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AVERAGE PERFORMANCE OF A CLASS OF ADAPTIVE
ALGORITHMS FOR GLOBAL OPTIMIZATION

By James M. CALVIN!

New Jersey Institute of Technology

We describe a class of adaptive algorithms for approximating the
global minimum of a continuous function on the unit interval. The limit-
ing distribution of the error is derived under the assumption of Wiener
measure on the objective functions. For any & > 0, we construct an algo-
rithm which has error converging to zero at rate n~ ~#) in the number of
function evaluations n. This convergence rate contrasts with the n=1/2
rate of previously studied nonadaptive methods.

1. Introduction. The purpose of this paper is to characterize the aver-
age performance of a class of adaptive global minimization algorithms under
the Brownian motion model for the objective function. The object of a global
minimization method is to approximate the global minimum f* of a function
f, and sometimes also a location ¢* where the minimum is attained. We take
f to be a continuous function defined on the unit interval, and adopt the
framework that the approximation is based on observation of the function
value at sequentially selected points in the unit interval. That is, the searcher
chooses points £;,%,,..., €[0,1] and forms an approximation (£}, f¥) to
(¢*, f*) based on {(¢;, f(¢,)): i =1,2,...,n}. An adaptive algorithm chooses
each new point ¢, , as a function of {(¢;, f(¢,)): i = 1,2,...,n}, while a
nonadaptive algorithm chooses each point independently of the function
values. We allow the possibility that the algorithm uses auxiliary random-
ness in the choice of observation sites. "

We consider a class of adaptive algorithms that use only limited past
information. For any & > 0, we construct an algorithm for which the error
converges to 0 at rate n~*~%, in contrast to the n~!/2 rate characteristic of
nonadaptive algorithms. We also identify the limiting distribution of the
normalized error. The improved efficiency relative to nonadaptive algorithms
comes from using information from past observations to concentrate the
search in decreasing subregions of the minimizer.

Several methods have been used to compare the performance of different
global optimization algorithms. In this paper we will be concerned with the
average performance criterion. The idea is to regard f as the sample path of a
stochastic process and then classify algorithms based on the average error in
their approximations. This method has been used to study the average
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performance of nonadaptive algorithms in the case where f is taken to be a
sample path of a Brownian motion process. Ritter (1990) showed that for the
best non-adaptive method, the average error decreases at rate n~!/? in the
number of observations n. Calvin (1995) compared the average error for
deterministic uniformly spaced observations with the expected error associ-
ated with random uniform sampling. Al-Mharmsh and Calvin (1996) show
that the optimal nonadaptive sampling density for approximating the error
for Brownian motion is a beta distribution. Asmussen, Glynn and Pitman
(1995) describe the limiting distribution of the normalized error for the
deterministic uniform grid. Calvin and Glynn (1996) extend many of these
results to a more general class of diffusions.

Several authors, including Kushner (1964), Zilinskas (1976), and Archetti
and Betrd (1979), have constructed adaptive optimization algorithms based
on the Brownian motion model for the objective function. Most of the algo-
rithms constructed are significantly more complex than the algorithms con-
sidered in this paper, and their performance is consequently harder to
characterize.

In Section 2 we establish notation and describe the basic approach, as well
as summarize some relevant facts about nonadaptive algorithms. In Section 3
we derive the limiting joint distribution of the error in the function value and
function arguments under uniform sampling. These results are used to
establish the convergence characteristics of the class of adaptive algorithms
in Section 4. The results of some numerical experiments are presented in
Section 5.

2. Notation and the basic idea. Let (B(¢): 0 <t < 1) be a standard
Brownian motion defined on a probability space (Q,, %, P;), and let
{U,,U,,...} be a sequence of independent, uniform (0, 1) random variables
defined on a probability space (Q,, %, Py). Set (1,7, P) = (), X Q,,F; X
5, Py X P,). Let B* denote the global minimum of the Brownian motion, and
t* the (first) location where B* is attained. The minimizer is almost surely
unique, so the issue of which local minimizer to assign to ¢* is not important
for our results. Denote by u* the value U; (1 < i < n) such that B(U)) < B(U),
1 <j < n, and U, is the smallest value with this property. Let A, denote the
difference between the smallest value seen in the first n observations and the
global minimum and let I, denote the difference between the global mini-
mizer and the minimizer of the first n observations. The formal definitions
are as follows (see Figure 1):

(2.1) B* = omtinlB(t),

(2.2) t* = inf{¢: B(¢) = B*},

(2.3) u} = min{U;: B(U;) < B(U;), 1<j<n},

(24) A, =A (0, @) = 12132”3(0)1, U(w,)) — B*(wy),

(2.5) I, =G0, @) = ug (@, 03) = % (oy).
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A simple nonadaptive global minimization algorithm consists of choosing
the observation sites independently, uniformly over [0,1], and taking the
smallest observed value as the approximation to the global minimum; A, is
the corresponding approximation error. The following result, proved in Calvin
and Glynn (1997), characterizes the average performance of this nonadaptive
algorithm, (This result will also emerge as a corollary of Theorem 3.1 below.)

THEOREM 2.1. Fory > 0,
(2.6) P(VnA, < y) — tanh*(vV2y)
asn — w,

Note that there are two sources of uncertainty, the random function ‘and
the random observation points, and the probability in Theorem 2.1 is the
product of the two probabilities; that is, the error is averaged over all sample
paths. If the sample path is fixed, then the error fails to converge in
distribution for almost all sample paths [see Calvin and Glynn (1997) for
details]. One can therefore think of Theorem 2.1 as giving an approximation
to the error when averaged over many independent optimizations, but it says
nothing about what happens when a fixed path is optimized.

In order to improve on the performance of the basic nonadaptive scheme
just described, it is necessary to concentrate search effort near the minimizer.
This will be accomplished by algorithms constructed according to the follow-
ing general framework. On the (n + 1)st iteration, with probability 1/2 we
choose the observation site uniformly over the entire unit interval, and with
probability 1/2 we choose the site uniformly over a small subinterval cen-
tered at £, where £* is the location of the smallest observed value over those
points chosen uniformly over the entire interval. We emphasize that £* is not
the location of the smallest value observed in the first n observations; rather
it is the location of the smallest of those (on average n/2) observations
chosen uniformly over the unit interval (i.e., we exclude the outcomes of the
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local searches). The width of the interval of the local search decreases over
time, so that the local searches become more concentrated as the searck
progresses.

Formally, let {B8;: i > 1} be a sequence of independent Bernoulli (1/2
random variables defined on (Q,, %, P,), independent of the {U}. Let {a,} be
a decreasing (deterministic) sequence of positive numbers. The algorithms
have the following form:

Set £, = i* = t* « U,, B¥ = Bf « B(t,);
Fort=1,2,...,n — 1,
If B,,, = 0, {perform global search}
Set £, < Upius
If B(t,,,) < By, then set tf,; < t,,q, Bf,; < B, );
If B(t,,,) < B¥, then set £},, « t,.,, B¥,; « B(t,,,)%
Else if B,,, = 1, {perform local search}
Set £4,1 < i + @ 1(Uprr — 3
If B(t,,,) < B}, then set tf,, < t,,,, Bf,, < B(t,, ).

In the second to last step, it is possible that for small %, ¢, , will be set tc
a value outside the unit interval. In this case, it is understood that a new
realization U, is chosen and the step repeated. This will not be important for
our limit results, so we prefer not to complicate the algorithm description.

After the last step, B} is our approximation to B* and t¥ is our approxi-
mation to ¢t*. We will be interested in the quality of the approximations
produced by the algorithm as the number of steps n — .

It is easy to see that this algorithm is consistent (for any choice of sequence
{a,}) in the sense that the error converges to zero P,-a.s. for any Brownian
path The only information from the past maintained by the algorithm
consists of £*, B*, t*, and B?. The sequence {£*; n > 1} is a Markov chain
with values in [0 1] though note that {¢,; n > 1} is not a Markov chain. A
common definition of Markov algorithm is that the (n + 1)st point has a
distribution that depends on the nth point and the function value at the nth
point, and not on previous observations; simulated annealing is an example of
this class of algorithm. [See Zhigljavsky (1991) for this definition and several
examples.] Our algorithm therefore does not fit this definition of Markovian
algorithm, since in addition to (¢,, f(¢,)), the distribution of the next point
will also depend on #*.

To complete the description of the algorithm, it remains to determine a
choice of the sequence {a,}. If a, goes to 0 too fast relative to the speed at
which #* — t* goes to 0, then the local search will tend to concentrate in
subregions away from ¢*. On the other hand, if a, goes to 0 too slowly, then
the performance gain relative to uniform sampling will be small. In particu-
lar, if @, | @ > 0, then the asymptotic performance will be of the same order
as for uniform sampling. To determine an appropriate rate, it is necessary to
know the rate at which #* — ¢t* converges to 0, which will be determined in
the next section.
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3. Joint distribution of error variables. We begin by analyzing the
joint distribution of the error variables (A, T,) under uniform sampling. As
shown in Theorem 1, Vn A, converges in distribution as n — c. In this
section we will show (in Theorem 3.2) that n(u} — t*) converges in distribu-
tion, thus giving the convergence rate needed to determine the {a,} sequence
for our adaptive algorithm. In fact, we will derive the limiting joint distribu-
tion of (Vn (B* — B*), n(u* — ¢%)) as n — ®. As noted in the introduction, the
error in approximating the location of the minimizer is also important for the
global minimization method, so the results of this section are of independent
interest.

We begin by describing some random variables that will be needed in the
description of the limiting distribution of (Vn (B* — B*), n(u* — ¢*)).

Let R, and R, be two independent three-dimensional Bessel processes,
and define a “two-sided Bessel process” R by

R,(¢t), ift =0,

(3.1) B() =\, (-s), ift<o.

(The three-dimensional Bessel process is the diffusion that is identical in law
to the modulus of a three-dimensional Brownian motion.) Let {r;} be an
enumeration of the points of a Poisson point process on the line with unit
intensity, independent of R, and set

A = infR(7;), I = inf{lr;|: R(7;) = A}.
THEOREM 3.1. The joint Laplace transform of (A,T) is given by

[ [ e PPl edt, Acdy)
{0,=)”10, =)

(3:2) o V1+ aexp(—B,/V2) sinh( x)
T VTH acosh(zvV1l + a) + Vasinh(xvV1 + a) cosh®(x) %

Proor. Since R and the point process are symmetric about 0, we first
derive the joint distribution of the error variables to the right of 0, say
(AR, TR),

Fix y > 0, and let L, = sup{¢: Ry(¢) = y} be the last time that the Bessel
process R; hits the level y. Then [see Revuz and Yor (1991), page 294],

(3.3) {R(L,—t):0<t<L}={X(t):0<t<T,},

where X is a Brownian motion starting at y and T is the hitting time of 0.
Therefore, given that A® = y, the conditional distribution of I'? is that of the
hitting time to 0 of a Brownian motion starting at y, conditioned not to be at
a level below y at the points of a Poisson process. To determine this
distribution it is convenient to consider the Brownian motion killed at unit
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rate below level y; that is, consider the diffusion Y with generator A, where
for fe C?,

Af(x) = %f"(x) - I{xsy}f(x)‘
Let P, denote the distribution of the killed Brownian motion Y starting at y
(with E the corresponding expectation operator), and let { denote the “death

time” of Y. Denote by P, the distribution of the Brownian motion X starting
at y. Then if {r;} are the points of the Poisson point process,

Py(ogilgTOX(f,.) >y) = Py(Ty < ¢).

For each a > 0, there exists a unique (up to multiplication by a positive
constant) strictly positive decreasing solution f, to

(3.4) Af(x) = af,(x),

such that lim , ,, f,(x) = 0 [see Itd and McKean (1965), Section 2.6]. That is,
f., satisfies

38) (fuld) ~fu) =af f(x)det [ Leopfi(x)ds, c<d.

Then for x > 0,

fu(%)
1a(0)

[see 1td and McKean (1965), Section 4.6). Given that AF = y, the conditional
distribution of T'F is the P, distribution of T, given that 0 is reached before
the process is killed. To determine this, we use (3.6) to first find the Laplace
transform of the defective random variable 7, under P;.

For fixed a > 0, (3.5) has a decreasing solution given by

6cosh(x\/2(1 + a)) + B sinh(x\/2(1 + a) ), ifx <y,

(3.6) E.exp(—aTy) =

fox) =
y cosh(xv2a) + & sinh(xy2a), ifx>y,
for constants 8, B, v, £. Taking the solution with £,(0) = 1 implies 8 = 1. The
requirement that lim, ,, f,(x) = 0 implies that y = — £. In order for f, and

f.. to be continuous at y [as required for a solution of (3.5)], we need that

-vV2(1 + a) sinh(y 2(1+a))—\/2—acosh(y 2(1+a))
V2(1 + @) cosh(yy2(1 + «) ) + V2asinh(yy2(1 + a) )

B=

and

_ V2(1 + o) exp(yV2a)
77 VR(T + a) cosh(yy2(1 + a) ) + V2asinh(yy2(1 + a) )
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Therefore,
fo(¥)
f.(0)

Eexp(—aTy) = = yexp(-yV2a)

V2(1 +a)
V2(1+ a) cosh(yy2(1 + a) ) + V2asinh(yy2(1 + a) )

Consequently,

e *'P/(T, € dt)
‘/;0,00) y( 0 )

B V2(1 + a)
 V2(1 + a) cosh(yy2(1 + ) ) + V2asinh(yy2(1 + o) )’
and
1
(37) Py(TO < °°) = W
Therefore,

| e™Py(Ty € dtIT, < )
[0,)

(38) _ V1 + acosh(yv2)
VI + acosh(yy2(1 + ) ) + Vasinh(yy/2(1 + @) )’

By (3.3),

P(T® e dt|AR = y) = P)(T, € dt|T, < »).
Therefore,
(3.9) P(T edt, Aedy) =P(I' edtlA =y)P(A € dy)

= P(I'? € dt|AR = y)P(A € dy),

where the last equality follows from symmetry around 0 and conditioning on
whether the minimum occurs to the left or right of 0. To obtain the marginal
distribution of A, note that by (3.7) and the fact that A is the minimum of two
independent copies of A%,

1
P(A>y)=P(AR>yY =P (T, < )= —— |
( y) ( y) y( ] 00) COSh2(y\/§)
and therefore
2v2 sinh(yv2)
3.10 P(Aedy) = ————————dy.
( ) ( = y) cosh3(yv'2') y
Combining (3.10) with (3.9) gives
2V2 sinh( V2 )

P(T' edt, A edy) = P(T, € dtIT, < m)m y.
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Using (3.8) then gives
[ [ e=t#P(T edt, A €dy)
[0,%)7[0, =)
2V2 sinh(yv2)
cosh®(yv2)
/w e %1 + acosh(yv2)
oI acosh(y 2(1 + a)) + \/Esinh(y 2(1 + a))
y 2V2 sinh(yv2 )
cosh®(yv2) Y

_of" V1 + aexp(—8,/V2) sinh( x) e
- /xeo V1 + acosh(xvVl + &) + Vasinh(xv1 + a) cosh®(x)

which completes the proof. [J

= [ [ e #PyT, € dtIT, < =) dydt
t=0"y=0

The Laplace transform of the distance to the minimizer is given by

[ e P(Tedt)
[0

, )
e 2v2 V1 + acosh(yv2)
B fy=0 V1 + acosh(y 2(1 + oz)) + \/Esinh(y 2(1 + a))
sinh(yv2)

cosh®(yv2) Y

o[ Vi+a sinh(x)
- /;=o V1 + acosh(xV1 + a) + Vasinh(xV1 + a) cosh®(x)

While the Laplace transform is awkward to invert, it serves to establish that
E(T) = o,

For the remainder of this paper, we turn our attention to more general
algorithms than independent uniform sampling, and we will adjust our
notation slightly. For the rest of this section, {¢;} is a sequence of observation
sites generated by an arbitrary algorithm. We will still use A,,T, to denote
the error variables, as before, but now they represent the errors based on the
sequence {¢;} and not the particular sequence {U;}. Specifically,

(3.11) A, =470, 0) = lmin B(w;,t;(wy)) — B*(wy),
<isn
(3.12) [, =L(w, @) =t5 (e, 0;) —t*(w).

The next result shows that if the points can be normalized so as to
converge to a Poisson point process, then the normalized error converges in
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distribution to (A, I'). Taking ¢, = n and ¢; = U, gives the result promised in
the first paragraph of this section for the limiting distribution of (vVn (B* —
B*), n(u® —t*) as n > «,

THEOREM 3.2. Suppose that {c,} is a sequence of positive real numbers,
¢, 1%, and define a sequence of point processes on the line by

n
Nn(A) = Z Ic,,(ti—t")e A)
i=1

for Borel sets A. Suppose that N, —, N as n — », where N is a Poisson point
process on the line with unit intensity, independent of B. That is, the law of N,
converges weakly to the law of N, in M (R), the space of point measures on R.
Then

(Ven (BE = B*), ¢, (5 — t*)) = (e, A, c,T,) =5 (A,T)

as n — o, where the distribution of (A,T') is given in Theorem 3.1.

ProoF. The idea of the proof is contained in Asmussen, Glynn and
Pitman (1995). Fix T > 0 and let

AT =inf{B(t;) -B*: 1<i<n, it —t* < Te, '},

AT =inf{B(t;) —B*: 1 <i<n,|t, - t*| > Tc;'},

I7 = inf{l¢, — t*: B(t;) — B* = A, |t; — t*| < Te; ).
Let
Ve, (B(t* +t/c,) —B*), if0<t<T,

3.13 Z,(t) =
(8.13) () {\/E::(B(t*wt/cn)—B*), if -T<¢<0.
Conditional on B* = b, t* = s, B(1) = y — b, Z, converges in distribution to
R (restricted to [—T,T) in C[—T, T]; this is Lemma 2 in Asmussen, Glynn
and Pitman (1995) and Brownian scaling. Define the map ¥: C[-T,T] X
M, (-T,TD - R? by

(3.14) ¥(Z, M) = (‘.rln%nTZ(ti), min{|t: Z(t,) < Z(2,), It;) < T}),

where the t;’s are the support of M. This map is continuous except possibly at
(Z, M) for which M{—-T,T} > 0, and N{—T,T}) = 0 almost surely. There-
fore, by the continuous mapping lemma, since (Z,, N,) —, (R, N), we con-
clude that

(318)  ¥(Z,,N,) = Ve, A%, ,IT) >4 ¥(R,N) = (&7,T7)
as n — «, where

AT = inf R(r), I7=inf{r): R(x) = &7),
;< T
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and R and {r;} are defined before Theorem 3.1. For any fixed a < «, Lemma 4
of Asmussen, Glynn and Pitman (1995) gives that

(3.16) hm hmsupP(‘/—AT < a) = 0.

n—ow

Therefore, for any a, b > 0,
limsup|P(‘/aA <a,c,t, < b) P(A<a,T'x< b)l

I n-n =
< limsup| P(ye, A, < a, ¢,T, < b) - P(ye, AL <a, ¢,IT < b))
noso
+limsup| P(y/e, AL < a, ¢,IT < b) — P(AT <a, I” < b)|
nsco

+|P(A" <a, T" <b) -P(A<a,T <b)|
2 Ly(T) + Ly(T) + Ly(T).
By (3.16), L|(T) - 0 as T 1, since

L(T) < limsupP(‘/EN;, < a).
n—oo

By (8.15), L,(T) = 0. Finally, as T 1, (AT, T?) -, (A,T"), and so Ly(T) - 0
as T 1, and the theorem is proved. O

As noted at the end of Section 2, to analyze the adaptive algorithms we are
interested in the convergence rate of #* — ¢* to 0. Theorem 3.2 establishes
(taking ¢, = n) that n(UF —¢*) -, I' as n — o Therefore, if M, ~
Bmomlal(n 1/2) independent of the {U } and t*, then M, (Uy —t*) -, I
Since n/M, converges to 2 in probability, we have that n(t* —t%) converges
in distribution as n — o, and if § > 0, then n!~%(#* - ¢*) -, 0.

4, Limiting behavior of algorithms. In this section we will analyze
the limiting distribution of the normalized error under the adaptive algo-
rithm described in Section 2. Throughout this section, § € (0, 1) will be fixed.
We will use the sequence a, =[2(2 — 8)]"'n" "% in the definition of the
algorithm. Since n(f* — t*) converges in distribution, this choice of a, en-
sures that the distance between £* (the center of the local search) and ¢* will
be asymptotically negligible compared to the scope of the local search.

Letting @©, =a, (U, — 1/2) = [22 — 8] 'n~ 19U, — 1/2), the algo-
rithm described in Section 2 takes the following specific form:

Set ¢, = £¥ = ¥ « U, B¥ = B « B(¢,);
Fork=1,2,...,n—1,
If By.1 = 0, {perform global search}
Set 1, < Upsys
If B(¢,.,) < Bf, then set biv1 <ty By« Bty 1)
If B(t,,,) < Bk, then set £¥,, « t,,,, B¥ | « B(¢,,);
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Else if B,,, = 1, {perform local search}
Set 1y, < &} + 0, ;
If B(t,,,) < Bf, then set tf,, « t,,,, Bf,; « B¢, ).

For the rest of this section, {¢;} will denote the observations produced by
this algorithm with fixed 8, and A, and I, will denote the corresponding
error variables.

We will make use of the following result from Kallenberg (1976), special-
ized to our setting.

THEOREM 4.1. Let N, (n > 1) and N be point processes on R*. Let <
denote the class of rectangles (s;,¢; 1 X (85,8, 1 X -+ X (s;, ¢, ] € R, If for
anyjand A, A, A,,...,A; €Y,

EN,(A) —» EN(A)

and

e

)

We will use Theorem 3.2 with ¢, = n®~® to establish the limiting error
distribution.

el 0] o] -]

i=1

i

asn — «, then N, =, N.

THEOREM 4.2. For n > 1 and Borel sets A, let
n
Nn( A) = Z I(nz‘s(t,,—t‘)EA}‘
k=1

Then N, —, N, where N is a Poisson point process on the line with unit
intensity, independent of B.

Here is the main idea of the proof. The points chosen uniformly over the
entire unit interval are in the limit negligible under the n?~? scaling, so only
the local search sites play a role. If the local search intervals were centered
exactly at ¢*, then it would be easy to show that the point processes converge
to the Poisson limit; however, the local search intervals are offset by the error
random variables &, £ £* — ¢*, The problem then is to show that the &, are
small enough not to figure in the limit.

Proor. We are to prove that
(4.1) (N.,B) =5 (N, B),
with N independent of B. Let
C ={B(s,) €C,,B(s,) € C,,...,B(s,) €C,}



722 J. M. CALVIN

for m>1, 058 <8< -+ <s§, <1 and Borel sets C;. Define a point
process M on R* by

(4'2) M(CI’CZ7“"Ck) = I(B(tl)ecl ..... B(t,)e Cy}

We will show that (N,, M) -, (N, M), where N and M are independent,
from which (4.1) will follow. We will appeal to Theorem 4.1 after showing that

(4.3) E(Nn((s,t])M(Cl,...,Ck))—>E(N((s,t]))EM(Cl,...,Ck)
and that
P(N,(A) =0,M(C,,...,C,) =0)

— P(N(A) = 0)P(M(C;,...,C}) = 0),

where A is a union of disjoint intervals.
We begin by establishing (4.3). Setting A = 42 — §) (so that Ak %0, ~
U(-1,1),

E(N,(s,t)Ic) =

(4.4)

|
M=

P(n®"%(t, — t*) €(s,1],C)

a
]
-

i
™=

P(( B, =0, n® °(U, — t*) €(s,1],C)

£l
I
Ju

U( B = 1, n?=5(8f + O, — t*) £(s,1],C))
= Y P(B =0, n? (T, - t*) €(s,4],C)
E=1

+ Y P(B =1, n20(# + 0, — t*) &(5,1],0).
k=1
The first sum in the last expression is negligible, since
n
P( B, =0, n* %(U, — t*) €(s,¢],C)
k=1

n
<P(C) Y it —sln"2%% >0,
k=1
as n — «, and so
E(N,(s,t)Ic)

n 1 s t
=o(1) + ¥ EP((k/n)l‘%; <ARY %, £ AR0O, < (k/n)l‘a)t—,c)
k=1 n
as n — «. We will show that the last sum has the same limit, as n — «, as
n o1 s t
> 51.'3((1e/;z)1‘5,\— < AR, < (k/n)l‘sA—,c).
k=1 n n
To simplify notation, let

b, =(k - A W, = AE1-8 V, = AR1%@
k,n (k/n) n 2 €y, 2 k-
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Note that V, ~ U(—1, 1), and recall from the discussion following Theorem
3.2 that W, -, 0. We need to establish that
n

lim Y [P(sb, , <W,+V,<th, ,,C) — P(sb, , <V, <tb, ,,C)] =0.

Lt T¥

To see this, observe that
n

lim ) [P(sb, ,<W,+V,<tb,,,C)—-P(sb, ,<V,<tb, ,,C)]
e T3
~lim ¥ [0 [P(sby, —x <V, <tb, , —x,CIW, =x)
n-—® h=1"%=—®
—P(sb,, , <V, <tb, ,,CIW, = x)|P(W, € dx).
The random variables W, and V, are independent, and
P(sb, , —x <V, <tb, , —x,CIW, =x)=P(sb, , <V, <tb, ,,CIW, =x)
unless x < —~1+ b, , or x > 1 + sb, ,, since V;, ~ U(—-1,1). Also
|P(sb, , —x <V, <tb, , —x,CIW, =x)

—P(sb,,, <V, <tb, ,,CIW, =x)|l<(t~-s)b,,

for all x. If n > 2Amax{|sl, [¢}}, then |tb, ,| < 1/2 and |sb, ,| < 1/2 for all

k < n, and therefore,
n

Y [P(sby,, <W,+V,<tb, ,,C) —P(sb, , <V, <tb, ,,C)]
E=1

< (t—5) ¥ b, P(C,IW,| > 1/2)
B=1

n

A
<(t-s)— )y

k=1

A n
<(t- s)-’;’;lP(EWk[ > 1/2),

(&) w172

which converges to 0 because W, —, 0. Therefore, since Ak17%@, ~ U(-1,1)
(independent of B),

lim E(N,(s, t)1;)

12 s t
= lim — Y P((k/n)l"",\— < M7%@, < (B/n)'°A—,C
n-o 2 7 n n

n

1 1 1(k\178
3%§k§1§4(2—5)(t—8);(;) P(C)

2-8)(t—s)[ x2dxP(C)
x=0
— (t - 8)P(C).
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We next establish (4.4) by showing that P(N,(A) = 0,C) —» P(N(A) =
0)P(C), where A = U%_, (s;, ¢, ]is a finite union of disjoint intervals, and we
write |[A|l = £F (¢, — 5;) and Ab, , = {xb, ,: x € A}. Decomposing the events
according to 8, =0 or 1,

P(N,(A) =0,C)

= P(k(n] ([B, =0, n23(U, — %) ¢ A]
=1

U[B,=1,n""%(e+0,) €A])nC

=p( ﬂ ([ B = 0, n®72(U, — t*) & A]
U[B, =1, W, +V,&Ab, 1) N C)
=P(kﬁ ([( B.=0) U (B, =1, W, +V, &Ab, )]
=1

N[(n* (U, —t*) € A) U (B, = 1, Wy + V, € Ab, )]} N c).

Now,
P( F] [(nz—a(Uk —t%) eEA) U(B.=1,W, +V, eEAbk’n)])
( é n?"3(U, - t*) $A))
= T1P((r* (U, - ) £ 4))
|Al "
= (1 - ;l?:g) -1,
and so
li_riP(Nn(A) =0, C)
(4.5) n
= limP( N(B.=0UW,+V, eEAbk’n)] nCl.
neE A\k=1

We will next show that the limit remains unchanged if we delete the W, term
from the expression in (4.5); that is,

lim P(N,(4) =0, C)
(4.6)
= l1mP( n [(By = 0) U (V, & 4b, )] nC)

n—w
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First note that for n sufficiently large,
P((B,=0) U (W, +V, € Ab, )IW,) =P(( B, =0) U(V, & Ab, ,)IW,)

for |W,| < 1/2, say, and therefore for n sufficiently large,
P(C N if]l [(Br=0) U (W, +V, &Ab, )]
=EP(C N k(n} [(B,=0)U(W,+V, eEAbk,n)]in,Wg,...,Wn)
-1
=E[P(C|W1,W2,...,Wn)

XP( N[(Be=0)U (W, +V, eAbk,n)]lwl,Wz,...,Wn)]
k=1

=E[P(C|W1,W2,...,Wn)

x TTP((B = 0) U (W, + Y, $Abk,n)[W1,W2,...,Wn)]

- E[P(clwl,wz,...,wn)kﬂlp(( B, =0) U (W, +V, éAbk,n)ka)}
=E|P(CIW,,W,,...,W,) kU P((Br = 0) U(V, & Ab, ,)IW,)
lW,,l;%/z

X kU1 P((B, =0) U (W, + V, & Ab, ,)IW,)
Wyl>1/2

n

P(CIWy, Wy, Wo) TT P((Bu=0) U (V, 24, )
Wel<1/2

=K

X kl:I1 P((B,=0) U (W, +V, & Ab, ,)IW,)

W,l>1/2

= E|P(CIW,, Wy,..... W,) [T P((8: = 0) U (Vi  4b, ,))

W a0 um ean,)
(Wel>1/2

. P(B=0)U (W +V, $Abk,n)ka)]
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Similarly, we can write

PICn ﬁ [(Bk=0) U(VkeAbk,n)])

1

k=
n
- E[P(CIWI,Wz,...,Wn)IEP(( B, =0) U (V, eAbk,n))].
Therefore,

0 SP(C N ﬁ [(By=0)U(W, +V, GEAbk,n)])
k=1

- P

Ccn k(f]l [( Br = 0) U (V, e‘4l)lz,n)])

= E| P(CIWy, Wy, W,) T P((B: = 0) U (Vi € 4B, )

ﬁ P((B, =0) U (W, +V, & Ab, ,)IW,)
k=1 P(( B, =0) U (V, €Ab, ,))
[Wel>1/2

- E[P(C|W1:W2,---’Wn)illp(( B, =0) U (V, GEAbk,n))]

-E P(ClWl,Wz,,...,Wn)kI;IIP(( B, = 0) U (V, & Ab, ,))

x{ 11

E=1 P((B,=0) U (V, € Ab, ,))
Wil>1/2

o P((B=0)U (W, +V, &Ab, ,)IW,) _ 1”

<E| I
k=1

P(( By =0) U (V, & Ab, ;)
IWyi>1/2

P((B, = 0) U (W, + Vi £ Aby )W) 1)_

In order to establish the validity of (4.6), it therefore suffices to show that

P((B,=0) U (W, +V, GEAbk,n)ka)] 1

1 P({ B, =0) U (V, € Ab, ,))
1/2
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Clearly the left-hand side is at least 1, and

n P((B,=0) U (W, +V, eeAbk,,,)lwk))

E I |
Pyt P((B,=0) U(V, & Ab, ,))
W,l>1/2

s

=K P((B=0) U (W, +V, "EAbk,n)ka))

Iwasisz + Lgwys 12 P(( B = 0) U (V, € 45, )

ko
[
-

1
I(kalSl/2) + I(ka|>1/2)P(( B, = 0) U (Vk EAbk,n)))

IA
&y
s

b
]
—

IA
&
—=

1
L im> 1/2)(1’(( Br=0) UV, £ Aby )] 1))

_
]
-

and the last product converges to 1 as n — « if

n 1
(4.8) J¥ P(W,| > 1/2) - 1) =0
"EI; k§1 * / (P(( B, =0) U (V, $Abk,n))2

For n large enough that Ab, , €[~1,1],

. k 1-8 IA‘
(4.9) P((B=0)U(V, €4, ,))= 1"2(2—5)("‘1‘) et
and so
Y P(IW,| > 1 2)( ! _1)
& A B = 0) U (Ve 2 4, )Y

Y P(IW,l > 1/2)
k=1

| (42 = 8)(k/m)'*141/n) - [2(2 - 8)(k/n)' % Al/n]"
[1-2(2 - 8)(k/n) °lAl/n]"

4(2 - 8)(k/n)' "?lAl/n
[1- 2.2 - 8)(k/n)* %l Al/n]’

A

zn; P(IW,| > 1/2)(
k=1

If n is large enough that 2(2 — 86X} Al/n) < 1/2, then the denominator in the
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last expression is at least (1/2)%, and so the last sum is at most
1 =z k 1-8
16(2 — 8)|Al— Y. P(IW,| > 1/2)(—)
no-q n

1
< 16(2 - 8)lAl~ Y P(IW,| > 1/2),
k=1

which converges to 0 as n — » since W, -, 0 implies that P(/W,[> 1/2) —
0.
Therefore, from (4.6),

n->o n-—»o0 b=1

= lim [TP(C,[B.=01U[B,=1,V, &Ab, ,])

iy |
n(1 11 L, 1Al

. n k 1_8|A[
- '}ﬂklz[l(k(z—a)(;) 7)P(C)

exp(—|ANP(C).

We have established (4.3) and (4.4), and so by Theorem 4.1, (N,, M) -,
(N, M), where N and M are independent. Therefore,

P(N,(A;) = ny,..., Ny(4;) = 0y, M(Cy,...,C) = 1)
= P(N,(A) = ny,..., N,(A)) = n;, B(t;) € Cy,..., B(ty) € C;)
- P(N(A,) =ny,...,N(A;) = n;)P(B(t,) €Cy,..., B(t;) € Cy).

This shows that (N,, B) —, (N, B), with N, B independent, which com-
pletes the proof. O

Combining Proposition 4.2 and Theorem 3.2 gives our main result, estab-
lishing the limiting behavior of the class of adaptive algorithms.

THEOREM 4.3. Under the adaptive algorithm for any 0 < § <1,
(n'7272A,,n%7°T ) =, (A,T)

asn — w,

Note in particular the marginal limiting distribution of the function ap-
proximation error:

(4.10) P(n*~?%/?A, <y) - tanh®(yv2).
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TaBLE 1
Sample medians

S\ n 1000 2000 3000 4000
0.8 0.5396 0.5345 0.5349 0.5276
0.6 0.7020 0.6351 0.6730 0.6362
0.4 0.8972 0.8822 0.8126 0.7952
0.2 1.7200 1.6409 1.6081 15185

5. Numerical experiments. Numerical experiments were performed to
determine how well the limit distribution given by Theorem 4.3 approximates
the error A, for moderate values of n. Experiments were performed for
several values of 8 and n; the results are reported in Tables 1 and 2. For each
choice of 6 and n, 1000 independent replications of the algorithm were
simulated, and the empirical distribution function F,,,, was calculated for
the observed values of n!~%/%A . Two different quantities were calculated for
the comparison; the Kolmogorov—Smirnov statistic

D= sug]FmOO(y) — tanh?(yv2),
y>

and the average of the smallest and largest medians of F,;,,. The median of
the distribution of the limit random variable A is

271/2 tanh(27/?) =~ 0.623225.

The data are reported in Tables 1 and 2. Note that the approximation is
much worse for small values of 6 (corresponding to quicker localization of
the search). To see why this should be the case, consider the ratio of the
local search horizon (half-width of the local search interval size, which is
(2 — 8) 'n~9~9) to the error (£* — ¢*). This ratio is asymptotically propor-
tional to (2 — 8)~1n® To achieve the same ratio achieved with 8 = 0.8 and n
iterations, with 8 = 0.2, about (3,/2)°n* iterations would be required.

6. Final remarks. It is not clear if Theorem 4.3 would remain valid if
we set £ to the location of the minimum of the first n observations in the
definition of the algorithm. Such a change would result in an algorithm that
would be difficult to analyze, since the distribution of the best observed

TABLE 2
Kolmogorov-Smirnov statistics

8\ n 1000 2000 3000 4000
0.8 0.1027 0.1055 0.1017 0.1032
0.6 0.1045 0.0445 0.0800 0.0586
0.4 0.2458 0.2453 0.1823 0.1887

0.2 0.5182 0.4825 0.4841 0.4567
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location is quite complicated. In any case, the asymptotic performance of the
algorithms described in this paper could not improve with such a change,
since by their construction they would have the same asymptotic performance
even if the local searches were centered exactly at the minimizer.,

While the algorithms we have described are adaptive, they are “barely”
adaptive in that only the center of the local searches are updated according to
the past observed values. The width of the local searches, determined by the
sequence {a,}, is deterministic.

It would be interesting to determine the best possible convergence rate of a
Markovian algorithm, and also the best possible convergence rate of any
algorithm. Because of the great difference in computational and storage
requirements between Markov and general adaptive algorithms, it is of
interest to have an upper bound on how much can be gained by maintaining
all past information.
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