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ON THE KARLIN–MCGREGOR THEOREM AND APPLICATIONS

By W. Böhm and S. G. Mohanty

University of Economics and McMaster University

In this paper we present some interesting results which follow from
the celebrated determinant formulas for noncoincidence probabilities of
Markov processes discovered by Karlin and McGregor. The first theorem is
a determinant formula for the probability that a Markov jump process will
avoid a certain finite set of points. From this theorem a simple solution of
the moving boundary problem for certain types of Markov processes can be
obtained. The other theorems deal with noncoincidence probabilities of sets
of random walks which need not be identically distributed. These formulas
have interesting applications, especially in the theory of queues.

1. Introduction. In their study of the Stieltjes moment problem and
birth-death processes, Karlin and McGregor (1957) observed that determi-
nants formed by the transition functions Pij�t� of birth-death processes are
strictly positive for t > 0. In a subsequent paper [Karlin and McGregor (1959)]
this observation was given the following interesting probabilistic interpre-
tation.

Consider a strong Markov process whose state space is a metric space and
whose sample paths are continuous on the right. Select n states x1; x2; : : : ; xn
and n Borel sets E1, E2; : : : ;En and form the determinant

5�tyx;E� =

∣∣∣∣∣∣∣∣∣∣∣

P�tyx1;E1� P�tyx1;E2� · · · P�tyx1;En�
P�tyx2;E1� P�tyx2;E2� · · · P�tyx2;En�

:::
:::

P�tyxn;E1� P�t; xn;E2� · · · P�tyxn;En�

∣∣∣∣∣∣∣∣∣∣∣

;(1)

where x = �x1; x2; : : : ; xn�, E = �E1;E2; : : : ;En� and P�tyxi;Ej� denotes the
transition function of the process. Suppose that n labeled particles start in
states x1; : : : ; xn and execute the process simultaneously and independently.
For each permutation σ of 1, 2; : : : ; n letAσ denote the event that at time t the
particles are in the states Eσ1

; : : : ;Eσn
without any two of them having ever

been coincident in the intervening time, coincidence meaning that at least two
particles occupy the same state at the same time. Then

5�tyx;E� =
∑
σ

�signσ�P�Aσ�;(2)

where the summation runs over all permutations σ .
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The above result was generalized by Karlin (1988) to sets of nonstationary
Markov processes with arbitrary starting and stopping times.

Consider n independent Markov processesX1�t�,X2�t�; : : : ;Xn�t�, not nec-
essarily stationary, governed by the same transition function

P�s; xy t;E� = P�X�t� ∈ E�X�s� = x�:
Let X = �X1; : : : ;Xn� and define X�u� = �X1�u1�; : : : ;Xn�un��. Now suppose
that the starting times of X are given by s = �s1; : : : ; sn� and assume that the
processes start in positions α1; : : : ; αn. Thus X�s� = a. Furthermore assume
the processes stop at times t = �t1; : : : ; tn� in positions b = �β1; : : : ; βn�, with
si ≤ ti, so X�t� = b. The transition of the ith process from state αi to state βi
during the time interval �si; ti�, i = 1, 2; : : : ; n, will be denoted by

�X; s;a� → �X; t;b�:
Karlin has proved the following theorem.

Theorem 1.1 [Karlin (1988)]. Let σ represent a permutation on (1, 2; : : : ;
n) and let bσ = �βσ�1�; βσ�2�; : : : ; βσ�n�� and tσ = �tσ�1�; tσ�2�; : : : ; tσ�n��. Then

∑
σ

�signσ�P��X; s;a� → �X; tσ ;bσ ��

=
∑
σ

�signσ�P��X; s;a� → �X; tσ ;bσ � without coincidence�:
(3)

As it stands, (3) seems to be of limited value only. However, many remark-
able results follow from (3), if the only permutation where no coincidence oc-
curs is the identity, in which case on the right-hand side of (3) only one term
survives. This has been shown by Karlin and McGregor (1959) and Karlin
(1988). Further examples of this interesting special case are given below.

An analogue of Theorem 1.1 has been discovered by Gessel and Viennot
(1985) in lattice path combinatorics, where a determinant formula [essen-
tially equal to (3)] is used to count sets of nonintersecting two-dimensional
lattice paths. Karlin (1988) points out that several nontrivial combinatorial
theorems may be obtained from (3) directly. Particular examples are the n-
candidate ballot problem, monotone dominance orderings and counting sets
of nonintersecting paths. There are many other interesting applications in
various fields, notably in statistical mechanics, where this result is used, for
instance, in the study of phase transitions of almost one-dimensional systems
[Fisher (1984)].

In this paper we will present some more results which follow from this the-
orem. The first result provides a simple solution of the moving boundary prob-
lem for certain types of Markov processes, a problem of particular importance,
for instance, in sequential statistics. As a reference on moving boundaries and
sequential statistics, see Siegmund (1985). The other theorems are an exten-
sion of the Karlin–McGregor theorem to sets of nonidentical or dissimilar
Markov processes. If the processes have different transition functions, then
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in general no simple determinant formulas [comparable to (3)] can be given.
However, for simple random walks and Poisson counting processes noncoinci-
dence probabilities can be expressed as determinants, and it turns out that
some interesting problems in the theory of queues may be solved in this way.

2. The theorems. The first theorem provides a useful result for Markov
jump processes which are not allowed to enter certain discrete point sets.

Theorem 2.1. Let Xt be a strong Markov process with discrete state space
S ⊂ � and transition function

P�Xt = k�Xs =m� = p�s; tym;k�; s ≤ t:

Furthermore, let

CM = ��u1; a1�; �u2; a2�; : : : ; �uM; aM��; ui ∈ �+; ai ∈ S

denote a set of points ordered such that u1 ≤ u2 ≤ · · · ≤ uM. The first coordinate
of these points represents time, the second a possible state of the process Xt.

Then the probability that Xt moves from state m to state k in �0; t� without
touching any of the points in CM is given by the determinant

P�Xt = k;Xs 6∈ CM;0 ≤ s ≤ t�X0 =m� = det �dij��M+1�×�M+1�;(4)

where

d00 = p�0; tym;k�
d0j = p�uj; tyaj; k�; j = 1;2; : : : ;M

di0 = p�0; uiym;ai�; i = 1;2; : : : ;M

dij = p�uj; uiyaj; ai�; i ≥ j
0 otherwise;

(5)

and Xt 6∈ CM is a shorthand notation for �t;Xt� 6∈ CM.
This determinant may be evaluated recursively. In particular:

P�Xt = k;Xs 6∈ CM;0 ≤ s ≤ t�X0 =m� = PM+1;(6)

where

P` = −
`−1∑
i=0

w`iPi for ` = 1;2; : : : ;M+ 1(7)

with P0 = −1 and

wij =
{
p�uj; uiyaj; ai�; 0 ≤ i; j ≤M+ 1;

0; if uj > ui;
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and boundary conditions

u0 = 0; a0 =m; uM+1 = t; aM+1 = k:

Proof. Consider M+ 1 copies of the Markov process Xt, say X0
t ;X

1
t ; : : : ;

XM
t . Suppose now that X0

t starts at �0;m� and terminates at �t; k�. The other
processes Xi

t, i = 1; : : : ;M start and stop in �ui; ai�; thus their sample paths
have length zero. Now apply Theorem 1.1 to this set of paths. It is clear that
the only permutation of the terminal positions, where no coincidence occurs, is
the identity permutation. To see this, it is sufficient to consider X0

t and Xi
t, for

some i > 0. If we interchange the terminal points of these two processes, then
X0
t must move from �0;m� to �ui; ai� and X1

t from �ui; ai� to �t; k�. Hence
a coincidence necessarily occurs in the point �ui; ai�. Thus the contributions
to the right-hand side of (3) for all permutations other than the identity are
zero and the result follows. The recurrence relation (7) is easily obtained by
interchanging the first and the last row in the determinant (4) and expanding
this determinant according to the expansion theorem of Laplace. 2

The idea of this proof has been borrowed from Stanley [(1986), page 84].
Krattenthaler and Mohanty (1992) have already shown the power of this ap-
proach in counting Young tableaux.

Next we generalize the Karlin–McGregor theorem to dissimilar processes,
that is, processes which have different transition functions. If the processes
are binomial random walks or counting processes of Bernoulli or Poisson type,
then noncoincidence probabilities can be given in form of determinants quite
similar to (3). Unfortunately, only in exceptional cases can formulas similar
to (3) be found. The difficulties we encounter here are due to the fact that
interchanging sample paths segments of the processes after the point of first
coincidence (it is this idea on which the proof of Theorem 1.1 is based) will
change the probability distribution of the paths.

Let us discuss the case of dissimilar binomial random walks first.

Theorem 2.2. Let X1; : : : ;Xr denote a set of independent binomial ran-
dom walks, where Xi has jumps of magnitude +1 and −1 with probabilities
pi and qi = 1−pi. Assume that the random walks start at time zero in positions
α1 < α2 < · · · < αr and terminate at time n in positions β1 < β2 < · · · < βr,
the αi being all either odd or even.

Then the only permutation σ of the terminal positions βi where no coinci-
dence of the random walks Xi occurs is the identity and

P��X;0;a� → �X; n;b� without coincidence�

= det

∥∥∥∥∥

(
n

�n+ βi − αj�/2

)∥∥∥∥∥
r∏
ν=1

p�n+βν−αν�/2ν q�n−βν+αν�/2ν :
(8)

Proof. Assume first that the random walks Xi are identically distributed
and symmetric so that for each Xi, positive and negative jumps have prob-
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ability 1
2 . Then any permutation σ other than σ = id will necessarily entail

that at least two of the random walks Xi will have a coincidence.
Thus on the right-hand side of (3), only the term corresponding to σ = id

will survive and it follows that

P��X;0;a� → �X; n;b�; without coincidence�

= det

∥∥∥∥∥

(
n

�n+ βi − αj�/2

)∥∥∥∥∥
r×r

2−nr:
(9)

Since any sample path of Xi has probability 2−n, the determinant on the
right-hand side of (9) equals the number of sets of sample paths such that
�X;0;a� → �X; n;b� without coincidence.

Now assume that process Xi has jumps of magnitude +1 and −1 with
probabilities pi and qi, respectively. The probability of a sample path is in
this case

p
�n+βi−αi�/2
i q

�n−βi+αi�/2
i ;

Multiplying the determinant in (9) by these probabilities yields (8). 2

A result equivalent to Theorem 2.2 is the following: let X1; : : : ;Xr denote
a set of independent Bernoulli processes, where Xi has jumps of magnitude
+1 and 0 with probabilities pi and qi = 1 − pi. Assume that the processes
start at time zero in positions α1 < α2 < · · · < αr and terminate at time n in
positions β1 < β2 < · · · < βr.

Then again the only permutation σ of the terminal positions βi where no
coincidence of the processes Xi occurs is the identity and

P��X;0;a� → �X; n;b� without coincidence�

= det
∥∥∥∥
(

n
βi − αj

)∥∥∥∥
r∏
ν=1

pβν−ανν qn−βν+ανν :
(10)

The next case we consider is of particular importance in queueing appli-
cations.

Theorem 2.3. Let X1; : : : ;Xr denote r > 1 independent Poisson counting
processes with rates λ1; : : : ; λr and transition probabilities

P�Xi�t� = k�Xi�0� =m� =
exp�−λit��λit�k−m

�k−m�! :

Assume that the processes Xi start at time zero in positions mi with m1 <
m2 < · · · < mr and terminate at time t in positions ki, k1 < k2 < · · · < kr. Let
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m = �m1; : : : ;mr� and k = �k1; : : : ; kr�. Then

P��X;0;m� → �X; t;k� without coincidence�

= det
∥∥∥∥

1
�ki −mj�!

∥∥∥∥
r∏
ν=1

�kν −mν�!P��X;0;m� → �X; t;k��

= det
∥∥∥∥

1
�ki −mj�!

∥∥∥∥ exp
(
−t

r∑
ν=1

λν

) r∏
ν=1

�λνt�kν−mν :

(11)

Proof. This result may be proved by a limiting argument applied to (10).
However, the following proof seems to be more elegant. (The authors are in-
debted to an anonymous referee for drawing their attention to this idea.)

Let us denote by Pλ1;:::;λr
�A� the probability of the event A when the pro-

cesses Xi�t�, 1 ≤ i ≤ r are independent Poisson with rates λi. Given Xi�0� =
mi and Xi�t� = ki, the ki −mi points where Xi�t� has jumps are uniformly
distributed in �0; t�. Hence it follows that

Pλ1;:::;λr
�no coincidence�X�0� =m;X�t� = k�

= P1;:::;1�no coincidence�X�0� =m;X�t� = k�:
(12)

The right-hand side of (12) can be evaluated using the Karlin–McGregor the-
orem. In particular we find that

P1;:::;1�no coincidence�X�0� =m;X�t� = k�

= P1;:::;1��X;0;m� → �X; t;k� without coincidence�
P1;:::;1��X;0;m� → �X; t;k��

=
∏r
ν=1�kν −mν�!

e−rt
∏r
ν=1 t

kν−mν
det

∥∥∥∥
exp�−t�tki−mj

�ki −mj�!

∥∥∥∥

= det
∥∥∥∥

1
�ki −mj�!

∥∥∥∥
r∏
ν=1

�kν −mν�!:

(13)

Multiplying (13) by

P��X;0;m� → �X; t;k�� = Pλ1;:::;λr
��X;0;m� → �X; t;k��

we get (11). 2

3. Applications and examples.

3.1. Birth processes with moving boundaries. Theorem 2.1 provides an ef-
ficient tool to calculate the transition functions of a large class of random walk
processes which avoid certain time dependent boundaries. Of special interest
is the case of pure Markov birth processes in continuous time. It is intuitively
clear that a finite set of points cannot, in general, constitute an impenetrable
boundary for a continuous time random walk process. However, pure birth
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processes are a notable exception, which has several interesting applications
in order statistics and queueing theory.

Let N�t�, t ≥ 0 be a pure Markov birth process with jump intensities λik�t�,
k > i ≥ 0:

P�N�t+ 1� = k�N�t� = i� = λik�t�1+ o�1�; 1→ 0:

Observe that we allow N�t� to be inhomogeneous in time and in space.
Now let β�t� be a continuous and increasing function with β�0� ≥ 0, which

should serve as an upper boundary to N�t�. Crossings of this boundary from
below may, of course, occur at any time and at any height. However, if the
position ofN�t� is fixed to some integer n < β�t�, then any excursion above the
boundary must be terminated by a down crossing, and such a down crossing
can occur only at integer heights 0;1; : : : ; n, since the sample paths of N�t�
are nondecreasing. Thus the finite set

BM = ��ui; bi�;1 ≤ i ≤M�;(14)

with

bi = �β�0�� + i
ui = β−1�bi�; i = 1;2; : : : ; n− �β�0��

(15)

may be used as a representation of the boundary β�t� with M = n − �β�0��
points, and by Theorem 2.1 and the recurrence relation (7) we obtain for n <
β�t�:

P�N�t� = n;N�s� < β�s�;0 ≤ s ≤ t�N�0� = 0� = PM+1;(16)

with P0 = −1,

P` = −
`−1∑
i=0

P�N�u`� = b`�N�ui� = bi�Pi; ` = 1;2; : : : ;M+ 1;(17)

and boundary conditions

u0 = b0 = 0; uM+1 = t; bM+1 = n:
The case of a lower boundary or the two-boundary case may be handled simi-
larly.

A particularly simple situation arises as a special case of the above result,
when N�t� is stationary Poisson with rate λ > 0. This case has been treated
earlier by different methods by Zacks (1991) and Stadje (1993).

Let

AM = ��ui; bi�;1 ≤ i ≤M�
be an arbitrary boundary set ordered such that u1 ≤ u2 ≤ · · · ≤ uM, and define
u0 = b0 = 0, uM+1 = t and bM+1 = n, where the point �t; n� does not belong to
AM. Thus AM may be an upper or lower boundary or both. Consider now the
conditional probability

P�N�s� 6∈ AM;0 ≤ s ≤ t�N�t� = n�;
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that is, the probability that N�t� does not touch any of the points in AM under
the condition N�t� = n.

Let

Ri = Pi/P�N�ui� = bi�; i = 0;1; : : : :

Then from the recurrence (17), it follows after dividing by P�N�u`� = b`� that

R` = −
`−1∑
i=0

P�N�u`� = b`�N�ui� = bi�
P�N�u`� = b`�

P�N�ui� = bi�Ri; i = 1;2; : : : ;M+ 1:

And since

P�N�ui� = bi� =
exp�−λui��λui�bi

bi!
;

we obtain the following simple and interesting recurrence satisfied by Ri:

R` = −
`−1∑
i=0

(
b`
bi

)(
1− ui

u`

)b`−bi(ui
u`

)bi
Ri; ` = 1;2; : : : ;M+ 1;(18)

with boundary condition R0 = −1.
Thus

P�N�s� 6∈ AM;0 ≤ s ≤ t�N�t� = n� = RM+1:(19)

The recurrence (18) has also application in order statistics.
If T1 ≤ T2 ≤ · · · ≤ Tn denote the successive jump times of a stationary

Poisson process, then the conditional distribution of 0 ≤ T1 ≤ T2 ≤ · · · ≤
Tn ≤ 1 given N�1� = n is the same as the distribution of the order statistics
0 ≤ ξn x1 ≤ ξn x2 ≤ · · · ≤ ξn xn < 1 of a sample of size n drawn from the uniform
�0;1�-distribution.

Now let X1; : : : ;Xn be i.i.d. random variables with arbitrary continuous
distribution F and consider

Qn = P�ai < Xn x i < bi;1 ≤ i ≤ n�;(20)

where ai; bi are real and satisfy

a1 ≤ a2 ≤ · · · ≤ an; b1 ≤ b2 ≤ · · · ≤ bn;
ai < bi; 1 ≤ i ≤ n:

There are several examples of parameterizations of these sequences ai and bi,
which are important in statistical testing. The interested reader is referred to
Shorack and Wellner [(1986), page 357).

Consider now (20). By the probability integral transform it follows that
F�Xi� has a uniform �0;1�-distribution. Thus the discussion of (20) may be
confined to the uniform distribution. Hence it is convenient to define real
numbers vi and ui by

vi = F�bi�; ui = F�ai�; i = 1;2; : : : ; n:
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Next we form boundary sets

An = ��vi; i− 1�;1 ≤ i ≤ n� and Bn = ��ui; i�;1 ≤ i ≤ n�
and their union

C2n = ��wi; ci�;1 ≤ i ≤ 2n� = An ∪Bn:

As usual we assume that the points in C2n are arranged such that w1 ≤ w2 ≤
· · · ≤ w2n.

If N�t� is a stationary Poisson process with rate λ > 0, then by (18) we
obtain the following recursion for Qn:

Qn = P�N�s� 6∈ C2n;0 ≤ s ≤ 1�N�1� = n�
= R2n+1;

(21)

with R0 = −1,

R` = −
`−1∑
i=0

(
c`
ci

)(
1− wi

w`

)c`−ci(wi
w`

)ci
Ri; ` = 1;2; : : : ;2n+ 1(22)

and

w0 = c0 = 0; w2n+1 = 1; c2n+1 = n:
This formula provides an interesting alternative to Noe’s recurrence relation
[see Shorack and Wellner (1986), pages 362) and Noe (1972)].

3.2. Applications in queueing theory. An application of Theorem 2.1 in the
theory of queues is the following: consider a G/M/1 queueing system with
infinite capacity and deterministic, not necessarily equidistant arrival times
0 < a1 < a2 < · · · : Assuming that the service times are exponential with mean
1/µ, Stadje (1995) derived a determinant formula yielding the probability

P�Q�an� = k;Tm > an�Q�0� =m�;
where Q�t� is the number of customers in the system at time t and

Tm = inf�tx Q�t� ≤ 0�Q�0� =m�;
the duration of a busy period initiated by m > 0 customers. By Theorem 2.1
we can easily extend Stadje’s formula to a queueing system where the service
process is allowed to be time-inhomogeneous.

To see this, let us assume that the number of services N�t� in the time
interval �0; t� is a nonstationary Poisson process with integrated intensity
3�t�, 3�0� = 0. Customers arrive at predetermined time instances 0 < a1 <
a2 < · · · and join the queue immediately after their arrivals at times ai+.
Since during a busy period the number of customers must be positive, the
sequence an gives rise to a moving boundary imposed on the nonstationary
service process N�t� counting the total number of completed services up to
time t. The set of boundary points Cn is given by

Cn = ��ui; bi�;1 ≤ i ≤ n�;
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with

ui = ai; bi =m+ i− 1; i = 1;2; : : : ; n

and

u0 = b0 = 0; un+1 = t; bn+1 =m+ n− k:
These conditions follow from the fact that the event

�Q�t� = k;Tm > t�; an < t ≤ an+1

implies (i) the sample paths of N�t� must not pass through any of the points
in Cn and (ii) for the number of completed services up to time t there must
hold N�t� =m+ n− k.

Thus

P�Q�t� = k;Tm > t�Q�0� =m� = Pn+1; an < t ≤ an+1;(23)

with P0 = −1 and

P` = −
`−1∑
i=0

exp�−�3�u`� − 3�ui���
�3�u`� − 3�ui��bl−bi

�bl − bi�!
Pi;

` = 1;2; : : : ; n+ 1:

Finally we give an application of Theorem 2.3.
Consider an r-node tandem queue and assume that the stream of customers

entering the system at the first node is stationary Poisson with rate λ0 > 0.
Service times at the nodes are independent exponential random variables with
mean 1/λi at node i = 1; : : : ; r. At time zero there are mi > 0 customers
waiting at node i. Let Qi�t� denote the number of customers at node i at time
t. Define random stopping times

Ti = inf�tx Qi�t� = 0�:
Also let T = min1≤i≤r Ti.

The joint distribution of the random vector Qt = �Q1�t�; : : : ;Qr�t�� during
a time period where all servers are continuously busy, that is, T > t, has been
determined by Massey (1987) using an analytic approach based on lattice
Bessel functions and by Böhm, Jain and Mohanty (1993) by means of lattice
path counting in higher-dimensional spaces. Here we will demonstrate how
their results may be obtained from Theorem 2.3.

Let

p�m;k; t� = P�Qt = k;T > t�Q0 =m�;
with

k = �k1; k2; : : : ; kr�; m = �m1;m2; : : : ;mr�; ki;mi > 0 for 1 ≤ i ≤ r:
Furthermore, let n denote the total number of arrivals at node 1 during the
time interval �0; t�.
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Now introduce Poisson counting processes N0�t�, N1�t�; : : : ;Nr�t�, where
N0�t� counts the arrivals at node 1 and therefore has intensity λ0, and the
processes Ni�t�, 1 ≤ i ≤ r, having intensities λi, count the service completions
at the various nodes.

Since the output of node i is the input of node i + 1 and since we require
that all nodes are continuously busy, the problem of finding p�m;k; t� may
be reduced to the determination of a noncoincidence probability of a set of
dissimilar Poisson processes.

To see this let Nr�t�, the service process of the last node, start at height
zero. At time zero there are mr customers already waiting at this node and
furthermore the output process of node r − 1 is the input process of node r.
So let the counting process Nr−1�t� start at height mr. Since we require that
the server at node r is continuously busy throughout the time interval �0; t�,
the processes Nr�t� and Nr−1�t� are not allowed to have a coincidence. Simi-
larly let Nr−2�t� start at height mr+mr−1, because there are mr−1 customers
initially waiting at node r− 1. Again the processes Nr−2�t� and Nr−1�t� must
be noncoincident.

More generally let Ni�t� start at height
∑r
ν=i+1mν, 0 ≤ i ≤ r and interpret

an empty sum as zero.
There are n ≥ 0 arrivals at the first node in �0; t�. Therefore the process

N0�t� terminates at height n+∑r
ν=1mν. The process N1�t� must terminate at

height n+∑r
ν=1mν −k1, since there are k1 customers left at node 1 at time t.

In general the processes Ni�t� terminate at heights

n+
r∑
ν=1

mν −
i∑
ν=1

kν:(24)

Thus we have a set of r+1 independent Poisson processes starting at heights∑r
ν=i+1mν and terminating at heights given by (24), which must be noncoin-

cident.
Invoking Theorem 2.3, we get

p�m;k; t� =
∑
n≥0

det
∥∥∥∥

1
�bi − aj�!

∥∥∥∥ exp
(
−t

r∑
i=0

λi

) r∏
i=0

�λit�bi−ai;(25)

with

ai =
r∑

ν=i+1

mν; bi = n+
r∑
ν=1

mν −
i∑
ν=1

kν; i = 0;1; : : : ; r:
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