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ESTIMATING THE STATE OF A NOISY CONTINUOUS TIME
MARKOV CHAIN WHEN DYNAMIC SAMPLING IS FEASIBLE

By David Assaf

The Hebrew University

A continuous time Markov chain is observed with Gaussian white
noise added to it. To the well-known problem of continuously estimating
the current state of the chain, we introduce the additional option of con-
tinuously varying the sampling rates, as long as some restriction (or cost)
on the average sampling rate is satisfied. The optimal solution to this “dy-
namic sampling” problem is presented and analyzed in closed form for the
two-state symmetric case. It is shown that the resulting dynamic sampling
procedure has a much lower asymptotic average error rate compared to the
one obtained when sampling at a constant rate. Alternatively, the dynamic
sampling procedure can provide the same error rate using a much lower
average sampling rate. The relative efficiency of the dynamic sampling
procedure may in fact tend to infinity in some extreme cases.

1. The basic problem. Let �Y�t�y t ≥ 0� be a continuous time Markov
chain with a finite number of states and some known initial condition. As-
sume that the actual state of the chain is observed with an added Gaussian
white noise having a known variance coefficient σ2 �σ > 0�. Thus, using the
conventional integrated form, the observed process �Z�t�y t ≥ 0� is given by

�1:1� Z�t� =
∫ t

0
Y�s�ds+ σW�t�;

whereW�t� is standard Brownian motion, which is assumed to be independent
of theY-process. The basic problem considered here is a continuous estimation
of the true state Y�t�, based on the observed process Z�t�, with the objective
of minimizing the long run average error rate.

Problems of this type occur naturally in many applications. To fix ideas
consider the following examples.

1. Quality control problems: specifically, oil flowing in a pipeline where Y�t�
is the actual quality at time t while Z�t� reflects our information regarding
the quality based on continuously sampling, say, 2 percent of the oil flow
(a similar example occurs when testing for air quality using a test tube).

2. Communication systems (telegraph processes) with Y�t� being the signal,
possibly the index of the station which is currently transmitting, and W�t�
the noise caused by inaccuracies of the satellite radars.

3. Geological or oceanographic studies: a typical situation is one in which sev-
eral types of layers are possible, and the objective is to “guess” the correct
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type at every point, based on measurements taken continuously throughout
the layers. In this particular example the variable t evidently relates to dis-
tance or depth rather than time, while the noise is a result of measurement
sampling error.

The problem described at the beginning of this section is often referred to as
a filtering problem and has been studied, together with many of its extensions,
throughout the years. For basic references see Liptser and Shiryayev (1977)
and the references cited there. Among the more recent references, we men-
tion the comparison between filtering and smoothing studied by Yao (1985)
and a simplified approximation method for the problem by Khasminskii and
Lasareva (1992).

In this article we deal with the special case in which the Y-process has
only two possible states, say 0 and 1, with known and equal transition rates
denoted by λ �λ > 0� between them. Some of the results obtained remain valid
in more general setups, but the computations involved in most cases seem to be
intractable and are not the main issue of this article. For a further discussion
on possible extensions, see comment 7, Section 5.

A rigorous presentation and solution of the problem is given in Liptser and
Shiryayev (1977) and several of the derivations there are used in the present
article. A brief summary of the problem and its solution is the following: let Ft

be the σ-field generated by �Z�s�x 0 ≤ s ≤ t�. An estimator Ŷ of �Y�t�y t ≥ 0�
is any Ft-adapted process �Ŷ�t�y t ≥ 0� (i.e., Ŷ�t� is Ft-measurable). For any
estimator Ŷ, define the long-run average error rate as

�1:2� α�Ŷ� = lim
t→∞

1
t

∫ t
0
I�Ŷ�s� 6= Y�s��ds;

where we agree to replace the lim by lim sup whenever needed throughout
the paper. The objective is to minimize the error rate α�Ŷ� over all possible
estimators Ŷ.

The solution is fairly straightforward: let X�t� = p�Y�t� = 1�Ft� be the
posterior probability that the actual state is 1, given all “current” accumulated
information. The process �X�t�y t ≥ 0� is sufficient for the problem and we
henceforth consider the problem in terms of this X-process only. Estimate
Y�t� by

�1:3� Ŷ∗�t� =
{

1; X�t� ≥ 1
2 ;

0; X�t� < 1
2 :

The estimator Ŷ∗ in (1.3) leads to the expression for the long-run average
error rate as

�1:4� α�Ŷ∗� = lim
t→∞

[
1
t

∫ t
0

min�X�s�;1−X�s��ds
]
:

It turns out that the limit in (1.4) exists and may be computed in a fairly
explicit way using the stationary distribution ofX�t� (see Section 4). The value
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of α�Ŷ∗� in (1.4) is the lowest long-run average estimation error attainable,
that is, α�Ŷ∗� = inf�α�Ŷ�� with the infimum taken over all estimators Ŷ.

2. Dynamic sampling formulation. The dynamic sampling version of
the problem utilizes the following idea: suppose that we are allowed to vary
the sample size as we go along, rather than sampling at the same rate all
the time. In example (1) this will perhaps mean channeling only 1 percent
of the inflowing oil for quality control examination in some instances while
channeling 5 percent (or 20 percent or 36 percent) in other instances, rather
than keeping the rate at the constant level of 2 percent all the time. In example
(2) we may want to vary the number of radars “pointed” at each of the stations
(or vary the computational effort allocated to each of them), and in example
(3) we may sample a different amount of sediment at each depth.

The mathematical model for the dynamic sampling formulation is as fol-
lows: think of σ2 in the basic model as the variance coefficient of the Gaussian
white noise when sampling at some standard fixed rate of unity [e.g., 2 per-
cent in example (1)]. When sampling at rate u �u > 0� for 1t time units, the
accumulated amount sampled is u1t units (compared to 1t in the fixed rate
basic model) resulting in an instantaneous variance coefficient of σ2/u (see
comment 8, Section 5). A sampling procedure U is defined as a nonnegative
process �U�t�y t ≥ 0� which is adapted to �F̃ty t ≥ 0� where F̃t is the σ-field
generated by �X�s�y 0 ≤ s ≤ t� and �U�s�y 0 ≤ s < t�. Thus a decision to
sample at rate u from time t to time t+ 1t may depend on the history of the
X-process up to time t as well as on the sampling rates selected during the
time interval �0; t�. Since U affects the stochastic behavior of the X-process,
the problem is evidently an optimal control one and is indeed analyzed as
such.

Two more preliminary aspects are needed before a rigorous formulation of
the dynamic sampling problem can be made. The first is noting that it is neces-
sary to put some constraint or cost on the sampling rates (otherwise one would
always choose the highest rate possible, thereby trivializing the problem). For
most of the paper we impose a cost of c per unit of sampling. The constrained
version is equivalent (see Section 4). The second preliminary result needed is
the behavior of the X-process. A slight extension of the derivation in Liptser
and Shiryayev (1977) shows that �X�t�y t ≥ 0� is a diffusion process taking
values in �0;1� with instantaneous drift and variance coefficients given by

µ�x� = λ�1− 2x�;(2.1)

σ2�x� = ux
2�1− x�2
σ2

;(2.2)

where x is the current state of the process and u is the instantaneous sampling
rate applied. It is worthwhile to point out that (2.2) holds for u = 0 as well.
In this case no sampling is done, hence no noise is present in the system and
the X-process moves deterministically according to its drift.
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The dynamic sampling problem is to determine both a sampling procedure
and an estimator to minimize the long-run average cost per unit time, where
the cost is composed of cost per error and per sampling costs. Thus for any
sampling procedure U and estimator Ŷ define

�2:3� V�U; Ŷ� = lim
t→∞

{
1
t

[∫ t
0
I�Ŷ�s� 6= Y�s��ds+ c

∫ t
0
U�s�ds

]}

to be the long-run average cost per unit time when using U and Ŷ, and define

�2:4� v∗ = inf V�U; Ŷ�

with the infimum taken over all choices ofU and Ŷ. The objective is to evaluate
v∗ and, if possible, to find a pair �U; Ŷ� which is optimal in the sense of
attaining the infimal value.

For Ŷ equal to Ŷ∗ of (1.3), expression (2.3) may equivalently be written as

�2:5� V�U; Ŷ∗� = lim
t→∞

{
1
t

[∫ t
0

min�X�s�;1−X�s��ds+ c
∫ t

0
U�s�ds

]}
:

The estimator Ŷ∗ is indeed the optimal one for the dynamic sampling version
as well, and the main focus of the paper is hence on the sampling rate and the
performance of the dynamic sampling procedure. Use of Ŷ∗ is in fact assumed
whenever Ŷ is not mentioned explicitly. The proof of optimality in Section 3
does indicate the proof of optimality of Ŷ∗ as a by-product (see also comment
3, Section 5).

Since Ŷ∗ is optimal and depends on the history only through the current
value of X, we have simplified the filtration �F̃t� slightly. A totally rigorous
formulation (which would make no difference in the analysis) would require
that the pair �U�t�; Ŷ�t�� be adapted to the σ-field generated by �X�s�y 0 ≤
s ≤ t�; �U�s�y 0 ≤ s < t� and �Y�s�y 0 ≤ s < t�.

3. Main results. Our main result in this section is the explicit evaluation
of v∗, the infimal average cost per unit time for the dynamic sampling version
of the problem as defined in (2.4). The first theorem establishes a lower bound
on v∗.

Theorem 1. Denote

�3:1� l∗ = inf 0≤x≤ 1
2

{
x+ 2λσ2c�1− 2x�

[
2 ln

(
1− x
x

)
+ 1− 2x
x�1− x�

]}
:

Then

�3:2� v∗ ≥ l∗

The following technical lemma is needed.
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Lemma 1. (i) The function

�3:3� g�x� = x
2�1− x�2
�1− 2x�2

is strictly increasing on �0; 1
2� with g�0� = 0 and g�x� → ∞ as x→ 1

2 .
(ii) The function

�3:4� h�x� = x+ b�1− 2x�
[
2 ln

(
1− x
x

)
+ 1− 2x
x�1− x�

]

for any fixed b > 0, is strictly convex on �0; 1
2 �, satisfies h�x� → ∞ as x →

0; h� 1
2� = 1

2 and its unique minimum over �0; 1
2 � is attained at some inner

point 0 < α < 1
2 .

Proof. The proof follows from direct examination of the appropriate
derivatives. Convexity of h�x� is perhaps easier than may be anticipated since
the second derivative simplifies to

h′′�x� = 2 · b2x2 − 2x+ 1
x3�1− x�3 ;

while the last statement regarding h�x� follows from its strict convexity to-
gether with h�x� → ∞ as x→ 0 and h′� 1

2� > 0. 2

Let l�x� be equal to h�x� of (3.4) for b = 2λσ2c and let 0 < α∗ < 1
2 be the

unique minimizer of l�x� in �0; 1
2 �. Thus l∗ = l�α∗� is the quantity defined in

(3.1).

Proof of Theorem 1. Applying standard results in dynamic program-
ming and control (see comments 3 and 4 in Section 5), it suffices to show the
existence of a function G�x� which is twice continuously differentiable over
�0;1� and which satisfies the inequality

�3:5� l∗ ≤ min�x;1− x� + c · u+L�u�G�x�;
where

�3:6� L�u�G�x� = λ�1− 2x�G′�x� + 1
2
· u · x

2�1− x�2
σ2

G′′�x�

is the differential operator corresponding to sampling at rate u. The coeffi-
cients of G′�x� and 1

2G
′′�x� are the corresponding drift and variance given in

(2.1) and (2.2). Inequality (3.5) needs to hold for all 0 ≤ x ≤ 1 and u ≥ 0.
We next exhibit a functionG satisfying all the requirements needed. For the

heuristic interpretation of G see comment 5, Section 5. To define the function
G, begin with the following two functions:

�3:7� G0�x� =
1

2λ

[
�x− α∗� +

(
1
2
− l∗

)
ln
(

1− 2x
1− 2α∗

)]
;
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for which

�3:8� G′0�x� =
l∗ − x

λ�1− 2x� ;

�3:9� G′′0�x� =
2l∗ − 1

λ�1− 2x�2

and

�3:10� G1�x� = 2cσ2
[
�1− 2x� ln

(
x

1− x

)
− �1− 2α∗� ln

(
α∗

1− α∗
)]

so that

�3:11� G′1�x� = 2cσ2
[
2 ln

(
1− x
x

)
+ 1− 2x
x�1− x�

]
;

�3:12� G′′1�x� =
−2cσ2

x2�1− x�2 :

Now define G by

�3:13� G�x� =





G0�x�; 0 ≤ x ≤ α∗;
G1�x�; α∗ < x ≤ 1

2 ;

G1�1− x�; 1
2 < x ≤ 1− α∗;

G0�1− x�; 1− α∗ < x ≤ 1:

To check that the function G�x� has a continuous second order derivative in
�0; 1

2�, it clearly suffices to prove that

�a� G0�α∗� = G1�α∗�;

�b� G′0�α∗� = G′1�α∗�;

�c� G′′0�α∗� = G′′1�α∗�:

Parts (a) and (b) follow directly from the structures of G0 and G1 and from the
definition of α∗. To prove (c), note that the function l�x� (i.e., h�x� of Lemma
1, with b = 2λσ2c) may be written as l�x� = x+ λ�1− 2x�G′1�x�. Since l�x� is
convex and has α∗ as its unique minimizer in �0; 1

2�, it follows that l′�α∗� = 0.
Now

�3:14� l′�x� = 1+ λ�1− 2x�G′′1�x� − 2λG′1�x�:

Substitute l′�α∗� = 0; G′1�α∗� = G′0�α∗� and solve (3.14) for G′′1�α∗� to obtain

G′′1�α∗� =
2λG′0�α∗� − 1
λ�1− 2α∗� =

2λ�l∗ − α∗� − λ�1− 2α∗�
λ2�1− 2α∗�2
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so that

G′′1�α∗� =
2l∗ − 1

λ�1− 2α∗�2 = G
′′
0�α∗�:

For 1
2 ≤ x ≤ 1 we have, by the definition of G; G�x� = G�1 − x�. Hence

G′�x� = −G′�1 − x� and G′′�x� = G′′�1 − x� from which equalities analogous
to (a), (b) and (c) at 1− α∗ follow directly. It remains to verify the behavior at
x = 1

2 , which is easy after noting that the first derivative of G at x = 1
2 indeed

equals 0 [otherwise the relation G′�x� = −G′�1−x� violates the corresponding
continuity at x = 1

2 ].
To complete the proof of Theorem 1 we next show that l∗ and G�x� satisfy

inequality (3.5). Begin by proving (3.5) for 0 ≤ x ≤ α∗. In this region (3.8)
implies that G�x� = G0�x� satisfies the equation

�3:15� x+ λ�1− 2x�G′�x� = l∗

and it hence suffices to prove that

�3:16� c+ 1
2
x2�1− x�2

σ2
G′′0�x� ≥ 0;

or equivalently,

�3:17� x2�1− x�2
�1− 2x�2 ≤

2λσ2c

1− 2l∗
:

For x = α∗, (3.17) holds as equality [by part (c)]. For 0 ≤ x < α∗, (3.17) hence
holds as inequality (Lemma 1).

For α∗ < x ≤ 1
2 ; G�x� = G1�x� and hence by (3.12) satisfies the equation

�3:18� c+ 1
2
x2�1− x�2

σ2
G′′�x� = 0:

To show (3.5) it hence suffices to prove that

�3:19� x+ λ�1− 2x�G′1�x� ≥ l∗:
The left-hand side of (3.19) is again l�x�. By the definitions of α∗ and l∗, and
properties of h�x� (Lemma 1), (3.19) holds as equality at x = α∗ and as strict
inequality for any x 6= α∗, thus concluding the proof for 0 ≤ x ≤ 1

2 . The proof
for 1

2 < x ≤ 1 now follows by substituting y = 1 − x and using the results
obtained for 0 ≤ y < 1

2 . 2

Theorem 1 proves that no policy can attain a value which is strictly better
than l∗. Our main result is that l∗ is in fact the value for the problem. To
prove this result it would suffice to point out a policy which attains the value
l∗. As far as the present author knows, however, such a policy does not exist in
the strict mathematical (or “physical”) sense, and the result is hence proved
by introducing a family of policies which approximates l∗ in the sense that for
any δ > 0 there exists a policy with value less than l∗ + δ. Once this family is
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introduced and analyzed to verify the approximations, we have the following
main result.

Theorem 2. The infimal average cost per unit time for the dynamic sam-
pling problem is given by

�3:20� v∗ = l∗

with l∗ defined by (3.1).

Proof. Let α∗ be the value minimizing l�α� (i.e., l∗ = l�α∗�), where 0 <
α∗ < 1

2 is as defined in Theorem 1 and Lemma 1.
For 0 < ε < α∗ and M > 0, define the sampling policy U�M;ε� as follows.

First, for any time at which the value of the X-process is x, the sampling rate
u is either 0 or M according to the following:

�3:21� u = u�M;ε;x� =
{
M; α∗ ≤ x ≤ 1− α∗;
0; x ≤ α∗ − ε or x ≥ 1− α∗ + ε:

It remains to define the sampling rate whenever the X-process is in the in-
terval �α∗ − ε; α∗� [or its symmetric counterpart �1 − α∗;1 − α∗ + ε�]. This
sampling rate will depend on whether the “most recent visit” of the X-process
was at α∗ − ε, in which case it is 0, or at α∗, in which case it is M. The
rate is also defined as 0 if the X-process has visited neither (due to initial
conditions). A rigorous definition of this procedure, which also includes the
symmetric �1−α∗;1−α∗+ε� case is given next: for any fixed t0 ≥ 0 such that
α∗− ε < X�t0� < α∗ or 1−α∗ < X�t0� < 1−α∗+ ε, define the time 0 ≤ τ0 ≤ t0
by

�3:22� τ0 =
{

sup�sy 0 ≤ s ≤ t0; X�s� ∈ �α∗ − ε; α∗;1− α∗;1− α∗ + ε��;
0; if no such 0 ≤ s ≤ t0 exists;

and define the sampling rate at time t0 to be

�3:23� u = u�M;ε; t0; τ0;X�τ0�� =
{
M; X�τ0� ∈ �α∗;1− α∗�;
0; otherwise:

It should be noted that the sampling rate at time t0 does not depend only
on the current state X�t0�, but rather depends on the history of the process
�X�s�y 0 ≤ s ≤ t0�.

Applying the U�M;ε� policy, the behavior of the X-process is as follows.
It first reaches the value α∗ (or 1 − α∗� for the first time. This is a transient
component which has no effect on any long-time average quantities. Once α∗

or 1− α∗ are reached, consider cycles composed of two parts. In the first part,
sampling at rate M is done. This sampling is continued until the process
reaches either α∗ − ε or 1 − α∗ + ε, thereby completing the first part of a
cycle. During the second part of a cycle, sampling is stopped, the variance
coefficient of the X-process during this time is zero [see (2.2)] and the process
moves deterministically according to its drift back to α∗ (from α∗ − ε) or to
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1 − α∗ (from 1 − α∗ + ε) thereby completing one full cycle and ready to begin
the next one.

Due to the cyclic nature, the long-run average cost for the U�M;ε� policy
may be computed using renewal–reward arguments [see Ross (1983), Chap-
ter 3.6]. More specifically, let CT; CS and CE be the expected accumulated
time, the expected accumulated sampling and the expected accumulated error
during one cycle respectively. Then the long-run average expected cost for the
U�M;ε� policy denoted by V�M;ε� is given by

�3:24� V�M;ε� = CE

CT
+ cCS

CT
:

The evaluation of the quantities CT;CS and CE requires some basic results
in diffusion processes. A convenient reference is Karlin and Taylor (1981),
Chapter 15. We begin with the evaluation of the quantities for the first part
of a cycle. During this part, the X-process is a time homogeneous diffusion
process with

�3:25� 2µ�x�
σ2�x� =

1
M

2λσ2�1− 2x�
x2�1− x�2 :

Since x is bounded away from 0 and 1, it follows that (for large M) the scale
density is given by

�3:26� s�x� = 1+O
(

1
M

)
:

Hence the scale function satisfies

�3:27� S�x� = x+O
(

1
M

)
:

Due to symmetry, assume without loss of generality that the cycle begins at
α∗. Recall that the first part ends upon reaching α∗−ε or 1−α∗+ε. The Green
function is hence given by

�3:28� H�x�=





2
�S�α∗�−S�α∗− ε���S�1−α∗+ ε�−S�x��
�S�1−α∗+ ε�−S�α∗− ε��σ2�x�s�x� ;

α∗ ≤ x ≤ 1− α∗ + ε;

2
�S�1−α∗+ ε�−S�α∗���S�x�−S�α∗− ε��
�S�1−α∗+ ε�−S�α∗− ε��σ2�x�s�x� ;

α∗ − ε ≤ x ≤ α∗;
which simplifies to

�3:29� H�x�=





2ε�1−α∗+ ε−x�σ2

M�1−2α∗�x2�1−x�2 +
o�ε�
M
+ O�1/M�

M
;

α∗ ≤ x ≤ 1− α∗ + ε;
2�x−α∗+ ε�σ2

M · x2�1−x�2 +
O�ε�
M
+ O�1/M�

M
; α∗ − ε ≤ x ≤ α∗:
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The three quantities for the first part of a cycle are indexed by “a” and are
given by

�3:30� CT�a� =
∫ 1−α∗+ε

α∗−ε
H�x�dx = O�ε�O

(
1
M

)
+ o

(
1
M

)
;

�3:31�
CS�a� =

∫ 1−α∗+ε

α∗−ε
M ·H�x�dx

= 2εσ2

1− 2α∗

∫ 1−α∗

α∗

1− α∗ − x
x2�1− x�2 dx+ o�ε� +O

(
1
M

)
;

�3:32� CE�a� =
∫ 1−α∗+ε

α∗−ε
min�x;1− x� ·H�x�dx = O�ε�O

(
1
M

)
+ o

(
1
M

)
:

The computations for the second part of a cycle are of different nature since
during this part the process is a deterministic one. Using symmetry assume
without loss of generality that the process begins at α∗−ε and ends at α∗. Since
the drift is λ�1 − 2X�t�� and no sampling is performed, it is straightforward
to evaluate the quantities, indexed by “b”, for this part of a cycle. Begin with
CT�b�. The deterministic motion may be represented as a first order linear
differential equation y′ = λ�1−2y�, the solution of which is y�t� = Ae−2λt+ 1

2 ,
with A depending on the initial condition. To solve for CT�b� set y�0� = α∗ −
ε; y�CT�b�� = α∗ to obtain

�3:33� CT�b� = 1
2λ

ln
( �1/2� − α∗ + ε
�1/2� − α∗

)
= ε

λ�1− 2α∗� + o�ε�:

Since no sampling is performed we clearly have

�3:34� CS�b� = 0

Finally, since the X-process is between α∗ − ε and α∗ during the second part
of a cycle we have

�3:35� �α∗ − ε�CT�b� ≤ CE�b� ≤ α∗CT�b�:

So that by (3.33),

�3:36� CE�b� = εα∗

λ�1− 2α∗� + o�ε�

Now CT = CT�a� + CT�b�; CS = CS�a� + CS�b� and CE = CE�a� + CE�b�.
Substituting these values from (3.30), (3.31), (3.32), (3.33), (3.34) and (3.36) in
the expression for the long-run average expected cost for the U�M;ε� policy
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(3.24) yields

�3:37�

V�M;ε� = α∗ + c2σ2λ
∫ 1−α∗

α∗

1− α∗ − x
x2�1− x�2 dx

+O
(

1
M

)
+O�ε� +O

(
1
M

)
O

(
1
ε

)

= l∗ +O
(

1
M

)
+O�ε� +O

(
1
M

)
O

(
1
ε

)
;

where the last equality is obtained by explicit computation of the integral in
(3.37). For given δ > 0, one may thus choose ε > 0 small enough and M large
enough to yield

�3:38� V�M;ε� ≤ l∗ + δ;
thereby completing the proof. 2

4. Numerical aspects and relative efficiency. In this section we focus
on the performance of the dynamic sampling procedure via the limiting value
l∗ and the U�M;ε� policy in the limiting M→∞; ε→ 0 sense.

(1) Recall first that l∗ is the minimum of l�x� over �0; 1
2 � attained at a

unique 0 < α∗ < 1
2 where

�4:1� l�x� = x+ 2λσ2c�1− 2x�
[
2 ln

(
1− x
x

)
+ 1− 2x
x�1− x�

]
:

The values of α∗ and l∗ hence depend on the parameters λ; σ2 and c only
through b = 2λσ2c. It is easily verified that the minimizing α∗ tends to 0 as
b → 0 and tends to 1

2 as b → ∞. In particular it follows that for any given
values of two of the parameters λ; σ2 and c and any prespecified 0 < α∗ < 1

2 ,
there exists a value of the third parameter for which the minimizer of l�x� is
the prespecified α∗.

(2) The constrained version. An alternative and natural presentation of the
dynamic sampling problem is one in which the average long-run sampling
rate is constrained to be at some specified level γ > 0 and the problem is
to minimize the average long-run error rate subject to this constraint. Using
the preceding arguments, it follows directly that the optimal solution to this
constrained problem has the same U�M;ε� �M→∞; ε→ 0� sampling policy
but the numerical evaluation of the critical level α∗ should be adjusted as
follows. First rewrite (4.1) as

�4:2� l�x� = x+ cγ�x�:
Note that by the analysis of Section 3, l�x� is the long-run average cost per unit
time when applying theU�M;ε� �M→∞; ε→ 0� policy, but with α∗ replaced
by x �0 < x < 1

2�. Equation (4.2) splits this cost into its two components, x,
which is the error level and γ�x�, which is the average sampling rate [see in
particular (3.24) and the arguments there].
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For the constrained version of the problem we choose α∗ as the solution
to the equation γ�x� = γ. Since (as can be seen from previous arguments,
or verified directly), γ�x� is strictly monotone over �0; 1

2� with γ�x� → ∞ as
x → 0 and γ�x� → 0 as x → 1

2 , it follows that for any prespecified sampling
level γ > 0, there exists a unique 0 < α∗ < 1

2 solving γ�α∗� = γ. This α∗ is the
average infimal long-run average error rate for the constrained problem. It is
also the α∗ for the original problem with cost c for a properly chosen c [see
part (1) of this section].

(3) Relative efficiency. It is of course of major interest to compare the dy-
namic sampling procedure to the procedure in which the sampling rate is fixed.
The comparison is more natural when considering the constrained version for
the dynamic sampling case.

For the fixed-rate problem, it is shown in Liptser and Shiryayev (1977) that
X�t� has a stationary density given by

�4:3� q�x� = k

x2�1− x�2 exp
(
−2λσ2

(
x

1− x +
1− x
x

))
;

for 0 < x < 1, where k is a normalizing constant. Using symmetry, the long-
run average error rate for the fixed rate case, denoted α(f.r.), is hence given
by

�4:4� a(f.r.) = 2
∫ 1/2

0
x · q�x�dx:

It is also shown that as λσ2 → 0, the value in (4.4) is (approximately) given
by

�4:5� α(f.r.) ∼= −2λσ2 ln�λσ2�:
For the dynamic sampling procedure in its constrained form, we solve the

equation γ�α� = γ, namely

�4:6� 2λσ2�1− 2α�
[
2 ln

(
1− α
α

)
+ 1− 2α
α�1− α�

]
= γ

and the α∗ solving (4.6) is the long-run average error rate for the dynamic
sampling problem, denoted next by α(d.s.) The value of α(d.s.) is seen to depend
on λ; σ2 and γ only through γ/�2λσ2�. As λσ2 tends to 0, α(d.s.) also tends to
0 and from (4.6) it is given approximately by

�4:7� α(d.s.) ∼= 2λσ2

γ
:

Two types of comparison appear natural in this context. The first compares
α(f.r.) to α(d.s.) with the same average sampling rate. Substituting γ = 1 in
(4.7) yields

α(d.s.)
α(f.r.)

∼= −1
ln�λσ2� ;

which tends to 0 as λσ2 → 0.
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Table 1

Numerical results for various values of λσ2 1

ls2 1 0.5 0.1 0.05 0.01 0.001 0.0001 0.00001

α(f.r.) 0.403 0.367 0.246 0.186 0.0750 0.0130 0.001842 0.0002302

α(d.s.) 0.378 0.330 0.174 0.105 0.0219 0.00204 0.000201 0.0000200
γ 0.616 0.598 0.506 0.444 0.294 0.165 0.1102 0.08712

1All numbers are rounded up to three significant digits.
2Computed using the approximation in equation (4.5).

A second comparison may be made by equating the error rates and solving
for γ. This yields

γ ∼= −1
ln�λσ2� ;

which again tends to 0 as λσ2 → 0, indicating that the dynamic sampling
procedure can achieve the same error rate with only a fraction of the sampling
time.

Numerical results for various values of λσ2 are summarized in Table 1.
Thus for example, when λσ2 = 0:001, the error rate for the fixed rate sampling
is about 1.3 percent while being only about 0.2 percent with dynamic sampling.
To maintain the same 1.3 percent error rate, the dynamic sampling procedure
needs less than 17 percent of the sampling amount needed by the fixed rate
method.

The comparison also clarifies another aspect of the basic difference between
the fixed rate and dynamic sampling procedures. Assume there has been a de-
cision to allow an increase in sampling effort by, say, 30 percent. Evidently
one can obtain improved performance by either of the methods. In fixed rate
sampling this would come into effect by decreasing the value of σ2 to σ2/1:3 re-
sulting in corresponding values of (4.3), (4.4) and (4.5). The dynamic sampling
approach is solving (4.6) with γ replaced by 1:3γ and moving the critical level
to the lower resulting value α(d.s.), which solves the corresponding equation.

5. Additional comments. (1) Applying the U�M;ε� sampling policy in
the limiting M → ∞; ε → 0 sense causes the X-process to appear as if it
occasionally shifts “in no time” between the two states α∗ and 1−α∗ (excluding
perhaps an initial transient period). Using the estimation rule Ŷ∗, the error
probability is hence constant at α∗.

(2) Several well-known models are closely related to the one studied in this
article. One of these is the problem of search for a target which moves between
several locations according to a specified Markov process, and the objective is
to search the locations until the target is detected, using the minimal ex-
pected total cost. The problem is studied by Weber (1986), while the dynamic
search version is studied by Assaf and Sharlin-Bilitzky (1994). A second class
of models are quality control problems in general and the change point detec-
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tion problem in particular. It seems that the first to discuss the possibility of
controlling the variance is Bather (1976). Dynamic sampling for the change
point problem is suggested and analyzed by Assaf (1988).

(3) The sufficiency of the optimality condition (3.5) is fairly straightforward
to prove directly but the proof is omitted here since it appears to be well
known and has been proven in many analogous cases [see for example Flem-
ing and Rishel (1975), Gihman and Skorohod (1979), as well as Ross (1982)
for the discrete case]. Inequality (3.5) also proves optimality of Ŷ∗ since the
term min�x;1− x� is the lowest error rate possible at state x. The following
comments 4 and 5 address other insights regarding the optimality conditions.

(4) The more familiar form of the optimality conditions for the average cost
case is perhaps the equality (as 1t→ 0)

�5:1� G�x� + l1t = inf
u
�c�x;u�1t+EuG�x+ 1X��;

where u is a general “action,” c�x;u� is the cost rate associated with state x and
action u, and 1X is the change of state during the time 1t with expectation
Eu depending on the action u. If equality holds (for all x) for some admissible
function G, then l is the infimal long-run average cost rate. Inequality in (5.1)
ensures that such an l is a lower bound on the infimal rate. Taking (5.1) with
inequality as 1t→ 0 in our problem results in (3.5).

(5) A constructive method of arriving at an appropriate function G�x� is
by taking it to be the difference, in accumulated loss, between starting the
problem at state x or at some “nominal” state (α∗ is selected for our problem)
when using an optimal policy. It may be verified that G�x� defined in (3.13)
has this property when the U�M;ε� sampling policy is applied in the limiting
sense and symmetry around 1

2 is used.
(6) With constant rate sampling, “real time” and “sampling time” are iden-

tical (assuming that the constant sampling rate is 1. Otherwise they are pro-
portional). Dynamic sampling allows separating them. The U�M;ε� policies
indicate, in fact, that it is best to try and separate them as much as possible.

(7) Extensions of the model to more than two states and/or nonsymmetric
cases result in severe technical difficulties. This is the case for the basic model
[as indicated by Yao (1985)]. The dynamic sampling extensions appear to be
extremely difficult to handle analytically as well, although there seems to be
hope for some extensions in the future.

(8) A basic assumption made in this article is that multiplying the sampling
rate by u results in a noise variance of σ2/u. Taking u = 2 as an example may
be interpreted as having two parallel independent samples of size 1t, each
having variance of σ2 ·1t for estimating the mean. Averaging the two estima-
tors hence results in an estimator with variance �σ2/2�1t. The interpretation
is precise when the theoretical sampling ability is unlimited. If the sampling
rate is bounded by some number M0 then a similar analysis shows that the
U�M0; ε� policies are optimal when ε → 0. The analysis is more delicate in
this case since the quantities (3.30), (3.31) and (3.32) for the first part of the
cycle need to be written more explicitly in this case. Depending on the partic-
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ular application, one may also need to take a correction for finite population
into account when setting up the model.

(9) Some of the small error rates in Table 1 may appear somewhat artificial.
These, however, naturally depend on the particular application. In screening
for contaminated populations, for example, small error rates are desirable,
and the difference between 10−3 and 10−4 may be of utmost importance.

(10) The error rate in (4.7) is also obtained by Yao (1985) for the same
problem (without dynamic sampling), but when smoothing is used rather than
filtering. This is surprising and some further research is called for to check
the relation (if any) between the two methods.
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