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DETERMINING THE MAJORITY: THE BIASED CASE

BY PHILIPPE CHASSAING

Universite Henri Poincare´ ´
We are given a set of n elements, some of them red, the others blue,

but their colors are hidden. We are to determine the composition of this
set, or to determine an element of the majority color, by making pairwise
comparisons of elements from which we obtain the information ‘‘the colors
of these two elements are the same,’’ or ‘‘they are different.’’ Let t ,n
respectively, m , be the optimal average number of comparisons needed ton
solve these two problems. We give an explicit expression of the limit of
t rn, respectively, of m rn, in terms of the probabilities of being red orn n
blue. We also discuss quasi-optimal algorithms in both cases: when these
probabilities are known and when they are unknown.

� 41. Introduction. Given a set of n elements x , x , x , . . . , x , some of1 2 3 n
the elements being red, the others blue, we consider successively two prob-
lems: we want to exhibit an element of the majority color, and we want to
determine the composition of the set. For this aim, we can make pairwise
comparisons: are the colors of the elements x and x equal or different?k m
Notice that we are somewhat colorblind. We are unable to determine the
majority color, or the color of a given element, but our problem is different:
we have to give the answer ‘‘I do not know the color of x , but I know that xk k
belongs to the majority color’’ for at least one among the elements of the set,
and in the composition problem, we have to obtain the final conclusion that
there are k elements of some color and n y k of the other color. The
composition problem turns out to be tightly related to the majority one, in the

Žsense that its solution gives the solution of the majority problem see Section
.9 for explanations .

The motivation for the majority problem comes from system diagnosis.
Ž .According to Schmeichel, Hakimi, Otsuka and Sullivan 1990 , ‘‘in a set U of

Ž .n units processors, modules, etc. at most t are faulty, and an external
observer wishes to identify the faulty units. The observer acquires informa-
tion by requesting the results of certain tests performed by one unit upon
another; e.g. u g U might be asked to determine if u is faulty or not. If u isi j i
fault-free then the test performed by u is assumed reliable; if u is faultyi i
however, u may find u faulty or fault-free, regardless of the actual conditioni j
of u .’’ An algorithm that finds the faulty units exists if and only if t - nr2j
w Ž .xsee Preparata, Metze and Chien 1967 : we need to be sure that some unit is
fault-free to rely on its diagnosis of the remaining units, but we cannot be
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sure of that, since a faulty unit can behave exactly as a fault-free one.
However there are configurations of test results in which the assumption that
some particular unit u is faulty would entail that a majority of units would0
be faulty, too: if we know that t - nr2, we are then sure that u is fault-free,0
and we can rely on its diagnosis.

w Ž .xThe best algorithm in the worst case, see Hakimi and Schmeichel 1984
already known for system diagnosis is quite similar to the worst case optimal

Ž .algorithm given by Alonso, Reingold and Schott 1993 for the majority
problem described in the first paragraph, and also similar to the average case

Ž .quasi-optimal algorithm given by Alonso, Reingold and Schott 1994 for the
majority problem, in the case where the probability p of being red is equal to
the probability q of being blue. However, the assumption of equality between
p and q is not consistent with the assumption t - nr2 and with the general
belief that faulty units are not a majority. The algorithm proposed by Hakimi

Ž .and Schmeichel 1984 could thus perform poorly on the average in the case
p / q. Our first motivation is that an average case quasi-optimal algorithm
for the majority problem, in the case p / q, could lead us to an algorithm for
system diagnosis performing better on the average than the algorithm pro-
posed by Hakimi and Schmeichel.

Another motivation is that the average optimality is held to be more
significant than the worst case optimality, at least for algorithms one uses
very often, due to the law of large numbers, but the average optimality is also

w Ž .usually held to be much more difficult to establish see Knuth 1973 , page
x217 . Actually, there are a few fundamental problems in which an average

w Ž .xquasi-optimal algorithm is known: the sorting problem see Knuth 1973 ,
w Ž .xthe selection problem see Cunto and Munro 1984 or the majority problem

in the case p s q are some examples. A tight lower bound is found, using an
information theory argument for the first problem and using combinatorics
for the two other problems. Here a tight lower bound is provided by quite
different tools, that is, by martingale arguments.

Ž .We assume that each element has probability p respectively, q of being
Ž .red respectively, blue , independently of the others. In this paper, T will

denote the number of pairwise comparisons required to obtain the composi-
tion of the set, or, if we study the majority problem, T will denote the number

Žof comparisons required to produce an element of the majority color in this
last case, when n is even and when there is no majority, T will denote the

.number of comparisons required to be sure that there is no majority . We look
for an average optimal algorithm, that is, an algorithm minimizing the

w xexpected number of comparisons E T .

2. The graph and its connected components. Of course, one can
keep track of comparisons on a graph whose vertices would be the n elements
of our set, by adding, at each comparison, a marked edge between the two

Ž .elements just compared see Figure 1 : G will denote the graph obtainedt
after the comparison number t. If, at time t, we compare some element x toi
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FIG. 1.

some x , the track of this comparison is kept byj

G s G j i , j .� 4Ž .t ty1

Obviously at each step we add an edge joining two distinct connected compo-
nents of the previous graph. Otherwise we would ask a question whose

Žanswer could be computed with the help of preceding answers for instance,
in Figure 1, we do not need to compare x and x to see that their colors are4 17

.the same . Incidentally, any algorithm that satisfies the previous rule re-
quires a number T of comparisons that it is less than or equal to n y 1.

An algorithm is described by a map associating with a graph G the nextt
Ž .edge to be drawn, according to this algorithm. Let t respectively, m denoten n

Žthe optimal average cost for the composition problem respectively, the
.majority problem .

3. Notation and results. In this paper x will denote the lower integer? @
part of the real number x. We assume, without loss of generality, that p G q,
and we set

r s qrp,
so that 0 F r F 1.

In Section 4 we point out some invariances of the problem. In Section 5 we
Ž .give the equation satisfied by m respectively, t . Unfortunately, it does notn n

Ž .furnish a closed form expression of m respectively, t , nor of the optimaln n
algorithm. In the following sections, we prove the following asymptotics of mn
and t .n

THEOREM 1.
log n

nf r y 1 F t F nf r q ,Ž . Ž .n log 2
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where

1 y r 1 q r 1 q r 2 1 q r 4 1 q r 8

f r s q q q q ??? .Ž . 2 4 8ž /2 1 q r 1 y r 2 1 y r 4 1 y r 8 1 y rŽ . Ž . Ž . Ž .

THEOREM 2. For any a ) 1r2,
1 q r

am s f r n q o n .Ž . Ž .n 2

Ž . Ž n. Ž .Note that f is well defined at 1, as is 1 y r r 1 y r , and that f 1 s
Ž .2r3, respectively f 0 s 1. From tedious computations, it turns out that f is
ŽŽ . .decreasing, while 1 q r r2 f is increasing, as expected. Quasi-optimal

algorithms corresponding to Theorems 1 and 2 appear in Sections 7 and 9,
respectively. The residual terms are by no means optimal when r - 1: for
Theorem 1, it is proven in Section 7, Corollary 2, that log nrlog 2 can be? @

Ž .replaced by a constant C r . For Theorem 2, my conjecture is that the
Ž .residual term can be improved to O 1 , by making the quasi-optimal algo-

Ž .rithm more adaptive see Section 11, Concluding remarks . However, in the
Ž .uniform case p s q , previous work shows that the hypothesis a ) 1r2 is

optimal.
The first result on the subject, as far as I know, is due to Saks and

Ž . Ž .Werman 1991 ; they proved that, in the worst case, at least n y n n
Ž .comparisons were necessary, in which n n is the number of 1-bits in the

binary representation of n. A simpler proof was given by Alonso, Reingold
Ž . Ž .and Schott 1993 . Alonso, Reingold and Schott 1994 proved that in the

uniform case, the average complexity for the majority problem is at least

2 8n
n y y O 1 .Ž .(3 9p

They also describe an algorithm achieving an average complexity of

2 8n
n y q O log n .Ž .(3 9p

The question of the biased case seems natural, since, in system diagnosis,
the probability of being defective is implicitly assumed to be less than 1r2.
The beautiful proofs of Alonso, Reingold and Schott are pure combinatorics,
and I had to introduce quite different tools, coming from the optimal control
of discrete stochastic processes, to solve the biased case.

4. Some invariances of the problem. The graph G being given, howt
do we choose the next comparison or the next edge? Of course, the pair of
vertices does not matter, but only the pair of connected components joined by
the edge. Which connected components do we compare? Because of the
symmetric role played by the n elements, it does not matter if we choose
one connected component or another, provided that they have the same
composition.
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Ž .For any connected component c of G , let us denote by K c the number oft
Ž . Ž .elements of c that belong to the majority color of c and k c the number

belonging to the minority color. The composition of c is described by the pair
Ž Ž . Ž .. Ž .K c , k c . Let the value of the connected component c be denoted by v c
and defined by

v c s K c y k c .Ž . Ž . Ž .
� 4For instance, in Figure 1, the connected component 4, 5, 9, 10, 14, 17 has

Ž .composition 5, 1 and value 4.
Actually, the optimal choice of the connected components to be compared

depends on their compositions only through their values: if we replace a
Ž .connected component with composition b q k, b and value k with a con-

Ž .nected component with composition k, 0 }that is, if we put aside b elements
of each color}common sense suggests that it makes no difference for the
majority problem. A proof of this fact is not required to establish our main
results, but we give some ingredients of this proof that are essential in later
sections. In the first place, we have the following proposition.

PROPOSITION 1. If the t-th comparison involves two connected components,
Ž . Ž .c and c9, with compositions a q k, a and b q m, b , respectively, where k

and m are positive, the result is a connected component whose value V satisfies

1 q r kqm

P V s k q m sŽ . k m1 q r 1 q rŽ .Ž .
and

r k q r m

< <P V s k y m s .Ž . k m1 q r 1 q rŽ .Ž .

Since these probabilities do not depend on the compositions, but only on
the values k and m, of c and c9, respectively, they give also the distribu-
tion of V under the condition that the values of c and c9 are respectively k
and m.

Ž . Ž Ž .. ŽPROOF. The compositions a q k, a respectively, b q m, b of c respec-
.tively, c9 can be read on the graph G ; they are known when we decide thety1

next comparison. The probability that the majority colors of the two compo-
nents are the same, conditioned on the compositions of c and c9, is the
quotient of the probability that a q b q k q m elements of c j c9 exactly are

Ž . Ž .blue respectively, red , and that among these blue respectively, red ele-
ments, exactly a q k are taken from c, that is,

2b q m2 a q k aqkqbqm aqb aqkqbqm aqbp q q q p ,Ž .ž / ž /a b
Ž . Ž .by the probability of observing the compositions a q k, a and b q m, b ,

that is,

2b q m2 a q k aqk a aqk a bqm b bqm bp q q q p p q q q p .Ž . Ž .ž / ž /a b
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This quotient gives
1 q r kqm

.k m1 q r 1 q rŽ .Ž .
The second case follows at once. I

The previous proposition indicates that the ratio of probabilities of being
red or blue, for the majority of a connected component, is r k when the
component’s value is k, while it is of course r when the connected component
has a single element}and also when its value is 1. Actually, we have the
proposition:

PROPOSITION 2. If some connected component, say c, has a positive value
k, its majority color is red with probability

1
,k1 q r

and it is blue with probability

r k

.k1 q r

The easy proof is omitted. The fact that the values are some kind of
sufficient statistic appears also in the stopping condition for the majority

Ž .problem: let c denote the n y t connected components of G afteri 1F iF nyt t
Ž . Ž .step t, with composition K , k , and associated values v .i i 1F iF nyt i 1F iF nyt

We are sure that the majority color of the connected component c is the samei
as in the whole set if and only if

K q k ) k q KÝ Ýi j i j
j/i j/i

since in the worst case, the majority color in c is the minority color in thei
other connected components. This condition depends on the values, as it can
be written
4.1 n ) n .Ž . Ýi j

j/i

In fact an element of the majority color is known if at least one connected
component satisfies the condition above, that is, if

nyt

max n ) n y max n .Ýj j j
js1

Thus the stopping condition depends only on the values of the connected
components. The additive cost is 1 at each step, until the stopping condition is
satisfied, and thus does not depend on the compositions of the connected
components either. We have gathered all the ingredients of a formal proof of
the fact that there exists an optimal decision rule depending only on the
values.
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For the composition problem, only the stopping condition is different: we
stop when the values of all the connected components are 0, except for one
value which would be, let us say, k. The composition is then

n q k n y k
, .ž /2 2

Ž .Note that it never helps for either problem to use a comparison involving a
component of value 0.

Ž .5. The optimality equation and the optimal algorithm. Let C t bek
the number of connected components of G with value k, and lett

C s C t .Ž .Ž .t k kG1

Ž .To a sequence u s u of nonnegative integers, we associaten nG1

d u s sup k u ) 0 ,� 4Ž . k
q` q`

< <u s ku and au s u .Ý Ýk k
ks1 ks1

Set
E s u d u - q` .� 4Ž .

We denote by e the element of E whose kth term is equal to 1, the otherk
terms being equal to 0, and by e the null element. The state of the system is0
exhaustively described by G but, according to Section 4, the useful informa-t
tion is contained in C . We shall say that the state of the system is u g E ift

C s u.t

Ž .We say that we choose decision i, j , if we decide to compare a connected
component with value i to a connected component with value j. The set of

Ž .possible decisions in state u, say A u , is the set of couples of positive
Ž .integers i, j such that u y e y e still belongs to E. As a consequence ofi j
Ž .decision i, j , the next state will be

Tq u s u y e y e q eŽ .i , j i j iqj

with probability

1 q r iq j

p i , j s ,Ž .q i j1 q r 1 q rŽ . Ž .
according to Proposition 1, and it will be

Ty u s u y e y e q e ,Ž .i , j i j < iyj <

with probability

r i q r j

5.1 p i , j s .Ž . Ž .y i j1 q r 1 q rŽ . Ž .
For the majority problem, the terminating set is

< < � 4D s u d u ) u r2 j e .� 4Ž . 0
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The terminal state e occurs when all the connected components have value0
Ž .0, or equivalently when we are sure that there is no majority. Let m u be the

optimal average number of comparisons for the majority problem, starting
Ž .from state u: m is also m ne . The optimality equation of stochastic dynamicn 1

w Ž .xprogramming see Bertsekas 1987 can then be written as follows.

PROPOSITION 3. When u does not belong to D,

q ym u [ 1 q min p i , j m T u q p i , j m T u i , j g A u .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .½ 5q i , j y i , j

Of course, m is zero on D. The optimal decision in state u is, as usual, any
couple of the set

q yarg min p i , j m T u q p i , j m T u i , j g A u .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .½ 5q i , j y i , j

The system of Proposition 3, though nonlinear, is easy to solve recursively,
being ‘‘triangular’’: for an appropriate total ordering e of E, we have

Tq u eu , Ty u eu ,Ž . Ž .i , j i , j

� < 4and v veu is finite. We set:
ue v

iff

< < < < < < < <u - v or u s v and u ) v holds true for K s max k u / v .� 4� 4K K k k

Ž < <For instance, when r s 1, starting with the smaller elements u of E u even
.and u not in D , Proposition 3 entails that

m 2 e s m 2 e s 1, m 2 e q e s 3r2, m 4e s 9r4,Ž . Ž . Ž . Ž .1 n 1 2 1

m e q e q e s 3r2, m 3e q e s 7r4, m 3e s m 3e s 1,Ž . Ž . Ž . Ž .1 2 3 1 3 2 n

and, finally, the first case where not all decisions are optimal is:

m 2 e q 2 e s 3r2,Ž .1 2

Ž . Ž .in which the unique optimal decision is 2, 2 .
� < < < 4Note that the set u g E u s n is the set of partitions of the integer n

w Ž .x Ž .see Andrews 1976 . According to the work of Hardy and Ramanujan 1918 ,
Ž .the computational effort needed to solve the Bellman equation for m ne is1

prohibitive, since
'log a v ve ne f n .� 41

We have not been able to guess a closed form expression of m. For the
Ž .composition problem, the optimal cost t u is similarly given by the following.

Ž .PROPOSITION 4. We have t u s 0 when u belongs to the stopping set
� < 4D9 s u au F 1 , and

q yt u [ 1 q min p i , j t T u q p i , j t T u i , j g A uŽ . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .½ 5q i , j y i , j

when u does not belong to D9.
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6. A lower bound for t . Assume that f is a bounded nonnegativen
w xfunction on 0, 1 , satisfying the following two properties:

2w x; x , y g 0, 1 , s.t. x k y / 0,Ž .
1 q xy x q y x n y

i 1 q f xy q fŽ . Ž . ž /1 q x 1 q y 1 q x 1 q y x k yŽ . Ž . Ž . Ž .
G f x q f y ,Ž . Ž .

1 q x 2
2w xii ; x g 0, 1 , 1 q f x G 2 f x .Ž . Ž . Ž .21 q xŽ .

Such a function is necessarily bounded by 1. Examples are positive constants
Ž . Ž .less than or equal to 2r3, and also 1 y x r 1 q x .

Ž . Ž .PROPOSITION 5. For any function f satisfying i and ii , the following
relation holds true:

t G f r n y 1.Ž .n

PROOF. In this proof, we assume that we are given some rule R mapping
G to the new edge to be drawn. Let M be defined byt t

q`

M s T n t q l C T n t .Ž . Ž .Ýt k k
ks1

in which
l [ f r k .Ž .k

Let F be the s field generated by the G , s - t. If t is less or equal than Tty1 s
and if, according to R, the t-th comparison A is to be between two connectedt

Ž .components with two different values, let us say A s k, m , we havet

1 q r kqm

E M y M F , A s 1 q lŽ .t ty1 ty1 t kqmk m1 q r 1 q rŽ .Ž .
r k q r m

q l y l y l ,< kym < k mk m1 q r 1 q rŽ .Ž .
but if they have the same size k, we have

1 q r 2 k

6.1 E M y M F , A s 1 q l y 2l .Ž . Ž .t ty1 ty1 t 2 k k2k1 q rŽ .
Ž . Ž .Then we deduce the lemma from i and ii .

LEMMA 1. The process M is a submartingale.t

As a consequence,
w x w xE M G E M .t 0
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For t s n, it follows that
q`

w xE T G l n y l E C T .Ž .Ý1 k k
ks1

Ž .From the definition of l and the fact that all the C T but at most one arek k
Ž .zero, and that one if any equals 1, we obtain

<C <T6.2 E T G f r n y E f r ,Ž . Ž . Ž . Ž .
for any algorithm R. This ends the proof of Proposition 5. I

The first inequality of Theorem 1 follows from

Ž . Ž .PROPOSITION 6. The function f satisfies i and ii .

Ž .PROOF. Actually, f satisfies equality in 2 :

1 q x 2
26.3 2f x s 1 q f x .Ž . Ž . Ž .21 q xŽ .

Ž .In order to prove that f satisfies 1 , let us make the change of variable
x s ey2 a. We have then

c a s f ey2 a s 2yny1c n a ,Ž . Ž . Ž .Ý 2
nG0

in which
c a [ tanh a coth na .Ž .n

Ž .A sufficient condition for i to hold true is that, for any nonnegative numbers
x and y and any positive integer n,

1 q tanh x tanh y 1 y tanh x tanh y
1 q c x q y q c x y yŽ . Ž .n n2 26.4Ž .

G c x q c y .Ž . Ž .n n

Ž .According to the suggestion of L. Alonso, we write 6.4 in the following form:
tanh x tanh y

1 q Q nx , ny q Q ny , nx G 0,Ž . Ž .
2 2

in which
Q x , y s coth x q y q coth x y y y 2 coth x .Ž . Ž . Ž .

Ž .From the convexity of coth, we obtain the positivity of Q x, y only when x is
larger than y. A little more work gives

2 coth x
Q x , y s y ,Ž . 2 2 2sinh x coth x y coth yŽ .

Ž .from which we can write 6.4 in the form

x x y x yŽ . Ž .n n G 0.2 2coth nx y coth ny
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with

1 y c xŽ .n
x x s .Ž .n 2sinh nx

But it turns out that both x and coth2 are decreasing. In

This is the first part of the proof of Theorem 1.

7. A quasi-optimal algorithm for the composition problem. The
Ž .only bounded solution to the functional equation 6.3 turns out to be f. The

bound given by f would be sharp for an algorithm comparing only compo-
Ž .nents with equal values, if such an algorithm would exist: we see from 6.1

w xthat M would then be a martingale, and E T would reach the lower boundt
Ž .given by 6.2 . We shall now describe an algorithm in which comparisons

involving components with different values are very scarce. We derive then
the second inequality of Theorem 1.

Ž . Ž .For any integer x, let g x , h x be defined by
x

g x s , h x s x y 2 g x s 1 .Ž . Ž . Ž . x is odd2

The quasi-optimal algorithm has I main steps, I being a random variable
satisfying

log n
7.1 I F 1 q .Ž .

log 2

Ž .In the first step, we have Y s n connected components with value 1 and1
Ž . Ž .we do g Y pairwise comparisons, obtaining g n components, Y among1 2

Ž .them having value 2, and the g n y Y others having value 0, plus eventu-2
ally a connected component with value 1, if n is odd. That is, the first step

Ž .produces Y components with value 2, and h Y components with value 1,2 1
Ž .plus some useless components with value 0 that we forget, at a cost of g Y1

Ž .pairwise comparisons. For instance, in Figure 2]4 Y s 19, g Y s 9,1 1
Ž .h Y s 1, Y s 5.1 2

Ž . Ž .In the second step, if g Y is not 0, we perform g Y pairwise compar-2 2
isons between the components with value 2, and at the end of this step, we

Ž .have produced Y components with value 4, g Y y Y components with3 2 3
Ž .value 0}that we forget}and h Y components with value 2, and so on. We2

Ž . Ž .see in Figure 5 that g Y s 2, h Y s 1 and Y s 1.2 2 3
Ž . Ž .The number I of steps is the first index k such that g Y s 0, and 7.1 isk

Ž .a consequence of the fact that Y F Y r2. After the Ith step, we have h Ykq1 k k
ky1Ž . Ž .components with value 2 1 F k F I , Z of the h Y being equal to 1, thek

Žothers 0, and a set of components with value 0 useless for the composition
.problem . If Z s 0, we conclude that there is no majority. If Z / 0, doing

Z y 1 comparisons between the Z nonzero components, we obtain a unique
connected component with value S / 0, and the same set of useless compo-
nents with value 0 as we had before. We conclude that the majority leads by
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FIG. 2.

ŽŽ . Ž . .S units so that the composition is n q S r2, n y S r2 . In Figures 5 and 6,
Ž . Ž . Ž .we see that I s 3, h Y s h Y s h Y s 1 and thus Z s I. In Figure 7 the3 2 1
Ž . Ž . Ž .two last comparisons, 6, 19 and 6, 18 , give S s 5, and a composition 12, 7 ,

as expected, at a total cost of 13 comparisons.
Set Y to be zero for k ) I. The total number of comparisons is thusk

T s Z y 1 q g Y .Ž .Ý k
kG1

FIG. 3.
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FIG. 4.

We have

Z s h Y ,Ž .Ý k
kG1

log n
Z F I F 1 q .

log 2

For k G 2, the conditional law of Y given Y is the binomial law withk ky1
Ž . Ž ky2 ky2 . Ž .parameters g Y and p 2 , 2 . Thus, using g x F xr2, we obtainky1 q

1 ky2 ky2w x w xE Y F p 2 , 2 E YŽ .k q ky12

FIG. 5.
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FIG. 6.

and
kn

jy2 jy2E g Y F p 2 , 2Ž . Ž .Łk qk2 js2

n 1 y r 1 q r 2 ky 1

s .ky 1k 21 q r2 1 y r

FIG. 7.



DETERMINING THE MAJORITY 537

We deduce that
log n

w xE T F nf r q ,Ž .
log 2

and finally
log n

t F nf r q .Ž .n log 2

This ends the proof of Theorem 1. I

COROLLARY 1. The function f is the largest bounded nonnegative function
Ž . Ž .satisfying i and ii .

When r - 1, we can obtain a sharper upper bound for t than in Theo-n
rem 1, computing the average complexity of our quasi-optimal algorithm by
martingale arguments.

COROLLARY 2. When r - 1,

t F nf r q C r with C r s 1 y f r 2 k
.Ž . Ž . Ž . Ž .Ý ž /n

kG0

PROOF. Our algorithm avoids comparisons between components having
different values until a time T 9 s T y Z q 1: considering the martingale
M , we deduce thatt n T 9

ky 12w xE T s nf r y 1 q 1 y f r E h Y .Ž . Ž .Ž .Ý ž / k
kG1

Ž .In order to see that C r is the sum of a convergent series, we observe that
Ž .1 y f is less than 1r3, and is O x at 0. This last fact results from

1 q r 1 q r 2 1 q r 4 1 q r
y< n < n2q q q ??? s 2 y 2 2 rÝ2 4 ž /1 y r 1 y r2 1 y r 4 1 y rŽ . Ž . nG1

and thus
1 y r

y< n < n21 y f s 2 r ,Ýž /1 q r nG1

< <in which n is the exponent of factor 2 in the factor decomposition of n. I2

Ž .8. A lower bound for m . As Alonso, Reingold and Schott 1994 haven
already treated the case r s 1, we treat only the case r - 1. In this section
we prove the following.

PROPOSITION 7.

1 q r
w xE T G w r n y 1 y o 1 .Ž . Ž .

2
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The beginning of the proof is the same as for the composition problem.
Using Lemma 1, we obtain again

8.1 E T G w r n y l E C TŽ . Ž . Ž . Ž .Ž .Ý k k
kG1

Ž Ž ..but Ý l E C T is not as easily bounded as in Section 6. Let R sk G1 k k t
Ž Ž ..R t be defined byk k G1

R s C y e ,t t dŽC .t
so that

q`

8.2 T s inf t G 0 d C ) kR t or C s e .Ž . Ž . Ž .Ýt k t 0½ 5
ks1

The key point is the following.

PROPOSITION 8. We have
q` 1 y r nŽ .

kE R T F q o 1 .Ž . Ž .Ž .Ý k 2ks1

But we also need the following trite statement.

Ž . Ž .LEMMA 2. Let a and b be two sequences of positivek 1F k F n k 1F k F n
numbers. Then we have

n n

<a x F A « b x F A max b ra 1 F k F n .� 4Ý Ýk k k k k k
ks1 ks1

PROOF OF PROPOSITION 7. Using Lemma 2 and Proposition 8, we obtain
that

q` 1 y rŽ .
E l R T F l n q o 1 ,Ž . Ž .Ý k k 12ks1

provided that we have
lk

8.3 l G .Ž . 1 k
Ž .This last point follows at once from the fact that f x is decreasing and takes

the values 1, respectively 2r3, at x s 0, respectively 1. Noticing that
q` q`

5 51 s w G l C T y l R T G 0,Ž . Ž .Ý Ý` k k k k
ks1 ks1

we deduce
q` 1 y r w rŽ . Ž .

E l C T F n q 1 q o 1 .Ž . Ž .Ý k k 2ks1

Ž .Finally 8.1 becomes:
1 q r

w xE T G w r n y 1 y o 1 . IŽ . Ž .
2
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For the proof of Proposition 8, and also for the proof of the reverse
inequality in Section 9, we need one more lemma. We define X byk

1, if x is red,kX sk ½ y1, if x is blue,k

and we set
k

S s X .Ýk j
js1

w Ž . xWe shall use a Chernoff bound see Bollobas 1985 , page 12, for instance .

LEMMA 3. For 0 - a F 1 and for any positive l,

1 y r 1
Ž1qa .r2 2 aP S y n G ln F exp y l n .n ž /ž /1 q r 2

PROOF OF PROPOSITION 8. In the first place we notice that
q` q`

E kR T s E kR T 1 .Ž . Ž .Ý Ýk k C / eT 0
ks1 ks1

Set N s aC . Let c be a connected component of the graph G withT 1 T
Ž .maximal value d C and let c , c , . . . , c denote the other useful compo-T 2 3 N

Ž .nents at time T. Let us define Ý j as

Ý j s X .Ž . Ý i
igc j

Ž . Ž . < Ž . <The value v c of a connected component c is given by n c s Ý j . Thusj j j
we have

N q`

8.4 Ý i s kR T .Ž . Ž . Ž .Ý Ý k
is2 ks1

Ž . Ž . Ž .Let « be the sign of Ý 1 Ý k . The stopping condition 8.2 , being writtenk

N

< <Ý 1 ) Ý i ,Ž . Ž .Ý
is2

Ž .entails that Ý 1 and S have the same sign and thatn

N

< <S s Ý 1 q « Ý i .Ž . Ž .Ýn i
is2

Proposition 2 entails
n m1 y r 1 y rŽ . Ž .

E « Ý 1 sn and Ý k sm sŽ . Ž .k n m1 q r 1 q rŽ . Ž .
1 y r n 1 y rŽ . Ž .

G .
n1 q r 1 q rŽ . Ž .
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We deduce that
<ÝŽ1. < N1 y r 1 y rŽ .Ž .

< <E S G E Ý 1 q Ý iŽ . Ž .Ýn <ÝŽ1. <1 q r 1 q rŽ .Ž . is2

and, from the stopping condition,
<ÝŽ1. < N1 y r 1 y rŽ .Ž .

< <8.5 E S G E 1 q Ý i .Ž . Ž .Ýn <ÝŽ1. <ž /1 q r 1 q rŽ .Ž . is2

Noticing that
1 < <Ý 1 G S ,Ž . n2

Ž .we can deduce from Lemma 3 that, for any positive a less than 1 y r r
Ž . Ž . Ž .2 1 q r , there exist positive K a and r a such that

< < yr Ža .nP Ý 1 F a n F K a e ,Ž . Ž .Ž .
Ž .obtaining a bound for the right-hand side of 8.5 :

<ÝŽ1. < N1 y r 1 y rŽ .Ž .
E 1 q Ý iŽ .Ý<ÝŽ1. <ž /1 q r 1 q rŽ .Ž . is2

a n N1 y r 1 y rŽ . Ž .
G 1 q E Ý i 1Ž .Ý <ÝŽ1. < G a na nž /1 q r 1 q rŽ . Ž . is2

8.6Ž .

N2 1
s q o E Ý i q o 1 .Ž . Ž .Ýž /ž / ž /1 q r n is2

Ž . Ž . Ž .Relations 8.4 , 8.5 and 8.6 yield that
q`1 q r

< <E S q o 1 G E kR T .Ž . Ž .Ýn k2 ks1

Finally, Proposition 8 follows from a consequence of Lemma 3: we have for
r - 1,

1 y r
< <E S s n q o 1Ž .n 1 q r

since
1 y r

w xE S s nn 1 q r

and
< <0 F E S y Sn n

< <s 2 E S 1n S - 0n

F 2nP S - 0Ž .n

21 1 y r
F 2n exp y n . Iž /ž /2 1 q r
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9. A quasi-optimal algorithm for the majority problem. To prove
the reverse inequality, we shall describe a quasi-optimal algorithm. In Lemma
2 we have equality, instead of the last inequality, with A s Ýn a x at theks1 k k
necessary condition that all the x are 0 except for the x such that b ra isk i i i

Ž .maximum. Thus relation 8.3 gives a hint of what should be a quasi-optimal
algorithm: this relation reflects the fact that at time T, when the stopping
condition is first satisfied, it is optimal that each connected component has

Ž .value 1 all the x are 0 except x , with the exception of the connectedk 1
component with maximum value. Our quasi-optimal algorithm satisfies this
condition by computing the composition of a prescribed set A containing

ŽŽ . . ŽŽ . .approximately 1 q r r2 n elements and leaving the remaining 1 y r r2 n
Ž .elements untouched see Proposition 8 .

This optimal rule was all but obvious to us: in the uniform case, a
quasi-optimal algorithm is obtained by computing the composition of the
whole set. Furthermore, comparing the elements of Ac pairwise has a cost,
but it has also some advantages. The fall of the sum of the values appearing

Ž .in the right-hand side of the stopping condition 4.1 , resulting from the fact
that two connected components with value 1 are sometimes replaced with one
connected component with value 0 in this sum, is a progress towards the

Ž .solution of the majority problem. Relation 8.3 proves implicitly that the cost
of this progress is too high: comparing two elements of Ac, we run the risk
that some x other than x is positive.i 1

Consider the following algorithm: set

1 q r
aN a s n q n ,Ž .

2

a ) 1r2. Then apply the quasi-optimal algorithm of Section 7 to determine
� < Ž .4the composition of the set x 1 F k F N a , at an average cost less than ork

equal to
log N aŽ .

N a f r q .Ž . Ž .
log 2

< <At this stage we obtain a connected component with value S , someN Ža .
Ž .useless components with value 0, and exactly n y N a components with

value 1. As a consequence, a sufficient condition for the majority to be known
at this stage is

< <S ) n y N a .Ž .N Ža .

< < Ž .If S F n y N a , we compute the composition of the whole set, at a costN Ža .
Ž < < Ž ..T less than or equal to n. Proposition 8 entails that P S F n y N a isN Ža .

exponentially small in a power of n, and so we deduce that

log N aŽ .
m F N a f r q q o 1Ž . Ž . Ž .n log 2

1 q r
aF n f r q O nŽ . Ž .

2
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10. A quasi-optimal algorithm for unknown probabilities. It is
natural to ask for a quasi-optimal algorithm when r is unknown. The
quasi-optimal algorithm for the composition problem does not depend on r,
but it does for the majority problem, through the prescribed set A containing

ŽŽ . .approximately 1 q r r2 n elements. However the first round of this algo-
w ŽŽ . . xrithm is a sequence of at least nr4 and actually 1 q r r4 n Bernoulli

trials, each of these trials having a probability of success

1 q r 2

p 1, 1 s .Ž .q 21 q rŽ .
Ž .For n large, the first nr4 trials give a pretty good estimate of p 1, 1 , andq

thus of r. One easily deduces a quasi-optimal algorithm for r unknown.

11. Concluding remarks. Very likely, the upper bound in Theorem 2
Ž .can be improved, because the size N a of the prescribed set of Section 9 is

� 4too large. The smallest possible size of the prescribed set A s 1, 2, 3, . . . , kk
on which we should work would be T , defined byn

< <T s n n inf k G 0 S ) n y k .� 4n k

It turns out, by the very definition of T , that the stopping condition for then
majority problem is satisfied just at the moment when we discover the
composition of A , through the optimal algorithm for the composition prob-Tn

lem. Now we have easily the following proposition.

PROPOSITION 9. If r s 1,

2n
w xE T s n y q O 1 ,Ž .(n p

while if r - 1
n q 1

w xE T s 1 q r q o 1Ž . Ž .n 2
1 q r

s n q O 1 .Ž .
2

Thus we can expect, when we work on the prescribed set A s
� 41, 2, 3, . . . , T , to pay an average cost bounded byn

2n
w xE f 1 T q O log T f f 1 n y q O 1 q O log E TŽ . Ž . Ž . Ž . Ž .(n n nž /p

2 2n
f n y q O log nŽ .(ž /3 p

comparisons if r s 1, and similarly
1 q r

E f r T q O 1 f f r n q O 1Ž . Ž . Ž . Ž .n 2
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comparisons if r - 1. The first estimate is just the result obtained by Alonso,
Ž .Reingold and Schott 1994 , while the second estimate would be a lot better

than Theorem 2. We noticed the same tight relation between the asymptotics
w xof E T and the asymptotic of the optimal cost in the majority problem in an

Ž .later work of Alonso, Chassaing and Schott 1996 about coin weighing. Of
course we are cheating in the previous estimates in many respects, for
instance because it is likely that the colors of the elements in A are not
conditionally independent given T s k, and thus the average cost of then

Ž . Ž .algorithm, knowing that T s k, could be different from f r k q O 1 . An
more serious problem arises because in order to determine the composition of

� 4the prescribed set A s 1, 2, 3, . . . , T using the quasi-optimal algorithm, wen
need to know T when we start the algorithm, while we cannot actually known
the value of T until very late in the runtime of the algorithm. I believe thatn

Žthese difficulties can be overcome at a low cost maybe by a more adaptive
choice of A, even if it entails sometimes breaking the rule ‘‘compare compo-

.nents with the same value’’ , but a lot of tedious work would be needed to
describe and to analyze such an algorithm.

Classical tools from control of stochastic processes are seldom used in
proofs of average case optimality of algorithms: other examples can be found

Ž . Ž .in Chassaing 1993 and Alonso, Chassaing and Schott 1996 . A survey of
celebrated problems in this area, such as the sorting problem and the

Ž .selection problem, is given in Knuth 1973 . Maybe some of the many open
problems of average case optimality could be tackled successfully with the
help of these powerful tools.
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