t� − ν̂i�t��pi
∂Q

∂pi
= 0; 0 ≤ t < T;

(7.32)

subject to the terminal condition

Q�T;p� = ϕ�p�; p = �p1; : : : ; pd�∗ ∈ �0;∞�d;(7.33)

where we recall that the matrix a�t� = �aij�t�� = σ�t�σ∗�t� is as in (2.3). The
Cauchy problem of (7.32) and (7.33) has a unique classical solution, subject to
mild regularity conditions on the coefficients and on the terminal condition ϕ;
see Friedman [(1964), Chapter 1].

Remark 7.4. In the case of constant coefficients [r�·� = r, b�·� = b, σ�·� =
σ], the formulae (7.31)–(7.33) become

p̂ = exp�−�r+ δ�ν̂��T�Q�0;P�0��;(7.34)

Q�T− t; p� =





�2πt�−d/2
∫

Rd
ϕ�h�t; p; σz�� exp�−��z��2/2t�dz;

0 < t ≤ T; p ∈ �0;∞�d;
ϕ�p�; t = 0; p ∈ �0;∞�d;

(7.35)

where ν̂ = arg miny∈K̃+�2�1 − α�δ�y� + ��σ−1�b − r + y���2� of (7.28) is now a

constant vector in K̃+ and the function h: �0;T� × �0;∞�d ×Rd 7→ �0;∞�d is
given by

hi�t; p;y�
4= pi exp

[
�r− ν̂i − 1

2aii�t+ yi
]
; i = 1; : : : ; d:(7.36)

The Gaussian computation of (7.35) takes a very explicit form in the special
case of a European call option on the first stock, where ϕ�p� = �p1 − q�+, 0 <
p1 < ∞, for some exercise price q > 0 in a market with constant coefficients
�r; b; σ�. Then (7.34) becomes

p̂ = exp�−�ν̂1 + δ�ν̂1��T�u0�r− ν̂1; qyP1�0��;(7.37)

where

u0�r; qyp� is the Black–Scholes price of (4.4) and (4.5) with
interest rate r, exercise price q and P1�0� = p.

(7.38)

Example 7.4. “Look-back” option B�T� = max0≤t≤TP1�t� with constant co-
efficients, d = 1 and U�·� = Uα�·� as in (7.27). Again ν̂ = arg miny∈K̃+�2�1 −
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α�δ�y� + ��σ−1�b− r+ y���2� is constant and (7.25) becomes

p̂ = P1�0� exp�−�r+ δ�ν̂��T�
∫ ∞

0
f�T;ξy ρ̂� exp�σξ�dξ

in the notation of (4.7) with ρ̂ 4= �r− ν̂�/σ − σ/2.

8. European call option in a market with constant coefficients. In
this section, we use the general results of previous sections to study in detail
the three prices hlow, hup and p̂ for a European call option on the first stock
B�T� = �P1�T�−q�+ in a market with constant coefficients, that is, when the
coefficient b�·� ≡ b = �b1; b2; : : : ; bd�∗, r�·� ≡ r and σ�·� ≡ σ = �σij� in (2.2)
and (2.1) are all constants. All our examples involve closed, convex sets K+
and K− as in Section 6.

8.1. Lower and upper arbitrage prices.

Example 8.1. Constraints on borrowing [Example 6.1(viii) with K+ =
�−∞; k�, K− = �l;∞� for some k ≥ 1 and l ≤ 1]. It is easy to see from (4.6)
that the Black–Scholes price u0 belongs to L . Thus

hlow = u0(8.1)

by Theorem 5.1. On the other hand, we claim that

hup ≤ E0
[
γ0�T�

(
k− 1
k

P1�T� − q
)+]
+ 1
k
P1�0� =x ak:(8.2)

Proof of (8.2). By the definition of hup it is enough to show that we
can find for ak an admissible pair �π̃; C̃� ∈ A �ak�, such that π̃�·� ≤ k and
Xak; π̃; C̃�·� ≥ 0, Xak; π̃; C̃�T� ≥ �P1�T� − q�+ almost surely. Actually, we can
take C̃ ≡ 0.

Define for 0 ≤ t ≤ T,

X�1��t� 4= 1
γ0�t�

E0
[
γ0�T�

(
k− 1
k

P1�T� − q
)+∣∣∣Ft

]
+ 1
k
P1�t�

= Ũ�1��T− t;P1�t�� +
1
k
P1�t�; 0 ≤ t ≤ T;

(8.3)

where

Ũ�1��t; x� 4= E0
[
e−rt

(
k− 1
k

P1�t� − q
)+∣∣∣P1�0� = x

]
;

0 ≤ t ≤ T; 0 < x <∞:
(8.4)

It is clear from (8.3) that

X�1��0� = ak;

X�1��T� =
(
k− 1
k

P1�T� − q
)+
+ 1
k
P1�T� ≥ �P1�T� − q�+ = B�T�:
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Using the function Ũ�1��t; x� of (8.4), we can define

π�1��t�=
(
∂Ũ�1��T− t;P1�t��

∂x
P1�t� +

1
k
P1�t�

)/(
Ũ�1��T− t;P1�t�� +

1
k
P1�t�

)
:

We shall show that

X�1��·� =Xak; π
�1�;0�·� and π�1��·� ≤ k:

Notice, by the Feynman–Kac formula (cf. Karatzas and Shreve (1991),
page 366) and (8.4), that the function Ũ�1��t; x� satisfies the Cauchy problem

∂Ũ�1�

∂t
+ rŨ�1� = 1

2
σ2x2 ∂

2Ũ�1�

∂x2
+ rx∂Ũ

�1�

∂x
;

Ũ�1��0; x� =
(
k− 1
k

x− q
)+
:

(8.5)

From (8.5), (3.9) in the form dP1�t� = rP1�t�dt+σP1�t�dW0�t� and Itô’s rule,
we obtain

dŨ�1��T− t;P1�t��

= −∂Ũ
�1�

∂t
dt+ ∂Ũ

�1�

∂x
dP1�t� +

1
2
∂2Ũ�1�

∂x2
d�P1�t��

= −
(

1
2
σ2P2

1�t�
∂2Ũ�1�

∂x2
+ rP1�t�

∂Ũ�1�

∂x
− rŨ�1�

)
dt

+ ∂Ũ
�1�

∂x

(
rP1�t�dt+ σP1�t�dW0�t�

)
+ 1

2
∂2Ũ�1�

∂x2
σ2P2

1�t�dt

= rŨ�1��T− t;P1�t��dt+
∂Ũ�1��T− t;P1�t��

∂x
σP1�t�dW0�t�:

Therefore,

dX�1��t� = dŨ�1��T− t;P1�t�� +
1
k
dP1�t�

= rŨ�1��T− t;P1�t��dt+
∂Ũ�1��T− t;P1�t��

∂x
σP1�t�dW0�t�

+ 1
k
rP1�t�dt+

1
k
σP1�t�dW0�t�

= rX�1��t�dt+
(
∂Ũ�1��T− t;P1�t��

∂x
P1�t�σ dW0�t�

+ 1
k
σP1�t�dW0�t�

)

= rX�1��t�dt+X�1��t�π̃�t�σ dW0�t�:
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Thus X�1��·� satisfies (3.2) with C ≡ 0, whence the pair �π̃;0� is indeed the
one we needed, except we have to verify π̃�·� ≤ k. This can be checked easily
from (8.4) and the inequality

x

(
ϕ′�x� + 1

k

)
≤ k

(
ϕ�x� + 1

k
x

)
;

where ϕ�x� = �x�k− 1�/k− q�+. 2

Remark 8.1. The case k = 1 corresponds to the “no-borrowing” constraints
and is discussed in Cvitanić and Karatzas (1993), where it is also shown that
hup = a1 = P1�0� (for k = 1). In addition, these authors show that the con-
sumption process C corresponding to the hedging strategy can be taken as
C�t� = 0 for 0 ≤ t < T and C�T� = min�P1�T�; q� > 0 at time t = T.

Remark 8.2. If k > 1, then we can rewrite ak as

k− 1
k

u0
(
r; qk/�k− 1�yP1�0�

)
+ 1
k
P1�0�:

Furthermore, if k increases (in other words, as the constraint becomes
weaker), it is readily seen that the upper bound ak converges to the Black–
Scholes price u0:

hup → u0 as k→∞
= u0�r; qyP1�0�� = Black–Scholes price:

Example 8.2. Constraints on short-selling [Example 6.1(iii) with d = 1,
K+ = �−k;∞�, K− = �−∞; l� for some k ≥ 0 and l > 1]. It is easy to see from
(4.6) that u0 ∈ U, whence

hup = u0:(8.6)

We claim that in this case,

hlow ≥ E0�γ0�T��P1�T� − q�1�P1�T�≥ql/�l−1��� =x ρl:(8.7)

Proof of (8.7). Clearly, it is enough to show that ρl ∈ L . Define the pro-
cess

X�2��t� 4= − 1
γ0�t�

E0�γ0�T��P1�T� − q�1�P1�T�≥ql/�l−1���Ft�

= −Ũ�2��T− t;P1�t��; 0 ≤ t ≤ T;
(8.8)
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where

Ũ�2��t; x� 4= E0�e−rt�P1�t� − q�1�P1�t�≥ql/�l−1�� �P1�0� = x�;
0 ≤ t ≤ T; 0 < x <∞:

(8.9)

Then we have, at time t = 0,

X�2��0� = −E0�γ0�T��P1�T� − q�1�P1�T�≥lq/�l−1��� = −ρl < 0

and, at time t = T,

X�2��T� = −�P1�T� − q�1�P1�T�≥ql/�l−1�� ≥ −�P1�T� − q�+:

On the other hand, (8.9) gives 0 ≤ −Ũ�2��t; x� ≤ E0�e−rtP1�t��P1�0� = x� =
x, so that from (8.8) the positive process −X�2��·� is dominated by the P-
integrable random variable max0≤t≤TP1�t�. Hence, it is enough to find a pair
�π�2�;C�2�� ∈ A �−ρl� with X�2��·� =X−ρl; π�2�;C�2��·�. Introduce

π�2��t� =
(
∂Ũ�2��T− t;P1�t��

∂x
P1�t�

)/
�Ũ�2��T− t;P1�t���; 0 ≤ t ≤ T:

Again by the Feynman–Kac formula, the function Ũ�2��t; x� of (8.9) satisfies
the Cauchy problem

∂Ũ�2�

∂t
+ rŨ�2� = 1

2
σ2x2 ∂

2Ũ�2�

∂x2
+ rx∂Ũ

�2�

∂x
; Ũ�2��0; x� = �x− q�1�x≥ql/�l−1��

and from Itô’s rule,

dX�2��t� = −
[
−∂Ũ

�2�

∂t
dt+ ∂Ũ

�2�

∂x
dP1�t� +

1
2
∂2Ũ�2�

∂x2
d�P1�t��

]

=
(

1
2
σ2P2

1�t�
∂2Ũ�2�

∂x2
+ rP1�t�

∂Ũ�2�

∂x
− rŨ�2�

)
dt

− ∂Ũ
�2�

∂x
�rP1�t�dt+ σP1�t�dW0�t�� − 1

2
∂2Ũ�2�

∂x2
σ2P2

1�t�dt

= −rŨ�2��T− t;P1�t��dt−
∂Ũ�2�

∂x
σP1�t�dW0�t�

= rX�2��t�dt+X�2��t�π�2��t�σ dW0�t�:

Hence the wealth equation (3.2) is satisfied with C = C�2� ≡ 0. To check that
π�2��·� ≤ l, we need only verify that

(
∂Ũ�2��T− t;P1�t��

∂x
P1�t�

)/
�Ũ�2��T− t;P1�t��� ≤ l:
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This bound is not hard to derive, from (8.9) and the inequality

ϕ′�x�x ≤ lϕ�x�; where ϕ�x� = �x− q�1�x≥ql/�l−1��:

The proof is now complete. 2

Remark 8.3. Notice that we have from (2.2), P1�t� = exp��r − σ2/2�t +
σN�t��p, where p = P1�0� > 0 and N�·� is standard Brownian motion under
the probability measure P0. Therefore, ρl can be rewritten as

ρl = u0

(
r;

ql

l− 1
yP1�0�

)
+ E0

[
γ0�T�

P1�T� − ql
l− 1

1�P1�T�≥ql/�l−1��

]

= u0

(
r;

ql

l− 1
yP1�0�

)
+ qγ0�T�

l− 1
P0
(
P1�T� ≥

ql

l− 1

)

= u0

(
r;

ql

l− 1
yP1�0�

)
+ qe

−rT

l− 1
P0
((
r− σ

2

2

)
T+σN�T�≥ log

(
ql

P1�0��l−1�

))

in the notation of (7.38). Invoking the normal distribution, we arrive after a
bit of algebra at

ρl = u0

(
r;

lq

l− 1
yP1�0�

)

+ qe
−rT

l− 1

{
1−8

(
1

σ
√
T

log
(

ql

P1�0��l− 1� − �r− �σ
2/2��

√
T

))}
:

As before, if the constraints become weaker and weaker (i.e., l→∞�, then ρl
converges to the Black–Scholes price u0:

hlow → u0 as l→∞:

Remark 8.4. If we consider the no short-selling case of Example 6.1(ii) (or
equivalently, Example 8.2 with k = l = 0), then instead of the inequality (8.7),
we can actually prove

hlow = 0:

Indeed, we have from (6.6) that

exp
(∫ t

0
ν1�s�ds

)
γ0�t�P1�t� = P1�0� exp

[∫ t
0
σ�s�dWν�s� − 1

2

∫ t
0
σ�s�2 ds

]
;

which is a Pν-martingale. Thus, if we denote by D̃d the subset of all nonrandom
functions ν: �0;T� 7→ K̃− in the set D̃ , we have

Eν�γ̃ν�T�P1�T�� = P1�0� exp
(
−
∫ T

0
�δ̃�ν�s�� + ν�s��ds

)
∀ ν ∈ D̃d:(8.10)
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By Theorem 6.1, we get the inequalities

0 ≤ hlow = inf
ν∈D̃

Eν�γ̃ν�T��P1�T� − q�+�

≤ inf
ν∈D̃

Eν�γ̃ν�T�P1�T��

≤ P1�0� inf
ν∈D̃d

exp
(
−
∫ T

0
�δ̃�ν�s�� + ν�s��ds

)

= P1�0� inf
ν∈D̃d

exp
(
−
∫ T

0
ν�s�ds

)
= 0

as we can let ν tend to ∞. Thus we conclude that hlow = 0 in the no short-
selling case.

Example 8.3. Constraints on borrowing [Example 6.1(viii) with d = 1 and
K+ = �−∞; k�, K− = �l;∞� for some k ≥ 1, l ≥ k, l > 1]. Here again the upper
bound hup ≤ ak on the upper arbitrage price holds, as in (8.2) of Example 8.1.
Now, however, hlow = 0, so that the complete picture is

0 = hlow < u0 < hup ≤ ak <∞:

Indeed, we have here K̃± = �−∞;0� and δ�x� = −kx, δ̃�x� = −lx on K̃±,
so that for deterministic ν�·�,

Eν�γ̃ν�T�P1�T�� = P1�0� exp
(
−
∫ T

0
�δ̃�ν�s�� + ν�s��ds

)

= P1�0� exp
(
�l− 1�

∫ T
0
ν�s�ds

)

as in (8.10), and we obtain hlow = 0 much as in Remark 8.4, except that now
we let ν�·� tend to −∞.

Example 8.4. Constraints on short-selling [Example 6.1(iii) with d = 1
and K+ = �−k;∞�, K− = �−∞;−k� for some k ≥ 0]. In this case,

0 = hlow < u0 = hup <∞:
Indeed, hup = u0 follows as in (8.6) of Example 8.2. As for hlow = 0, observe

that now we have K̃± = �0;∞�, δ�x� = δ̃�x� = kx on K̃± and (8.10) becomes

Eν�γ̃ν�T�P1�T�� = P1�0� exp
(
−�1+ k�

∫ T
0
ν�s�ds

)

for deterministic ν�·�. We conclude hlow = 0 by letting ν�·� become very large
as in Remark 8.4.

Example 8.5. Incomplete market cases. (a) Only the first m stocks can be
traded, with 1 ≤m ≤ d− 1, d ≥ 2 as in Example 6.1(iv). Then by the explicit
formula in (4.6), we have that hup = hlow = u0.



PRICING CONTINGENT CLAIMS 361

(b) The firstm stocks, 1 ≤m ≤ d−1, cannot be traded as in Example 6.1(v).
In this case, it can be shown that hup = ∞ as in Cvitanić and Karatzas (1993).
We can show that hlow = 0. In fact, observe, once again from (6.6), that

exp
(∫ t

0
ν1�s�ds

)
γ0�t�P1�t� = P1�0� exp

[∫ t
0
σ1�s�dWν�s� −

1
2

∫ t
0
��σ1�s���2 ds

]
;

where σ1 = �σ11; σ12; : : : ; σ1d�∗. Then the same argument as for the no short-
selling case will lead to the desired result.

8.2. Computation of the fair price. Let us compute in this subsection the
fair price p̂ of (7.25) in a few examples, with closed and convex sets K± that
satisfy condition (7.12)—so that p̂ is in the interval �hlow; hup� for all these
examples.

Example 8.6. Cone constraints. Let K+ be a (closed, convex) cone in Rd

and let K− = −K+. Then from (7.29), (7.37) and the fact that δ ≡ 0 on K̃+,
we have

p̂ = exp�−ν̂1T�u0�r− ν̂1; qyP1�0��(8.11)

in the notation of (7.38), where

ν̂ = arg min
y∈K̃+

��σ−1�b− r+ y���2:(8.12)

In particular, p̂ does not depend on either the utility function or the initial
level of wealth. Here are some particular cases.

(a) Incomplete market with only the first m stocks available [Example
6.1(iv)]. Then (8.12) gives ν̂1 = 0, and (8.11) becomes

p̂ = u0�r; qyP1�0�� = Black–Scholes price:

(b) Incomplete market with the first m stocks unavailable [Example 6.1(v)].
We again have from (8.12) that ν̂1 = r− b1 (see also Example 7.1), and (8.11)
takes the form

p̂ = exp�−�r− b1�T�u0�b1; qyP1�0��:
(c) Prohibition of short-selling [Example 6.1(ii) with d = 1]. Then it can be

seen by simple algebra that in this case ν̂ = �r − b�+ in (8.12). Thus (8.11)
becomes

p̂ =
{
u0�r; qyP1�0��; if r ≤ b;
e−�r−b�Tu0�b; qyP1�0��; if r > b:

(8.13)

Example 8.7. Utility function of the power type (7.27). In this case, (7.28)
or (7.26) gives

ν̂ = arg min
y∈K̃+

���σ−1�b− r1+ y���2 + 2�1− α�δ�y��(8.14)
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and p̂ is then as in (7.37); for a set K+ that is not a cone, this p̂ depends in
general on the utility function through the constant α ∈ �0;1�. Here are some
concrete examples.

(a) Prohibition of borrowing [Example 6.1(vii) with d = 1]. Then (8.14) gives
ν̂ = −�r− b+ �1− α�σ2�− and thus (7.37) becomes

p̂ =
{
u0��b+ �α− 1�σ2�; qyP1�0��; if r ≤ b+ �α− 1�σ2;

u0�r; qyP1�0��; otherwise:

(b) Constraints on borrowing (Example 8.3). Then δ�x� = −kx on K̃+ =
�−∞;0� for some k ≥ 1, so (8.14) and (7.37) give ν̂ = −�r − b + �1 − α�kσ2�−
and

p̂ =





u0�r; qyP1�0��; if b+ k�α− 1�σ2 ≤ r;
exp�−�k− 1��b+ k�α− 1�σ2 − r��

× u0�b+ k�α− 1�σ2; qyP1�0��; otherwise:
(8.15)

(c) Constraints on short-selling (Example 8.4). Then δ�x� = kx on K̃+ =
�0;∞� for some k ≥ 0 and (8.14) and (7.37) lead, respectively, to ν̂ = �r − b +
k�α− 1�σ2�+ and

p̂ =





u0�r; qyP1�0��; if r ≤ b+ k�1− α�σ2;

exp�−�1+ k��r− b+ k�α− 1�σ2��
× u0�b+ k�1− α�σ2; qyP1�0��; otherwise:

(8.16)

8.3. Counterexamples. Finally, let us demonstrate by some examples that
the lower bound of (7.5) may fail in the absence of condition (7.12) on the sets
K±. In all these examples, the set K+ is convex, so the upper bound of (7.5)
must hold; see Remark 7.1.

Example 8.1 (Continued with K+ = �−∞; k�, K− = �l;∞� and k > 1, l ≤ 1).
Here it is easy to check that condition (7.12) fails and with utility function
Uα�·�, 0 ≤ α < 1, as in (7.27), the fair price p̂ is given by (8.15) and satisfies

p̂→ 0 as b→∞
for fixed (r; k; α; q; σ2; l), since u0�x; qyP1�0�� → P1�0� as x → ∞ [see Cox
and Rubinstein (1984), page 216]. However, we know from (8.1) that hlow ≡
u0�r; qyP1�0�� > 0, whence hlow > p̂ > 0 for all sufficiently large appreciation
rates b.

Example 8.2 (Continued). Here K+ = �−k;∞�, K− = �−∞; l� for some
k ≥ 0, l > 1. Again, it is verified that condition (7.12) fails and with utility
function of the type (7.27), the fair price p̂ is given by (8.16) and satisfies

p̂→ 0 as r→∞
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for �b; k; α; q; σ2� fixed. On the other hand, we have from Remark 8.3,

hlow ≥ ρl = u0

(
r;

lq

l− 1
yp
)

+ qe
−rT

l− 1

{
1−8

(
1

σ
√
T

log
(

lq

p�l− 1� −
(
r− σ

2

2

)√
T

))}

→ p ≡ P1�0� > 0 as r→∞:

Consequently, for all sufficiently large interest rates r, hlow > p̂ > 0.

Example 8.3. Take d = 1, r > b,K+ = �0;∞�,K− = �1;∞� [a combination
of Examples 6.1(ii) and (vii)], so that (7.12) fails again. Now K̃+ = �0;∞� and
K̃− = �−∞;0�, hlow = u0�r; qyP1�0�� as in (8.1), and from (8.13),

p̂ = e−�r−b�Tu0�b; qyP1�0�� < u0�r; qyP1�0�� = hlow:

9. Market with higher interest rate for borrowing. We have studied
so far the pricing problem for contingent claims in a financial market with
the same interest rate for borrowing and for saving. However, the techniques
developed in the previous sections can be adapted to a market M ∗ with interest
rate R�·� for borrowing higher than the bond rate r�·� (saving rate).

We consider in this section an unconstrained market M ∗ with two different
(bounded, �Ft�-progressively measurable) interest rate processes R�·� ≥ r�·�
for borrowing and saving, respectively. In this market M ∗, it is not reasonable
to borrow money and to invest money in the bond at the same time. Therefore,
the relative amount borrowed at time t is equal to �1−∑d

i=1 πi�t��−. As shown
in CK1, the wealth process X�·� =Xx;π;C�·� corresponding to initial wealth x
and a portfolio–consumption pair �π;C� as in Definition 3.5 now satisfies the
analogue of the wealth equation (3.2),

dX�t� = r�t�X�t�dt− dC�t�

+X�t�
[
π∗�t�σ�t�dW0�t� − �R�t� − r�t��

(
1−

d∑
i=1

πi�t�
)−
dt

]
;

(9.1)

whence

N�t� 4= γ0�t�X�t� +
∫ t

0
γ0�t�dC�t�

+
∫ t

0
γ0�t�X�t��R�t� − r�t��

(
1−

d∑
i=1

πi�t�
)−
dt; 0 ≤ t ≤ T;

is a P0-local martingale by Itô’s rule, in the notation of (2.4)–(2.7) and (3.6).
All the arguments in Section 5 go through under slight modifications. For

example, the lower and upper hedging classes are now defined to be
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L
4= �x ≥ 0: ∃ �π̌; Č� ∈ A �−x�; such that

X−x; π̌; Č�·� ≤ 0 and X−x; π̌; Č�T� ≥ −B�T� a.s.�;
U
4= �x ≥ 0: ∃ �π̂; Ĉ� ∈ A �x�; such that

Xx; π̂; Ĉ�·� ≥ 0 and Xx; π̂; Ĉ�T� ≥ B�T� a.s.�:
The statements of Definition 5.2 and Theorems 5.1–5.3 hold without change.

We set δ�ν�t�� = −ν1�t�, 0 ≤ t ≤ T, for ν ∈ D , where D is the class of
progressively measurable processes ν: �0;T� × � 7→ Rd with r − R ≤ ν1 =
· · · = νd ≤ 0, l ⊗ P-a.e. Then with this notation the theory of Section 6 also
goes through with only minor changes, such as replacing δ̃ by δ and D̃ by D
and so on. In particular, Theorem 6.1 now states that

hlow = inf
ν∈D

Eν�γν�T�B�T��(9.2)

and that

hup = sup
ν∈D

Eν�γν�T�B�T��:(9.3)

The proofs of (9.2) and (9.3) follow the same lines as Theorem 6.1 and Cvitanić
and Karatzas (1993), respectively. We sketch the proof of (9.2) here.

Sketch of proof for (9.2). We first repeat the proof of Theorem 6.1, right
up to (6.23). There, we change the definition of the consumption process Č�·� to
read

Č�t� 4=
∫ t

0
γ−1
ν �s�dAν�s�

−
∫ t

0
X̌�s�

[
δ�ν�s�� + π̌∗�s�ν�s� + �R�s� − r�s��

(
1−

d∑
i=1

π̌i�s�
)−]

ds:

Taking ν�t� = λ�t� ≡ λ1�t�1, where λ1�t�
4= �r�t� −R�t��1�∑d

i=1 π̌i�t�>1�, we get

Č�t� =
∫ t

0
γ−1
λ �s�dAλ�s�

as required. Skip the lines in which π̌�t� ∈K− is shown and observe that we
now have

d�−X̌�t�γν�t��
= dQν�t� = ψ∗ν�t�dWν�t� + dAν�t�

= γν�t�
{
−dČ�t� − X̌�t�

[
δ�ν�t�� + �R�t� − r�t��

×
(
1−

d∑
i=1

π̌i�t�
)−
+ π̌∗�t�ν�t�

]
dt+ X̌�t�π̌∗�t�σ�t�dWν�t�

}

= γ̃ν�t��−dČ�t� − X̌�t�9ν; π̌�t�dt+ X̌�t�π̌∗�t�σ�t�dWν�t��;
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where

9ν; π̌�t� 4= �R�t� − r�t� + ν1�t��
(

1−
d∑
i=1

π̌i�t�
)−
− ν1�t�

(
1−

d∑
i=1

π̌i�t�
)+
;

0 ≤ t ≤ T;

is a nonnegative process. Now taking ν ≡ 0, we get X̌�·� = X−g; π̌; Č�·� by
comparing with the new wealth equation (9.1), where g is now the right-hand
side of (9.2). The rest of the proof proceeds in a clearly analogous way. 2

With the adoption of the new δ�·� and D , we can define the fair price by
analogy with (7.4), and proceed in the same way as we did before, to obtain all
theorems in Section 7. In particular, an encouraging phenomenon is that the
fair price always lies within the arbitrage interval, because Assumption 7.2 is
always satisfied in this case.

The argument in Cvitanić and Karatzas (1993) for computing hup in a mar-
ket M ∗ with d = 1 and constant coefficients also works for hlow after slight ad-
justments. For example, change “sup” and “max” in (9.8) and (9.9) of Cvitanić
and Karatzas (1993) to “inf” and “min,” respectively. Then from the Hamilton–
Jacobi–Bellman (HJB) equation we can also get

hlow = u0�r; qyP1�0��
for the European call option B�T� = �P1�T� − q�+. In other words, the lower
arbitrage price is exactly the Black–Scholes price with interest rate r, while,
as has been shown in Cvitanić and Karatzas (1993), the upper arbitrage price
is the Black–Scholes price with interest rate R:

hup = u0�R;qyP1�0��:
For the fair price within the interval �hlow; hup�, we still use Theorem 7.4 and
Remark 7.1 to get the explicit fair price p̂ for the constant coefficient market
M ∗. More precisely, with utility function Uα�·� as in (7.27), it is shown in
Cvitanić and Karatzas (1992), page 816, that the ν̂ in Theorem 7.4 is given by

ν̂ =





0; if r ≥ b1 + σ2�α− 1�;
r− b1 − σ2�α− 1�; if r ≤ b1 + σ2�α− 1� ≤ R;
r−R; if b1 + σ2�α− 1� ≥ R:

Hence, (7.37) gives the fair price

p̂ =





u0�r; qyP1�0��; if r ≥ b1 + σ2�α− 1�;
u0�b1 + σ2�α− 1�; qyP1�0��; if r ≤ b1 + σ2�α− 1� ≤ R;
u�R;qyP1�0��; otherwise.

(9.4)

Remark 9.1. The expression (9.4) coincides with the so-called “minimax
price” in Barron and Jensen (1990), defined to be the number p̃ = p̃�x� for
which the function δ 7→W�δ; p̃�x�; x� of (7.3) is minimized at δ = 0. [Clearly,
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with p̂�x� as in our Definition 7.3, δ 7→ W�δ; p̂�x�; x� is minimized at δ = 0,
so we can take p̃�x� = p̂�x�, justifying this “coincidence.”]

Remark 9.2. More generally, with d ≥ 1, utility function Uα�·� of the type
(7.27) and deterministic coefficients [resp., α = 0 in (7.27) and general random
coefficients], the function (resp., process) ν̂�t� = ν̂1�t�1 is given as

ν̂1�t� = arg min
r�t�−R�t�≤y≤0

���σ−1�t��b�t� + �y− r�t��1���2 − 2y�

=





0; ξα�t� ≤ 0;
r�t� −R�t�; ξα�t� ≥ R�t� − r�t�;
−ξα�t�; 0 ≤ ξα�t� ≤ R�t� − r�t�;

by analogy with (7.26) and (7.28), where

ξα�t� = �α− 1+ θ∗�t�σ−1�t�1�/tr��σ−1�t��∗�σ−1�t���:
In the special case B�T� = ϕ�P�T�� of (7.30) with deterministic coefficients,
the computations of (7.31)–(7.36) for the fair price p̂ are all still valid.

10. Summary of examples. The results of previous discussions and ex-
amples concerning the pricing of a European call option B�T� = �P1�T�−q�+
in a market with constant coefficients are summarized in Table 1.

In the table, r is the interest rate of the bond (savings account), b1 is the
appreciation rate of the first stock on which the option is written, σ2 is the
stock volatility, u0�x� ≡ u0�x; qyP1�0�� is the Black–Scholes price for interest
rate x and exercise price q, and P1�0� is the price for the first stock at time
t = 0. Finally,

ak =
k− 1
k

u0

(
r;

qk

k− 1
yP1�0�

)
+ 1
k
P1�0� → u0�r� as k→∞;

ρl = u0

(
r;

ql

l− 1
yP1�0�

)

+ qe
−rT

l− 1

{
1−8

(
1

σ
√
T

log
(

ql

P1�0��l− 1� −
(
r− σ

2

2

)√
T

)}

→ u0�r� as l→∞;

ck = exp�−�1+ k��r− b1 + �α− 1�kσ2��u0�b1 + �1− α�kσ2�;

dk = exp�−�k− 1��b1 + �α− 1�kσ2 − r��u0�b1 + �α− 1�kσ2�;

f = b1 + �α− 1�σ2:

Remark 10.1. It should be observed that all the exact values, as well as
the bounds, for hlow and hup are independent of the appreciation rate b of the
stock, which is often difficult to estimate. This makes the lower and upper
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Table 1

hlow hup p̂

Unconstrained market u0�r� u0�r� u0�r�∗

Incomplete market, with
first m stocks available u0�r� u0�r� u0�r�∗

Incomplete market,
first m stocks unavailable 0 ∞ exp�−�r− b1�T�u0�b1�∗

No short-selling of stocks
�K+ = �0;∞�; K− = �−∞;0�� 0 u0�r�

{
u0�r�; if r ≤ b1
exp�−�r− b1�T�u0�b1�; if r > b1

∗

No borrowing
�K+ = �−∞;1�; K− = �1;∞�� u0�r� P1�0�

{
u0�r�; if r ≥ f;†
u0�f�; otherwise:

Constraints on short-selling
�K+ = �−k;∞�;
K− = �−∞;−k�; k ≥ 0� 0 u0�r�

{
u0�r�; if r ≤ f;†
ck; otherwise:

Constraints on borrowing
�K+ = �−∞; k�;
K− = �l;∞�; l ≥ k > 1� 0 ≤ ak

{
u0�r�; if r ≥ b1 + k�α− 1�σ2;
dk; otherwise:

†

Constraints on short-selling
�K+ = �−k;∞�; ≥ ρl u0�r� not appropriate (p̂ < hlow)
K− = �−∞; l�; k ≥ 0; l > 1�

Constraints on borrowing
�K+ = �−∞; k�; u0�r� ≤ ak not appropriate �p̂ < hlow�
K− = �l;∞�; k > 1; l ≤ 1�

Market with higher
interest rate R > r
for borrowing

u0�r� u0�R�




u0�r�; if r ≥ f;†
u0�f�; if r ≤ f ≤ R;
u0�R�; if f ≥ R:

∗For arbitrary utility function.
†For utility function Uα�·� of the form (7.27) with 0 ≤ α < 1.

arbitrage prices relatively easy to use. In contrast, a main drawback of the
fair price is that it does depend on b. Heuristically, it may well be that hedging,
as it is based on the arbitrage arguments, is a sort of “global” property. On
the other hand, Definition 7.3 of the fair price looks like a “local” property, as
it involves a derivative; this makes the fair price p̂ more likely to depend on
the local “drift” b (appreciation rate) of the price process.

11. Discussion.

1. With a little additional care, the method also works for the European option
with dividend rate g�t�. For example, the analogue for Theorem 6.1 will be

hlow = inf
ν∈D̃

Eν
[
γ̃ν�T�B�T� +

∫ T
0
γ̃ν�s�g�s�ds

]
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and

hup = sup
ν∈D

Eν
[
γν�T�B�T� +

∫ T
0
γν�s�g�s�ds

]
:

2. A similar lower price hlow (for “buyers,” as opposed to the hup which refers to
“sellers”) was mentioned by El Karoui and Quenez (1995) in the incomplete
market case, but without justification based on considerations of arbitrage.

3. Suppose we want to consider constraints on the number of shares φ or on
the total amount of money invested in every asset instead of on the vector π
of the proportions of wealth invested in assets. Then the general arbitrage
arguments in Section 5 still hold. However, we no longer have an easy way
to get all the representations of Section 6. For instance, the nice equation
(6.24) is changed, as the very helpful term δ�ν�s�� + ν∗�s�π�s� disappears.

4. For practical purposes, one may recommend the use of the Black–Scholes
price u0 as a “rough-and-ready” unique price, for a constrained market with
the same interest rate for borrowing and saving, when the fair price p̂ is
difficult to compute. The reasons are:

(a) The Black–Scholes price u0 always lies within the arbitrage-free inter-
val �hlow; hup�.

(b) As we saw in the case of constraints on borrowing and short-selling,
the arbitrage-free interval will shrink to u0 as the constraints become
weaker and weaker.

(c) The Black–Scholes price u0 does not involve the stock appreciation
rate b.

(d) Many numerical procedures, including software, have been developed
to calculate u0.
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Föllmer, H. and Schweizer, M. (1991). Hedging of contingent claims under incomplete informa-

tion. In Applied Stochastic Analysis (M. Davis, and R. Elliott, eds.) 389–414. Gordon
and Breach, New York.
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