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MOTION IN A GAUSSIAN INCOMPRESSIBLE FLOW

By ToMmasz KOMOROWSKI AND GEORGE PAPANICOLAOU!

Michigan State University and Stanford University

We prove that the solution of a system of random ordinary differential
equations dX(¢)/dt = V(¢t,X(¢)) with diffusive scaling, X _(¢) = £X(¢/&2),
converges weakly to a Brownian motion when & 0. We assume that
V(¢,x), t € R, x € R? is a d-dimensional, random, incompressible, sta-
tionary Gaussian field which has mean zero and decorrelates in finite
time.

1. Introduction. Let us consider a particle undergoing diffusion with a
drift caused by an external velocity field V(¢,x), ¢ > 0, x € R?. Its motion is
determined by the It stochastic differential equation

dX(t) = V(t,X(¢)) dt + o dB(t),

) X(0) = 0,

where B(¢), t > 0 denotes the standard d-dimensional Brownian motion and
o2 is the molecular diffusivity of the medium. The particle trajectory X(¢),
t > 0 is assumed, for simplicity, to start at the origin.

We want the velocity field V to model turbulent, incompressible flows so we
assume that it is random, zero mean, divergence free and mixing at macro-
scopically short space and time scales (see, e.g., [8], [24], [31]). To describe the
long time and long distance behavior of the particle trajectory, we introduce
macroscopic units in which the time ¢ and space variable x are of order & 2
and &7 !, respectively, where 0 < &£ < 1 is a small scaling parameter. In the
new variables, the Brownian motion is expressed by the formula £B(¢/¢?),
t > 0. Its law is then identical to that of the standard Brownian motion. In
the scaled variables the Ito stochastic differential equation for the trajectory
is

X.(1)

&

dX (¢t —lV(i )dt+ dB(t
® (1) = V|, o dB(2),

X,(0) = 0.

We are interested in the asymptotic behavior of the trajectories {X (¢)},. o,
g> 0, when ¢ 0.
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In the early twenties, G. I. Taylor (cf. [34]) argued that the trajectory X(¢),
t > 0 of a particle in a diffusive medium with turbulent advection due to a
zero mean random velocity field V(¢,x) will behave approximately like a
d-dimensional Brownian motion whose covariance matrix is given by

+
(3) fo v, () dt + %, ,, i,j=1,...,d,

where

(4)
Ui,j(t) =<Vi(t’x(t))vj(0’0) + Vj(t’x(t))Vi(O70)>a i’j = 1""’d

is the symmetric part of the Lagrangian covariance function of the random
velocity field, with ( - ) denoting averaging over all possible realizations of the
medium. As noted by Taylor, the diffusivity is increased by advection in a
turbulent flow. The main assumption in [34] was the convergence of the
improper integrals in (3). This means that rapid decorrelation of Eulerian
velocities V(#,x) will be inherited by the Lagrangian velocities V(¢,X(¢)) of
the tracer particle. The mathematical analysis and proof of this fact, under
different circumstances regarding V(¢, x), is immensely difficult. In this paper
we make a contribution toward the understanding of this issue.

Before stating our results, we will review briefly the status of the mathe-
matical theory of turbulent diffusion. We mention first the papers [21], [26],
[25], [23], [21] in which, among other things, it is shown that for an ergodic
zero mean velocity field V with sufficiently smooth realizations and suitably
restricted power spectra, when the molecular diffusivity ¢ is positive, then
the family of trajectories {X_(¢)},.,, &> 0 converges weakly to Brownian
motion in dimensions d > 2. Its covariance matrix K = [«; ;]; ,_; ., is, in
accordance with Taylor’s prediction,

(5) ki ;= fHOME[Vi(t,X(t))VJ-(O,O) + Vi(£,X(¢))V,(0,0)] dt + s, ,
0

i,j=1,....d,

where X(2), ¢t > 0 is the solution of (1), M and E denote expectations over the
underlying probability spaces for the Brownian motion B(#), ¢ > 0, and the
random vector field V, respectively. The improper integrals of (5) converge in
the Cesaro sense; that is, the limits

1 .7 T
Jim 2 [ dT[O ME|[V;(,X(t))V;(0,0) + V;(¢,X(¢))V;(0,0)] dt
exist and are finite. We should stress that the Cesaro convergence of the
improper integrals appearing in (5) follows from the proof of weak conver-
gence and is not an assumption of the theorem. Since o 2I is the intrinsic
diffusivity of the medium, we note that K > ¢ 2I (or that K — ¢ 21 is positive
definite) so that advection enhances the effective diffusivity K. The proof of
the statements made above can be found in [21] and [26] for bounded time
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independent velocity fields. For unbounded fields (such as Gaussian fields, for
example) the proof can be found in [25], [4] and [13]. Diffusion in time
dependent zero mean fields can be analyzed using an extension of the
averaging technique developed there (see also [7]).

The one-dimensional case, d = 1, has also been investigated and the
results there are different from the higher-dimensional ones. This is because
there are no nontrivial incompressible velocity fields in one dimension. For a
Gaussian “white noise” velocity field, typical particle displacements are of
order In? ¢ instead of V¢, as is expected in the multidimensional case. This
localization phenomenon is discussed in [30], [23], [17], [6] and does not occur
when the random velocity field is incompressible and integrable in a suitable
sense [13].

Since formula (5) for the effective diffusivity K involves the solution of an
It6 stochastic differential equation with stochastic drift, it is far from being
explicit. In many applications it is important to consider how K behaves as a
function of o, especially when o |0, which is the large Peclét number case
where advection is dominant [16]. Although this question is very difficult to
deal with analytically, some progress has been made recently by noting that
K is a minimum of an energy-like functional allowing, therefore, extensive
use of variational techniques (see [11] for periodic and [12] for certain random
flows). We can go one step further and ask about the limiting behavior of the
trajectories of (2), as £ | 0, in the absence of any molecular diffusivity, that is,
when o = 0. The effective diffusivity, if it exists in this case, is purely due to
turbulent advection. It is this aspect of the problem of turbulent diffusion
that we will address in this paper.

In previous mathematical studies of advection induced diffusion, the focus
has been mainly on velocity fields which besides regularity, incompressibility
and stationarity, either in time or both in space and time, have also strong
mixing properties in ¢ ([20], [18], [19]) and are slowly varying in x. This
means that equation (2) (with o = 0) is now an ordinary differential equation
with a stochastic right-hand side

ax,(1) 10t X(0))
(2

(6) dt g2’ gle
X.(0)

and the parameter « is in the range 0 < a < 1, with a = 1 typically. One can
prove that the solutions of (6) considered as stochastic processes converge
weakly to Brownian motion with covariance matrix given by the Kubo
formula

“+ oo
Kw:fo E[V,(¢,0)V,(0,0) + Vi(¢,0)V,(0,0)] dt, i,j=1,...,d.

As before, E denotes expectation taken over the underlying probability space
of the random velocity field V. The convergence of the improper integral
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follows from the rapid decay of the correlation matrix of the Eulerian velocity
field, which is a consequence of the assumed strong mixing properties of the
field.

Very little is known when « = 0, that is, when the velocity field is not
slowly varying in the x coordinates. However, it is believed that we have
again diffusive behavior, in the sense described above, if the velocity field
V(t,x) is sufficiently strongly mixing in time, and then the effective diffusiv-
ity is given by (5). In a series of numerical experiments R. Kraichnan [22]
observed that the diffusion approximation holds even for zero mean diver-
gence-free velocity fields V(x) that are independent of ¢, provided that they
are strongly mixing in the spatial variable x and the dimension d of the
space R? is greater than two. For d = 2, there is a “trapping” effect for the
advected particles, prohibiting diffusive behavior.

Some theoretical results in this direction have been obtained recently by
Allevaneda, Eliot and Apelian [3] for specially constructed two-dimensional,
stationary velocity fields. An extensive exposition of turbulent advection from
a physical point of view can be found in [16].

In this paper we assume that the field V(¢, x) is stationary both in # and x,
has zero mean, is Gaussian and its correlation matrix

R(t,x) = [E[Vi(¢,%)V;(0,0)]], ;.1 4
has compact support in the ¢ variable. This means that there exists a T' > 0
such that

R(t,x) =0,

for |¢t| > T, x € R%. Such random fields are sometimes called T-dependent (cf.,
e.g, [9]). We also require that the realizations of V are continuous in ¢, C!
smooth in the x variable and that

d
divV(t,x) = ) 4, V,(¢,x) = 0.
i=1

We prove that for such velocity fields the improper integrals appearing in (5)
converge and that the family of processes {X,(¢)},.,, € > 0 tends weakly to
Brownian motion with covariance matrix given by (5). The precise formula-
tion of the result and an outline of its proof is presented in the next section. It
is important to note that the result presented here seems to be unattainable
by a simple extension of the path-freezing technique used in the proofs of the
diffusion approximation for slowly varying velocity fields in [20], [18], [19].

The paper is organized as follows. In Section 2 we introduce some basic
notation, formulate the main result and outline the proof. Sections 3-5
contain some preparatory lemmas for proving weak compactness of the
family {X_(¢)},. ¢, € > 0. The proof of tightness is done in Section 6 where we
also identify the unique weak limit of the family with the help of the
martingale uniqueness theorem.
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2. Basic notation, formulation of the main result and outline of the
proof. Let (Q, 7", %) be a probability space, E expectation relative to the
probability measure P, & a sub-o-algebra of 7" and X: ) - R a random
variable measurable with respect to 7°. We denote the conditional expecta-
tion of X with respect to &7 by E[ X |.&/] and the space of all Z-measurable,
p-integrable random variables by L?(Q, 7", P). The L?-norm is

IXl.» = {EIX|?}"%.

We assume that there is a family of transformations on the probability space
) such that
:Q0—->Q, teR,xeR?

Ty x:

and such that

(PD) 7, .7,y = Toyrxsy forall s,z €R,x,y€RY,
(P2) Tti(A)EW for all ¢t € R, xeRd Aev,

(P3) P[T;I(A)] P[A] forallteR xeRd Aey,
(P4) the map

(t,X, w) = Tt,x(w)

is jointly B ® %r« ® 77 to 7” measurable. Here we denote by %« the
o-algebra of Borel subsets of R

Suppose now that V: Q - R%, where V = (Vl, e, Vd) and EV = 0, is such
that the random field

(7) V(t,%;0) = V(1 x(0))

has all finite-dimensional distributions Gaussian. Thus, V(¢,x; w) is a sta-
tionary zero mean Gaussian random field. We denote its components by
(Vi(¢,%),...,V,(¢,%x). Let Li’b be the closure of the linear span of V.(¢,x),
a<t<b,xeR% 1=1,...,d, in the L*norm. We denote by 7, , the
o—algebra generated by all random vectors from L2 ,. Let Li y=L*, .. ©
L? ,; that is, L% ; is the orthogonal complement of L? , in L*, ... We
denote by 7% the o-algebra generated by all random vectors belonglng to
Accordlng to [29], page 181, Theorems 10.1 and 10.2, 7, , and 7,7, are
1ndependent Let V, ,(¢,x) be the orthogonal projection of V(t x) onto La b3
that is, each component of V, , is the prOJectlon of the corresponding compo-
nent of V. We denote by V* b(t x) = V(t,x) — V, ,(¢,x) the orthogonal com-
plement of V, ,(¢,x). Of course V*°(¢,x) is 7, -measurable while V, ,(¢,x)
is 7, 4 -measurable for any ¢ and x. The correlatlon matrix of the ﬁeld Vis
defined as

R(t,x) = [E[V,(£,%)V,(0,0)]], ,_
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We will assume that the Gaussian field V given by (7) satisfies the following
hypotheses.

(A1) V(¢,x) is almost surely continuous in ¢ and C! smooth in x. More-
over, for any a < b, all V, ,(#,x) have the same property.

(A2) V(t,x) is divergence free, that is, divV(¢,x) = ¥%_, a, Vi(t,x) = 0.

(A3) EV(0,0) = 0.

(A4) R(t,x) is Lipschitz continuous in x and so as the first partials in x of
all is entries.

(A5) The field V is T-dependent, that is, there exists 7' > 0 such that for
all |t| > T and x € R?, R(¢,x) = 0.

REMARK 1. Clearly (A4) implies the continuity of the field in ¢ and x (see,
e.g., [1D.

REMARK 2. Note that although V, ,(¢,x) and V*°(¢,x) are no longer
stationary in ¢, they are stationary in x, for any ¢ fixed. Moreover

divV, ,(¢,x) = divV*®(¢,x) =0,
that is, both V, , and V* b are divergence free.

REMARK 3. We note that the field
V(t,x)

V2 + k12 + 1

is a.s. bounded. This can be seen by using some well-known conditions for
boundedness of a Gaussian field. We recall that for a Gaussian field G(t),
where t €.t and .7 is some abstract parameter space, a d-ball with center
at t and radius o is defined relative to the pseudometric

W(t,x) =

d(t,ts) = [ElG(t) - G(t)[]

Let N(&) be the minimal number of d-balls with radius & > 0 for the velocity
field W needed to cover R?. It can be verified that

N(e) <Ke™29,

where K is a constant independent of &. It is also clear that for sufficiently
large &, N(e) = 1. Thus

[ Vlog N(#) de < +.
0

According to Corollary 4.15 of [1], this is all we need to guarantee a.s.
boundedness of W.
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REMARK 4. Condition (Al) is clearly satisfied when the covariance matrix
R satisfies the condition

d C
(8) |R(0,0) — R(t,x)|+ ) |R¥(0,0) — Ri(t,x)| < ,
i,j:1| ! ’ | ln””\/t2 + x|?

where n > 0 and
— 32
Rfj(t,x) = ‘9xi,ij(t’X)

for i,j=1,...,d. Indeed as is well known (see, e.g., [1], page 62), (8) implies
that

E|V(t,x) - V(¢ + h,x + K)|* + E|VV(¢,x) — VV(¢ + ,x + k)|
9 C
(9) - ’
In'* 12 + Kk

where k = (kq,..., &k ).

Since the projection operator is a contraction in the L?*-norm, we can also
see that V, ,(¢,x) satisfies (9), for any a < b; thus by Theorem 3.4.1 of [1] it is
continuous in ¢ and C'-smooth in x.

Let us consider now the family of processes {X,(¢)},. o, € > 0 given by

aX,(1) 10t X(0))
N

(10) dt PR
X,(0) =

Because V(¢,x) grows at most linearly, both in # and x, (10) can be solved
globally in ¢ and the processes {X_(¢)},.,, € > 0 are therefore well defined.
Note that each such process has continuous (even Cl-smooth) trajectories;
therefore, its law is supported in C([0, + ), R¢), the space of all continuous
functions with values in R? equipped with the standard Frechét space
structure.

DeFINITION 1. We will say that a family of processes {Y,(¢)},.,, €¢> 0
having continuous trajectories converges weakly to a Brownian motion if
their laws in C([0, + ), R?) are weakly convergent to a Wiener measure over
that space.

The main result of this paper can now be formulated as follows.
THEOREM 1. Suppose that a Gaussian random field V(¢,X) is stationary

in t and x [i.e., V(¢,x; w) = V(r, ,(w)] for some V() as in (7)]. Assume that
it satisfies conditions (A1)—(A4).
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Then:
(i) The improper integrals

b; :wa[Vi(t,X(t))V(O,O)] dt, i,j=1,...,d
0 J

J

converge. Here X(¢) = X,(¢).
(i1) The processes {X (t)},. ,, € > 0 converge weakly, as ¢ |0, to Brownian
motion whose covariance matrix is given by

(11) K j=0b; i +0b;, i,j=1,...,d.

At this point we would like to present a brief outline of the proof of
Theorem 1. As usual, we will first establish tightness of the family {X_(¢)}, . ,,
g > 0. According to [30] it is enough to prove that this family is tight in

C([0, L], R?%), the space of continuous functions on [0, L] with values in R¢,
for any L > 0. In order to show this fact, we need estimates of the type

(12) E|X,(u) - X,(t)["|X,(¢) = X,(s)]" < C(u —s)'",

for all ¢ > 0,0 <s <t <u <L and some constants p, q,C > 0. After estab-
lishing (12) we can apply some of the classical weak compactness lemmas of
Kolmogorov and Chentzov (see [5]) to conclude tightness. Note that

t
Xg(t)=8X(—2), e>0,t>0.
e

For brevity we shall use the notation
V(t,s,x) =V(¢,X>*(t))

with the obvious extension to the components of the field. Let us also make a
convention of suppressing the last two arguments, that is, s and x in cases
when they both vanish. For any nonnegative integer £ and i,,..., i, €
{1,..., d}, we shall use the notation

k
Vi (s, 8,,8,X) = HlVip(sp,Xs,X(sp)).
pe

Again we shall suppress writing the last two arguments in case they are both
zZero.
We now write the equation for the trajectories in integral form

X,(1) = X,(s) = o[/ V(e) do

and so the left-hand side of (12) is

d ) ,
(13)  E2et[" de' [* JE[[X,(2) - Xe(0)['V, (0", 0")] do”.
i:1 S/e& sS/e&
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Since, according to Lemma 1, the field {V(¢)},. , is stationary, (13) is equal to

228 /t/g dQ/ [|X8(u—82@/’)—X8(t—82 ”)|

s/s
XV, (0" = Q”,O)] do”
d
= Y 252 [V do [€TE||X (u - 220" + 820"
> 227 [ do [ E[X.( )
-X, (¢t — g2o' + aZQ”)|p
XV, i Q",O)] do" .

The key observation we make in the remark at the end of Section 4 is that for
any positive integer £ the sequence of Lagrangian velocities

{(V(t; + NT; w),...,V(t, + NT; 0)}x-0
has law identical with that of the sequence

{(V(ti;E8)s - V(463 Ex) v o

where {Ey}y. o is a certain Markov chain of random environments (i.e., the
state space of the chain is (Q,7" . ()] defined over the probability space
(Q, 72 o, P). Now the expectation in (14) can be written as

B[|X,(u — o' + £%(¢" ~ NT)iEy (o))
—X,(t — &' + (" — NT);Ey(0))[
XVi(0" = NT;Ey(w))Vi(0; w)]

E[|Xg(u — 20" + &2(0" —NT)) - X,(t — £%¢0' + £2(¢" — NT))[’
xVi(¢" — NT)QVV,],

where N =[0"/T] ([-] is the greatest integer function), @ is a transition
probability operator for the Markov chain {Z},., and V, is the ith compo-
nent of the random vector V defining the random field [see (7)]. In order to be
able to define the chain we will have to develop some tools in Sections 3 and 4
and establish certain technical lemmas about the expectation of a process
along the trajectory X(¢), ¢ > 0, that is, f(7, x..,(®)) conditioned on the
o-algebra 7, , representing the past.

The proof of estimate (12) can thus be reduced to the investigation of the
rate of convergence of the orbit {@~ V}N> 0t00,i=1,...,d. We will prove in
Lemma 10 that the L'-norm of @YV, satisfies

1QN VI

1 lim ——— =
(15) Jm N =0
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for any s > 0. The result in (15) may appear to be too weak to claim (12), yet
combined with the fact that V(¢) is a Gaussian random variable for any fixed
t > 0, so that

P[|V(¢" — NT,X(9" — NT))| = N| < exp(—CN?),

for some constant C > 0, we will be able to prove in Section 6 that (12) is
estimated by C(u — s)!79, for some g > 0. In this way we will establish the
tightness of {X,(¢)},. o, € > 0. The limit identification will be done by proving
that any limiting measure must be a solution of a certain martingale prob-
lem. Thus the uniqueness of the limiting measure will follow from the fact
that the martingale problem is well posed in the sense of [33].

REMARK. In what follows we wish to illustrate the idea of an abstract-
valued Markov chain {E,},., that we have introduced above and shall
develop in Section 4. Consider a space—time stationary velocity field V(¢, x; w)
on a probability space (), 7", P) with the group of measure preserving
transformations 7, ., t € R, x € R% Let us denote by Z, the set of all
positive integers and

Q=1 o,

nez,
P= Q P,

nez,
7= 7

nez,

and define
W(t,x;(w,)nez,) = V(t — NT,x; 0y) for NT <t < (N+1)T.

This field is of course not time stationary (actually it can be made so by
randomizing the “switching times” NT') and we do not even assume that it is
Gaussian. However, we wish to use this case to shed some light on the main
points of the construction we carry out in this article.

Let

y((wn)neh) = (“’nﬂ)nez+
and

Z((0)nez) = (7o, x0: 00 (@) ) ez )-

Here X(¢) denotes the random trajectory generated by V starting at 0 at time
t = 0. Let us consider the Markov chain with the state space (1 on the
probability space (Q, 77, P) given by

Eo(( wn)nEZ+) = (wn)neZ+7

Epa((@0)nez,) =2 (En((@2)nez,))-
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We can easily observe that
w(taY(t;(wn)n€Z+);(wn)n€Z+)
=W(¢ — NT,Y(t = NT; Ex((@,)nez.)); En((@)nez,))

for all ¢ and N € Z,. By Y we have denoted the random trajectory of a
particle generated by the flow W and such that Y(0) = 0. The transition
probability operator @ for the chain {E,(®,),cz ),cz, defined on
LY(Q, 7, P) is given by the formula

(16) Q((@n)nez.) = [F((@)nez,)P(dwy),
where

(‘),O = Wy,

W, = Ty, _x(T; wp( @,) forn =1

Let us observe that
Ql=1;
that is, @ preserves P. Therefore (13) equals, up to a term of order 0(&2),

22 /‘(t /e 1o fo—s/a Y. (u—s)-Y,(t-s)W (Q’,Q”)]d

Here
W,(¢;(@)nez.) = W(£,Y(¢;(@)nez,);(@)nez,), i=1,...,d

and the notation concerning multiple products of the above processes can be
introduced in analogy with what we have done for V. We also denote

Y.(t) = eY(¢/7).

Consider only the off-diagonal part of the double integral, that is, when
o' — 0" > T. We get, again up to a term of order O(&?),

d (t—9)/(2T) [ 0" /T]
y2s [ Y X E[[Y(u-s-etTiE, )
i=1 (t=5)/e>0">0"+T y_[o'/T] m=0
_Y (t -8 — & nTa‘—‘n m)|p

W(Q . I’LT,;-,L m)Wi(Q” _ 82mT)] dQ’dQn
d (t=5)/(e*T) [ 0" /T]
- Y] [ Y L E[[Y(u-s- )
. (t—s)/e?>0'>0"+T n=[o'/T] m=0

=Y (t—s~— aznT)|p
XW, (o' — &*nT)Q" ™(W,(0" — stT))] do' do".
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Let us observe that the Lagrangian velocity W;(o" — £2mT) is of zero mean
and 7-measurable, where

V=V ®T®T®

and 7 = {¢, Q} is a trivial o-algebra. The last term in (17) therefore can be
easily shown to be equal to 0 when n — m > 1, using (16).
We can see thus that for any p > 0,

2
E[|Y,(x) - L()|¥.(1) - ()] = C(¢ -~ 9),
which suffices to claim tightness of the family {Y,.(¢)},. ,.

3. Lemmas on stationarity and conditional expectations. The fol-
lowing lemma is a version of a well-known fact about random shifts, shown in
[28] and [15], where it was derived with the help of the theory of Palm
measures. Before formulating it, let us make a convention concerning the
terminology. We say that a random vector field W(¢,x) on the probability
space (), 7", P) is of at most linear growth in ¢ and x if for almost every
w € Q there is a constant K(w) so that [W(z, x; )| < K(w)(|t] + Ix)).

REMARK. Note that according to Remark 3 in Section 2, V(¢,x) is of at
most linear growth.
For a random variable U: Q — R let us denote
U(t,s,x;w) = U(Tt,Ys,X(t;m)( a)))
with the convention of suppressing both s and x when they are both zero.
LEmMMA 1. Suppose that W(t,x) = (W(¢,%), ..., W,(¢,%)) is a space—time
strictly stationary random d-dimensional vector field on (Q, 7", P); that is,

there exists W so that W(¢,x; ) = W(Tt’x(w)), for all w,t,x. In addition,
assume that W has trajectories continuous in t, C'-smooth in x,

d
divW(t,x) = ) 9. W,=0
i-1

and that its growth in t,x is at most linear. Then for any s,x and Ue
LYQ, 7, P), the random process U(t, s,X), t € R is strictly stationary. Here

Yox(¢) =x + ]:W(U,YS’X(U)) do.

Proor. Note that for any ¢, h € R,
(18) YS,X(t + h; w) = YS,X(h; (,U) + YO’O(t; 'Th’Ys,X(h;w)(w)).
The transformation of the probability space

0,: 0~ Th’Ys,X(h;w)( w)
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preserves the measure P (see, e.g., [28], Theorem 3, page 501 or the results of
[15]). We can write that for any ¢, < - <¢, and A,..., A, € R,

E1l, (U(¢ + h,s,x)) 1, (U(¢, + h, s,x))
= EIAI(U(tl; 0 ( w))) lAn(U(tn; 0, ( w)))
= E]-AI(U(tl)) lAn(U(tn))‘ U

In the next lemma we recall Theorem 3 of [28].

LEMMA 2. Under the assumptions of Lemma 1,

EU(7oy:,X¢; (@) = EU.

The following lemma is a simple consequence of the fact that in the case of
Gaussian random variables, L?-orthogonality and the notion of independence
coincide.

LEMMA 3. Assume that f € L2(Q, 7w s P) and —»<a<b< +
Then there exists [ € L*(Q X Q,7, , ® 7%, P ® P) such that one of the
following hold:

(1) f(®) =f(o, »);
(i) fand f have the same probability distributions.

Before stating the proof of this lemma, let us introduce some additional
notation. Denote by @ = C(R%*1; R%) the space of all continuous mappings
from R%*! to R For f,g € &,

21 supy g <al F(2,%) —g(¢,x

D(f.g)= Y — [¢]+]x| < |£(¢,%) (t,%)| .

a1 20 1+ Sup|t|+\x|sn| f(t,x) - g(t,x)|

As is well known, D is a metric on # and the metric space (%, D) is a Polish
space; that is, it is separable and complete. By .# we denote the smallest
o-algebra containing the sets of the form

[£: f(t,x) € A],

here (¢,x) € R%*! and A € %ya. It can be shown with no difficulty that .# is
the Borelian o-algebra of subsets of (#, D).

Proor or LEMMA 3. Consider the mappings ¢, ¢, ;, ¢, , from Q to # and
¢ from Q X Q to Z given by the formulas

(@) =V(,; 0),
%,b(“’) = Va,b(‘a‘ ;w),
¢aL,b(“’) = Vaj,-b(':' ; @),
Y(o,0) =V, ,(, 50) + Vi, (5 0),
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where in the last definition the addition is understood as the addition of two
vectors in a linear space #. These mappings are 7_ . ., to .# measurable,
7,, to .# measurable, 7', , to .# measurable and 7, , ® 7', , to .
measurable, respectively.

Suppose that f: ) > R is a 7, | .-measurable random variable. There

exists g: € — R such that f= g o ¢. Set
f(a),w,) =g(¢(a),w’)).

Obviously it fulfills condition (i) from the conclusion of the lemma.

The fact that f and f have the same probability distributions follows from
the observation that the probability distribution laws of the processes

V(t,x,w) = ¢(w)(t,Xx)
and
W(t,x,w,0') = (v, 0)(t,Xx)
are identical. O
The following lemma provides us with a simple formula for an expectation

of a random process along the trajectory X(z), # > 0 [the solution of (10) with
& = 1] conditioned on 7, ,. Let X** be the solution of

X*X(t) = x + f:V(Q,XS’X(Q)) do,

with the convention that we suppress superscripts if s = 0 and x = 0.
By {X%*(¢)},.» we denote a stochastic process obtained by solving the
following system of O.D.E’s:

(19) +V“’b(t+C,Xf’x(t;w,w’);w’),
X2 *(b) = x.

In addition, when a = —« and b = 0 we set

(20) X =X9°.

LEMMA 4. Assume that f€ L*(Q,7 .. .., P). Let f be any random vari-
able which satisfies conditions (1) and (ii) of Lemma 3. Suppose that —o <
a < b < +wand c is any real number.

Then for any event C that is 7: , measurable

E{f(To,x”«"(t; Tgyo(w»( w))lc( w) |% b}

= Ew'{f(TO,X?'O(t;w, w')( ll)), TO,X?’O(t; a),w’)( w,))IC( (1),)}

Here E ,, denotes the expectation over the o' variable only.
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Proor. Let A be fixed. Consider the difference equation
XZJrl = XZ + Vnh(XizL)ha
X! =0,

where V/(x) = V(b + ¢ + nh,x). Define also {X"}, _ , via the difference equa-
tion

Xt =X+ Uf;(f(ﬁ)h + W,,h(f(ﬁ)h,
Xk =0,
where
Ul(x) =V, ,(b +c + nh,x),

Wi(x) = V©2(b + ¢ + nh,x).
The following lemma holds.
LEMMA 5. For any bounded measurable function ¢: R* - R? and C €
%,lm
(21)  E[e(XM)1.]7, ;] = E,[e(Xi( 0, 0"))1lc(0")]| foralln=o.

We shall prove this lemma after we finish the proof of Lemma 4. Suppose
that f satisfies conditions (i) and (ii) of the conclusion of Lemma 3. Then

E[f(To,Xl""(t; reaton(@))1o(®) | 7., b]

= E[f(TO,Xb’O(t;TC)O(a)))( w), To,Xb:0¢; TC,O(w))( w))lc( w)

By a standard approximation argument we may consider f(, ') as being of
the form f(w)fy(w'), where f,, f, are, respectively, 7, ,-measurable and
7, -measurable. Then the right-hand side of (22) is equal to

E[fl(TO,Xb’o(t;Tcﬁo(w))( “’))f2(70,xb»°(t;7010(w))( w)lc(w)

Consider two random functions
(X, w) = Fy(x, 0) = fi(7y x(0))

|-

7o o).

and
(X’ a)) — F2(X’ a)) = fQ(TO,x(w))’

which are, respectively, B« ® 7, ,-measurable and Brs ® 7, -measurable.

We wish to prove that
(23) E[F1(Xb’0(t; Te,0(®@)), w)Fz(Xb’o(tQ T..0(®)), w)lc(“’)|%,b]
= Ew,[Fl(Xf’hO(t; w, '), w)F2(Xf'°(t; w, '), w’)lc(w’)].

Let us consider the functions
Fi(x,0) = ®(x)1¢(w),

(24) Fy(x, @) = by(x) 1),
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where ®,,®,: RY > R, are bounded and continuous, R, = [0, +%) and
C, €7,,, C, € 7,%. It is enough to prove (23) for such functions only. By a
standard approximation argument we can prove (23) for arbitrary measur-
able F,, F,. Equation (23) will be proven if we can show that for any n > 0
and A € R,

B[ @,(X])10y(X))1e,1e| 7 o]
(25) - E[q)l(xﬁ)q)z(xﬁ)lczlc
—E,[®,(X!(0, 0)0y(Xi(w, o)1 (0)1c(0)]1e(0).

Indeed, passing to the limit with A | 0, we see that the functions
X"(¢t) =X" for nh <t <nh

7, 4] 1c,

and
X"(t) =X" for nh <t <nh

converge, for all w, o', to X(¢) and X(¢), respectively, uniformly on any
compact interval.
The first equality in (25) follows from an elementary property of condi-
tional expectations, while the second is a direct application of Lemma 5.
Hence the only thing remaining to be proven is Lemma 5.

ProoF oF LEMMA 5. Formula (21) is obviously true for n = 0. Suppose it
holds for a certain n. We get for n + 1 that
(26) E{e(X}, 1)1C|%,b} = E{QD(XZ + Vnh(Xﬁ)h)1C|%,b}
= E{o(X! + UNX!)h + WH(X2)R)1|7, ).

The only thing we need yet to prove is, therefore, that for any continuous
function ¢: RY X R* X R > R,

E{y (X!, UN(X!)n, WX )| 7, )
(27) =E,{¢(Xi(0,0),UlXi(0, 0'); 0)h,
Wi (Xi(0, 0'); 0 )h)1c(o)}.

Actually it is enough to consider only ¢(x, y, z) = ¢(x)y(y)h3(2). A stan-
dard approximation argument will then yield (26) for any . We need to
verify that

E{y(X2) g, (U2 (X) R) g (W (X]) 2) 16| 7 )
(28) = E, {t1(Xi(0, @) t,(Ul(Xi(0, 0'); ©)h)
Xl//S(th(f(Z(a), w'); w’)h)lc(w’)>.
Consider now the random functions
Vy(x; ) = g[fz(Ufj(x; w)h)
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and
Y, (x; 0) = lﬂ3(wnh(x; w)h)-

They are B« ® 7, ,-measurable and %, d ® 7,,-measurable, respectively.
Applying again an approximation argument, we may reduce the verification
procedure to the functions of the form

Wy(x; ©) = V(X)L ()
and
Vy(x; 0) = Vy(x)1e (o),

where ¥,,¥,: R’ > R, are continuous, C, € Zq.u> C3 € 7,7, Substituting
these expressions into (28) we get

E{ g (X2) Wy (X2) 10,05 (X016, 16| 7}
= E{ (X)W (X2)Fy(X2 )1, 1|7 41,
= E, {#1(Xi(0, 0))T(Xi(0, o))

XUy (I, 0))1o(@) e 0) 1o @).

The last equality holds because we have assumed that Lemma 5 is true for n.
Therefore we have verified (28) for functions specified as above and thus the
proof of the lemma can be concluded with a help of a standard approximation
argument. O

4. The operator @ and its properties. Throughout this section we
shall assume that X has the same meaning as in (20). For fixed o let Z!:
Q — Q be defined by

Z,(0") = TO,X(t;w,w’)(w,)'
Let J'(:, w) be a probability measure on (Q, 7”7, ,, P) given by
J'(A, w) = P|(2.) ' (4)].

It follows easily from the definition of X(¢), ¢ > 0, that for any set A € 7 %0
the function w — J*(A, w) is 7~ ,-measurable. Let 7, be the o-algebra
generated by V™*°(¢,x), 0 < ¢ < T and let us set

%Ow,o = TT,O(%OS,T) C7 -

For any f € L'(Q, 7" . ,, P), such that /> 0, [, fdP = 1, we define
[QFILA] = | J7(A, @) f()P(dw)
which is a probability measure on (Q, 7=, ().

LEMMA 6. (i) For any f as described above [Qf] is an absolutely continu-
ous measure with respect to P.
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(ii) The Radon—Nikodym derivative of [Qf] with respect to P, d[Qf1/dP,
is 7 p-measurable.
(iii) [@1] = P, where 1 = 1,.

Proor. (i) Suppose that P[ A] = 0, for some A € 7”7, . Then

[QFILA] = [ JT(A, w)f(@)P(dw)

= P(d 1 T 0 on(@))P(do').
[ (@) P(do) [ 14(7o.5,0, (@) P(de)
By Lemma 4 we get that the last expression is equal to
'/;lf(w)P(dw)E{lA(TO,X(T;w)(w))|7—w,0}
(29)
= [ (@) 1a(0,x: (@) P(dw) =0,

since E1,(7; x.,(®)) = E1, = P[ A] = 0 by virtue of Lemma 2.
(i) Let
0,(@) = 7 x¢; (@), tER.
Then the process
{f( Ot( w))lA(To,X(T; Gt(w))(et( w)))}teR

is stationary by virtue of Lemma 2. The right-hand side of (29) is hence equal
to

(30) J 1(6-2(0)1a(7-1,0(@)) P(dw),

since by (18)
X(-T;0) +X(T;6_p(0)) =X(0;w) =0.

Using the invariance of P with respect to 7_, o(w), we get that expression
(30) is equal to

[ £ (705 107 gt (@) La @) P(d0),
which by Lemma 4 equals

[, [ (70,530 710, 09(@))1a( @) P(d @) P(do)

= [ P(d0") [ (70,590 1:0,00(@)) P(d ),
where X% is defined by formula (19) for a = —%, b = 0. Since
V>t +T,x;0'),x€R?, -T<t<0

are 7, measurable, X3%(—T; w, »') is jointly 7. , ® 7 ;-measurable.
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Thus
f F(o.590- 110, 0()) P(d)

is 77 p-measurable, which proves (ii) of the lemma.
(iii) Observe that

[QUIA] = | J"(A, @)P(dw) = E{Ly(7o xz:u(@))} = E1s = PLA].

The next to last equality holds by virtue of Lemma 2. O

For an arbitrary f we define @f by the following formula

| Qf
Qf = [dP] °T_r,0-

Here d[Qf1/dP is the Radon—Nikodym derivative of [@Qf] with respect to P
on (77, ,, P). By Lemma 6(ii),
QfeL'(Q,7° ,,P).

The following lemma contains several useful properties of @.

LEMMA 7. () Q: LY(Q, 7. o, P) » LY(Q, 7 .. o, P) is a linear operator.
(i) QF = 0 for f = 0.

(i) [, QfdP = [, fdP.

(iv) Q1 = 1.

W 1Qf l» < lIflize, for any f€ LP(Q, 7, o, P),1 <p < +=.

ProoF. Parts (i) and (iv) follow directly from Lemma 6 and (ii) is obvious.
(iii) Note that from (29) we get

[, @fdP = [QF110] = [ f(@)La(7oxr.m(@))P(dw) = [ fdP.

(v) Together (ii) and (iv) imply that @ is a contraction in L°(Q, 7", ,, P)
space (cf. [14], page 75). Therefore, by the Riesz—Torin convexity theorem (see
[10], page 525) Q is a contraction in any L?(Q, 7%, , P) space. O

The next lemma will be of great use in establishing the Kolomogorov type
estimates leading to the proof of weak compactness.

LEMMA 8. Let p > 0, N, k be positive integers and s, .4 > -+ > s; = NT,
1<i<d. AssumethatY € L'Q,7 ., o, P)
Then

|

p

[ V(o) do

Sk+1

P
Sppo—NT
B[ V(o) do

Sp+1—NT

.....
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ProoOF. Let us observe that

E[/

Let us define

P

(31) '
Sk+2
f V(Q) dQ ‘/z ..... i(sl7""sk)

Sk+1

7 o|Y

fSk”V( 0,T,0;w)do

Sk+1

f(w)= ‘/l ..... i(sl>"'a8k7Ta0;w)

and
f(w, w') =f(w').
Using the fact that
(32) X(¢; w) =XT’0(t;TO7X(T;w)(w)) + X(T; w)

we can write that the right-hand side of (31) equals

P
Sk+2

E

E V(Q7T’0;TO,X(T;m)(w)) dQ

Sk+1

(33)

XV, .. i(sl,---’Sk’T’O;To,X(T;m)(w))W_m,o Y

Applying Lemma 4 with ¢t =T, b,c =0 and a = —, we obtain that (33)
equals

p
Sk+2

fQY(w)P(dw)fQ V(0,T,0;7 x1;0, (@) do

XVL’ ..... i(sp---’Sk,T,O;To,x(T;m,wr)(w’))P(dw’).

(34)

Sk+1

By the definition of J7(dw’, ») given at the beginning of this section, we
can conclude that the last expression in (34) is equal to
D

fQY(w)P(dw)fQ

XV, i(s1,..,8,T,0;0)J"(do’, ),

Tyenny

[ V(e.T,0;0') do

k+1

(35)

By virtue of Lemma 6(ii) and the definition of the operator @ given after the
lemma, the expression in (35) is equal to

p
Vi(Tsk*T,XT’O(Sk;T—T,o(w'))( w,))

Sk+2 ~ ,
f V(TQ*TyXT’O(Q;T—T,o(w'))(w ))dQ

Sk+1

(36) /“
X X V(T g xP0(y57 (@) QYP(d ),
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where QY is W_Om’o-measurable according to Lemmas 6 and 7. Using the fact
that

X037 1 o(0) =X(0— T; o)
we get that (36) equals to
4
[ V(oY do| Vi, sy~ Th..o s, — T3 0))QY (') P(dw).

Spr1— T

Q

Repeating the above procedure N times we obtain the desired result. O

REMARK. There is a possible interpretation of what we have done so far in
terms of a certain Markov chain defined on the abstract space of random
environments (). Let us consider a random family of maps Z(-; w): Q — Q,
w € (1, defined by

Z(w;0') = ng(T—T,O( ®')).
Using the argument employed to prove Lemma 6(ii), we note that the map 2

AXOQ->Qis 7, ,®7 5, to 7 ., measurable and therefore {Z;}
given by

n>0
E¢(0) = o
Eri(e) =Z(E(0');0), n=0
is a Markov family with values in an abstract state space of random environ-

ments (), 7", ) defined over the probability space ((, 7%, ;, P) where Q is
its transition operator. Lemma 8 can be now formulated as follows.

LEMMA 9. Let p > 0, N, k be positive integers and s, , 5 > =+ >s; > NT,
1<i<d, Assume that Y € L'(Q, 7", ,, P). Then

E f3k+2v( Q) dQ """"
Sk+1
P
Spyeo— NT — o ,
=EwEw'[fk ’ V(Q,:N(w ))dQ
Sp+1—
XV,  i(s;=NT,...,s, — NT;Eg(w))Y(w)|.

5. Rate of convergence of {Q"Y},_ ,. Our main objective in this sec-
tion is to prove the following lemma.

LEMMA 10. Let Y be a random variable belonging to L*(Q, 7" , P) such
that EY = 0.

Then for any s > 0 there is a constant C depending only on s and ||Y |12
such that

C
IQ"Y Iy < — foralln.
n
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Proor. Note that, according to the definition of [Qf], for any f> 0
belonging to L'(Q, 7", ;,P)and A € 7+,

d
Gn  leral- [

According to [15], page 149, Section 5, the absolutely continuous with respect
to P part of J7(dw’, w) has a density given by the formula

Fvl(dx;w, ")
(38) / . 3
r¢ Gp(0; 0,7y ((@))
Here v/ (U; w, »') stands for the cardinality of those y € U for which
lpt(y7 w, (,(),) = X,

dP=/QJT(A,w)f(w)P(dw).

where
(X 0,0")=x+ X(t; w, TO,X(w')),
Gr(x; 0,¢") = det Vi (X; 0, 0').

Note that i, is at least of C'-class because

di(x) . —%,0 .o
o ) (e ) £V 05 ),
Po(x) = x

and both V_,, ,, V™% are C* smooth in x. As a result we know that Vi,(x)
exists and satisfies
V(% 0, 0") = Vl,l/t((); w, TO,X(w’))

=1+ Vx(t; w, TO,X(w/))'
We also have that

d ~

(40) E Vi, (0; 0, 0") = va_m’o(t,X(t); w)[V¢t(0; w,0') - I]
+ NV =0, X(t); ') Vi (0; 0, o)

and

V¢0(0; w, (1)’) = I

The expression (38) is P(d ') a.s. finite according to [15] [see formula (13)
in that article]. We have therefore that

v (dx; o, ")

(41) T4, 0) 2 [ P [ o (o)

Let a(p) be an increasing, for ¢ > 0, smooth function such that there exists
the following:

(i) a(—p) = alp);

(ii) a(0) = 0;
(iii)) a'(p) > 0, for p > 0;
(iv) a(o) = o, for o > 1.
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Set p(x) = a(x]). Fix y € (1/2,1). For any A > 0, let
K,(A) =|w: sup [|V_.o(¢t,%)]+|VV_. o(£,x)|] < A(@(x) + log” n)|.

0<t<T
Let V_, o(¢,x) = (VY ((¢,%),...,V® ((¢,%)). Consider the processes
. Vﬁlo)c o(t,X) .
WO (¢, x) = d for0<t<T,xeR%i=1,...,d.

o(x) + log” n
It is easy to see that for any W the minimal number N© of d-balls with
radius & > 0 needed to cover R? satisfies

N® < Kg 44,
where K does not depend on &, n and i. The Borell-Fernique-Talagrand
type of estimates of the tail probabilities for Gaussian fields (see, e.g., [2],

page 120, Theorem 5.2) imply that there exist constants C, A > 0 indepen-
dent of n so that for A > A and all n we have

\2
P[Kn(/\)c] SC)\4d+1exp{— },

8a,2
where
K, (M) =Q\K,()),
Vo (%) [ +|VV_. o(£,0) [
a? = sup E d .
0<t<T,xeR? (¢(x) + log” n)
1

- 2 2] _
" log¥ n OzltlfTE[lv—w,o(t’O)l +| VLV o(2,0)| ] log®" n’

for some constant C. Hence
(42) P[K,(A)°] < Cy A%+ exp{—Cyy A% log?” n},
for A > A and certain constants C,;, Cy,. Let 0 < v < 1 be such that

eV MT 1

A+1
and vA < 1.
In the sequel we will denote K,(A) by simply writing K,, n > 1. Define

L, = [we 0: sup [[V=70(2,x)| +|VV-"0(¢,%)|| < vix| + log” m].
o<t<T

The fact that lim,, , . ,P[L, ] = 1 can be proven precisely in the same way as
in the argument used in Remark 3 in Section 2. There exists a constant C,
depending on v only such that ¢(x) < v|x|+ C,. For v € K,, 0’ € L,, we get

dX(t)
dt

< v(1+ A)|X(t)| + C,A + Alog” n + log” m,

X(0) = 0.
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Hence by the Gronwall inequality,

eV _

43) s XOl= =g

Here C; = C,A. Using (40) we get that |Viy,(0)] = 1 and

(Cy + Alog”n + log” m).

A

d -
21V = sup [NV__ (6. X(0))|[|V(0)] + 1]

0<t<T
+ supTvav-*’O(t,X(t))llwt(m|

0<t<

IA

(Av sup |X(t)| +C, + Alogyn)[|V¢t(0)| +1]
(44) 0<t<T )
+(v sup |X(¢)] + 1og7m)|Vz,//t(0)|
0<t<T

<e”TVT(C + Alog” n + log” m)| Vi, (0)|

+

1 (e?@*MT — 1)(Cy + Alog” n + log” m)

+ C, + Alog”n,
for0 <t <T.

The last inequality in (44) follows from estimate (43) of sup, ., . 7|X(?).
Hence by the Gronwall inequality

sup |V, (0)] < 2A exp{e’*MT(C + Alog? n + log” m)T}
0<t<T
(45) < Cyexp(Cyylog? n)exp(Cas log? m)

forw'eL,,ovwekK,.

m?

The next lemma establishes how large the random set [x: ¢ (x) = 0] is for
w' €L,, o€ K,. Before the formulation of the lemma, let us introduce the
following notation: B(0) denotes a ball of radius o with a center at 0 € R4,

LEmMA 11. For o' € L,,, w € K, the set [X: Y;(X; », ®") = 0] is nonempty.
There exists a constant Cs; independent of n, m such that

[X: l!lT(X) = 0] c BC31(log7n+log7 m)(O)'

Assuming the above lemma, observe that
U TO,X(Lm) gI’[M]+17
|x|< C3(log?” n+1log? m)
where
(46) log” M = Cyy(log” n + log” m).
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Indeed if w’ € L,,, X; € Bg, (1097 n+10g” m)(0) then

|V*°c’°(t,x; To’xl(w’))| <vx+x,|+log"m

IA

vix| + C5yv(log” n + log?” m) + log” m
vix| 4+ (1 + C3;v)(log” n + logm)
vix| + C4(log” n + log” m)

IA

IA

provided that C;; in Lemma 11 has been chosen sufficiently large. Hence
To,x(®') € Lyyy,, for the choice of M according to (46). Therefore we can
write that

vi(dx; w, ")
fRd GT(0§ w’TO,x(w’))

vi(dx; w, ')

= C41[Rd |V (05 @, 79 (@)

1 1

= Can exp(Cys log”([M] + 1)) exp(Cy, log” n)
1 1

= Cay exp(Cyy log” m) exp(C,;log” n)

(47)

The last but one inequality follows from Lemma 11 and estimate (45). Taking
into account (41) we see that the left-hand side of (37) is greater than or equal
to

vi(dx; w, ")

T(O’ w, TO,x(w,))

@) = X[ ] f0)lk kwnr,.an(@)P(de)P(do)

m,n=0

fﬂf(w)P(dw)/AP(dw’)fRd e

vl (dx; 0, w')

X.[Rd Gr(0; 0,79 ("))’

Here K, =L, = ¢. Using (47) we can estimate the right-hand side of (48)
from below by

1
exp(Clog? n)

Co X[ [ )k, ke (@)s, r,(@)

m,n=0

(49) P(dw)P(do')

X
exp(Cy; log” m)

= [ [ T()P(do)) [ f(0) A(w) P(do),
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where

F(w’) =C5 on Lm+1\Lm’

1 exp(Cy; log” m)

A(w) =

K K,.
exp(Cy log” n) on R\

Note that each L,, € 7%, , c 7%, so I' is 7% measurable. Combining
this with (49) and (37) we get that

d[Qf ]
dP

(50) (') > F(w’)foA dP  P(do')as.

Hence

Qf>Tr_, OfoA dp

P as. Now denote Y, = @"Y. Choose the minimum of [, YA dP and
fo Y A dP; say it is the first one. We have then by (50),

1Y, o < QY Il + QY Il — fﬂ YFA denrdP

<Yl — fK YA deQF dP

(51)
<Y, |l = exp(—Cyqlog'n) [ Y, dP[ T'dP
K, Q

= [IY,ll2 + exp( —Cl,, log“/n)fQFdP(/Kc Y! dP — fQYn* dP).

Since [, Y, dP =0 we get [, Y, dP = 1/2|Y,ll;1. The Schwarz inequality

guarantees that
[ Y dP < /P[K] Y, ]I
K;

The right-hand side of the above inequality is, by (42) and Lemma 7(v), less
than or equal to

Cyy exp(—Cqy log®"n) Y| 2.
Finally we can conclude that
1Y, 1lle < 1Y, 1l (1 — Cqp exp(—Cry log” n)) + Cyy exp(—Crg log®7n).

The positive constants C.,,C,; depend only on [|Y||z:. We can observe that

1Y, < Cpy 2 exp(—Crzlog® k) [T (1 — Cqppexp(—Cqylog” p))
k=1 p=k+1
(52) o
+ 1Yl [T (1 = Crexp(—Crylog? p)).
p=1
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Now the kth term of the sum on the right-hand side of (52) can be estimated
by

n

(53) Criexp(—Cyrglog® k)exp!{ —Cqy ). exp(—Cqylog? p)|.

p=k+1

For k >[n/2] we get therefore an estimate of (53) by the first factor,
that is, by

Cy
nCo2log® "t (n/2) "
For k <[n/2],
n n 1
Y exp(—Cplog’p)= Y ——— 2n'"’
p=k+1 p=k+1pc72/lg P

for 0 <r <1 and n sufficiently large. Therefore (53) can be estimated by
Cy, exp(—C,;n'""). Hence Lemma 10 has been completely proven, provided
that we prove Lemma 11. O

Proor or LEmMMA 11. For we€ K,, o' € L,,, consider the mapping F:
R? — R? constructed in the following way. For any x € R¢, solvefor0 <t < T
the system of O.D.E.’s

p(x) =V_, o(t, 1(X) —x;0) + V=0t p(x); ©)
(54) dt =0T ’ PR
pr(x) = 0.
Let us set
F(x) = po(x).
Note that

w(x) = ¢,(x) forallO<t<T
iff
F(x) =x.
Observe that then x belongs to the set
[x: br(x) = 0].
We can write therefore that

‘ d/*“t(x)
dt

<Ay p(x) — x|+ C, + Alog”n + v|p,(x)| +log” m

< (A+ 1)y p(x)|+ Avixl+ C; + Alog”n + log” m
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and ur(0) = 0. By the Gronwall inequality,

(A+1pT _ g

| p,t(x)l < W(AV|X| + C; + Alog” n + log” m)
(55) — A 1 (e(A+1)I/T _ 1)|X|
e(A+1)VT _
+W(Cl + Alog?n + log” m)
14
For

(e —1)/((A + 1)r)(C, + Alog”n + log”m)
1— (A/A+1)(eD7T — 1)

we can observe that [x| <R implies |F(x)| < R. Choose therefore R =
C(log” n + log? m) for C sufficiently large independent of n, m. By Brouwer’s
theorem there exists an x such that F(x) = x. Then, as we have noted [x:
Jp(x) = 0] is not empty. The second part of the lemma follows from the a
priori estimate (55). O

R >

6. Tightness and the limit identification. The first step toward estab-
lishing tightness of the family {X_(¢)},. ,, € > 0, is to check that for any L > 0
thereis C > 0 sothatforall0 <s <t <L, £> 0,

(56) E[X,(t) - X,(s)[ < C(t - s).
The left-hand side of (56) equals

)

d —s)/&2 S1
=22 f(t V d31f E[‘/i,i(slfg)] do
i=1"0 0

2
£’E

d 2 S1 ~
_ 232; /t// ds, fs/szE[Vi(sl ~ 0)V;] do
(57)

_ 232.§1 fo(tfs)/gzalg1 /:IE[Vi(& _ Q)Vz] do

d [Sl/T]
(t—5)/ &2 s1—k—DT -
=202y [ ds, X[ E[V(s, - 0)V,] do
i=1"0 k=1 “s1—kG

+ 282'§1 'l(‘)(tfs)/ajds1 j;)sl*[sl/T]TE[‘/i(SI _ Q)‘Z] dQ

Let us notice that the stationarity of {V,2(¢,X(¢))},. , implies that
E[Vi(s, — V]| < [EV2 (s, = )] *IVillue = V3.

1/2
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Therefore the last term on the right-hand side of (57) is of order (¢ — s). We
will be concerned with the first term only. By Lemma 8 it equals

d 2 [Sl/T]
262y [/ gg sk gy (s, —
(58) igl'/;) ! kgl '/;l—kT [ ( ! ©

—(k - 1)T)Q"* 'V;] do
Let
W=V(s,—o— (k—1T).

Because the one-dimensional distributions of W are Gaussian, EW = 0 and
EW? = EV?, we get from that and Lemma 10,

|E(WQ"1V,) s[lWl IWQ*~ 1V|d1>+/ IWQ*~V,| dP

W<k
1/2
2 k—1xY7 b—117 C
< ([ W dP) 1QE Vil e + RIQ*Vill < —,
W=k k

where C is some constant. Hence (58) can be estimated by

d (t—s5)/ 82 [s1/T] 1
Ce?y [TV ds, ¥ 2 =C'(t—5s).
i=1°0 k=1

COROLLARY 1. The integrals

+ oo
f ElVi(o,X()Vi(0,0)] do,
are convergent fori,j=1,...,d.

Let us estimate

B| X, () - X, ()| X 5] _X(_)H

for0 <s<t<u<L,0<p < 2. The expression in (59) equals

(59)

28 [ dsy [ B[|X(0) = XD Vii(1,0)] do

=262 [ ds, [VE[IX, ()~ Xt = )V, (51,0)] do

= 262f(t_s)/g dslf 1E[|X6(u -s—¢e0)-X,(t—s— 829)|p
0 0

XVi(sy = Q)VL] do
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The last two equalities follow from the stationarity of the process

P
Vi,i(81+r’Q+r)

r=0

o[V g
(t—s—eP)/e?

(cf. Lemma 1). The left-hand side of (59) is equal to

d
—-s)/&? s;—(k=1)
R

~X,(t = s - 220)['Vi(s, — 0)V,} do

2 d — —
(60) = 2g2j0“‘5)/8 ds, ¥ [* k(Tk YE(X,(u-s - e%0— (k- 1)e’T)
k=151

~X, (t—s—s%0— (k- 1)&T)|
XVi(s; = 0 = (k= )T)Q*"'V,} do.
Let
I =X, (u—s—¢e20— (k—1)&T) — X (t —s — 20— (k — 1)&2T)[
and
Iy =Vi(si—o— (k- 1)T).
The expectation on the right-hand side of (60) can be estimated as follows:

Erlerkflvi=/r ro t)aF1F2Qk71VidP
1<k"(u-—

(61)
+ I,r,Q" 'V, dP,
Ty>k"(u—1)*

where a, v > 0 are to be determined later. Note that

Q% 'V, dP

/Flsk”(uft)“

<k"(u - t)“/ﬂll"ng*ViI dP

(62) By 5
=k”(u—t)a{f I1,Q* V| dP + [ IFZQ“ViIdP}
[Tol>E |

Tyl<k

1/2
<k'(u-— t)“[(/lr - Iy dP) 1Q* WVillr2 + RIQ* VI

Using again the fact that T, is a Gaussian random variable with zero mean
and variance EV.? in combination with Lemma 10 and Lemma 7(v), we get
that (62) can be estimated from above by (C/k%)(u — t)®. The second term on
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the right-hand side of (61) can be estimated from above as follows:

I,Q 1V, dP

(63) '/;\1>kV(u—t)”
< (P[ry > k" (u - t)“])Bl(Erf/P)"“(Erg/ﬁz)Bz||Qk*1x7i||1/ms,
for some B, By, B3 > 0. Notice that

P[I‘ kY a] ! Er2/p ¢ 1-2a/p
> k"(u —t) SkQV/p(u_t)ga/p "= gy (e —t) :

Here we use the fact that, according to (56),
(Er2/»)"* < C(u - )"
for some constant C. Choosing « such that
1-2a/p>0
and v such that
vBy

—>1,
p
we get an estimate of (63) from above by (C(u — t)?/k?%, where B> 0.
Combining this with the bound for the first term of (60) obtained before we
get an estimate of the expression on the left-hand side of (60) from above by
[s1/T] u—t B
cﬁ/“””szdsl Y # <C'(t—s)(u—-1t)°.
Y k=1 k
This proves tightness of {X,(¢)},.,, € > 0, 0 < ¢ < L in light of the following
lemma.

LEMMA 12. Suppose that [Y,(¢)},.,, € > 0 is a family of processes with
trajectories in C[0, + =) such that for any L > 0 there exist p,C, v > 0 so that
for 0<s<t<u<x<lL,

E|Y,(¢) - Y,(s)[*|Y.(u) - Y, ()] < C(u—s)"""
and Y,(0) = 0, ¢ > 0. Then {Y,(¢)},.,, € > 0 is tight.

Proor. It is enough to prove tightness of the above family on C[0, L], for
any L > 0 (see [32]). From the proof of Theorem 15.6, page 128 of [5], we
obtain that for any £, n > 0 there is 6 > 0 such that P[w},(8) > ¢] < n. Here

wi(8) = suwp sup min|Y,(u) = Y,(5)],[¥.() - V.(5)]]-

One can prove that because ¢— Y, (¢) is continuous w4 (8) <wy(8) <
4wy (8), where wy(8) = sup, ., - 5|Y,(w) — Y,(¢)|. By Theorem 8.2, page 55
of [5], the family {Y,(¢)},.,.,, € > 0 is tight over C[0, L]. O
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Now after we have established that {X_(¢)},.,, ¢ > 0 is weakly compact,
we have to prove that there is only one process whose law can be a weak limit
of the laws of the processes from the family. The first step in that direction is
the following lemma. First let us denote by (X!(¢),..., X%(¢)) the components
of the process {X_(¢)},. o, € > 0.

LEMMA 13. For any y < (0,1), M a positive integer, : (ROM -> R,

continuous, 0 <s; < - <sy <sandi=1,...,d, there is C > 0 such that
forall >0 and 0 <s <t < L we have
(64) [B{(Xi(¢t + &) — X)) (X, (51),-...X,(sy)]}] < Ce.

ProoF. The expression under the absolute value in (64) is equal to

(65) E{a[ftjjjz”“zm(g)d@}w(efj“zV( 0) dQ,---,stSM/gZV(Q)dQ)}-

Using Lemma, 1 we get that (65) equals to

(66) B[ V()0 do|.

where
(s,—1)/&2 (sy—t)/ &2
T =yle| Vv do,...,e| ™ A% d
¢( f_t/az (0)deo f_t/az (0) Q)

is 7_, (-measurable. But (66) is equal to

[e72/T] \
(67) Py /8 E[V,(0)¥]do + O(e).

Using Lemma 8, the fact that @1 = 1 in combination with Lemma 2 and
Lemma 4, we get that (67) equals to
Le7 271 (k- 1)T
py of 7, E[V,(0— (k= )T)Q" (¥ — E¥)| do + O(s).

By Lemma 10 and estimates identical with those applied to prove (57), we get
the asserted estimate. O

LEMMA 14. Under the assumptions of Lemma 13, the following estimates
hold. There exists C > 0 such that for all £ > 0,

[E{[(Xi(t+ &) = Xi(0))(XL(t + ") = Xi(1)) = ]
XY (X (1), X (s3))}| = Ce,

fori,j=1,...,d. Here k;; is given by (11).

tJ
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Proor. Note that
E{(Xi(t+ &) — X}(t))(XI(t + &) — XI(1))
X l[f(XS(Sl), s ’Xa(sN))} dQ’

(68) - om| [ de [*Vi( o)V 0) ¥ de|

n EZE[/;”d@/OQw(mW(@') dQ'],

where ¥ is as in the previous lemma. Consider only the first term. We can
rewrite it as being equal to

s2[* do ["E[Vi(0)Vi(¢)] do' BV
(69) .
+e2 [ do [E[Vi(0)V(e)(¥ ~ E¥)] do.

Using Lemma 1 and the change of variables 2 o — g, the first term of (69)
can be written as

(70) [ deo [ E[Vi(¢)V,] do'E.

Using a computation identical with that to obtain (58), we get that the
difference between (70) and

o[ E[Vi(0.X())V] de

is less than or equal to
fogyde‘fgj;E["i( 0"V} dQ"

Y te 2y~ (k- 7
= /: ko [Z ] ((Qi/z))_k(j}‘e 1)T|E[Vi( o = (k- I)T)Qkilvj”dQ,
=lo/e®T ‘

The second term of (69) is estimated essentially with the help of the same
argument as the one used in the proof of Lemma 13. We consider two cases:
first, when o’ < £!77, then by Lemma 10 we get the desired estimate; second,
when o' < £!77, we use the Schwarz inequality and reach the estimate as
claimed in the lemma. O

LEMMA 15. For any y € (0,1) and 0 < y' <y, there is a constant C so
that

(71) EX,(t + &) - X,(2)]" < Ce?.
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Proor. The proof of (71) reduces to an estimation of

(72) 84/;8772‘191 /(-)Qlsz j:de?, /;)Q3E[‘/i,i,i( 02,03, 94)‘71'] do,.

If o, < & *, u> 0 we can use Lemma 10 and estimate the same way as we
have done to obtain estimate (58).
For g, < ™" we get that (72) is equal to

4 [ 01 Q2 ozAe
& _/;) dQ1j;) dQQ/;) anj;) E[Vu( 92’93)W] do,

+ 84/(‘)87-de1 j(‘)glsz fOQZdQ?’ j(;QsAs_“E[‘/i,i( 92,93)]E[VL—( 94)‘7}] do,,

where
W =V,(0,)V, - E[V,(0,)V}].

The second term above is estimated easily with the help of Lemma 10 as we
have done in the proof of (56). The estimation of the first term can be done
separately for o5 — g, > ¢ * and then for o; — 0, < ¢ *. In the first case we
estimate with the help of Lemmas 8 and 10 precisely as we have done before.
For o; — 0, < £7#, we can estimate the corresponding integral by

Cele2(r=2g=21 — Cg20r—), O

Let f € C5(R?). Consider ¢ as in Lemma 14. Let ¢; = s + i&”. Then using
Taylor’s formula, we get

E[£(X.(1)) — f(X.(5))]¥
= XY E{([X.(t1) - X)), (V)(X.(1)))Y)

1:s<t; <t

+3 ) Z E{([Xs(ti+1) - X,(¢)]
(73) ®[X,(t1) — X,(£)], (V ® V) (X, (£)))¥)

+5 L E{([X.(ti1) —X.(8)]
i:s<t;<t
®[X,(tir1) = Xe(t)] ® [X,(¢i21) = X (8],
(Ve Ve V)Y
Here 6, is a point on the segment [X_(¢;), X, (¢, )]. The last term of (73) can
be estimated by
C 3/4
Bt ~ X)) []
&

with the help of the Schwarz lemma. Using Lemma 15, we get that this term
is of order of magnitude Ce®''/27 = 0(1). The first term is estimated with
the help of Lemma 13 by Ce'~”. The second term of (73) can be rewritten as
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being equal to

3L E{([X.(ti) — X)) © [X, (1) - X.(8)]

—kf;, (Ve Vf)(Xg(ti)))\P>
+1Y E{(K;j,(v ® Vf)(Xg(ti)))‘P}'

where
Ki ;= E{[Xs(ti+1) - Xs(ti)] ® [Xs(ti+1) - Xs(ti)]}'

The first term of the above sum tends to zero faster than &£?. The latter is
equal to

Kk, e"EV

up to a term of magnitude o(&?).
Summarizing, any weak limit of {X_(¢)},.,, £ > 0, must have a law in
C([0, +=); R?) such that for any f € C;(R?),

fx(t) -3 X Kijfotai%ﬂx(@))d@, t>0

i,j=1,....d

is a martingale. This fact, according to [33], identifies the measure uniquely
and thus concludes the proof of Theorem 1. O
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