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RANDOM CENSORING IN SET-INDEXED SURVIVAL ANALYSIS

BY B. GAIL IVANOFF1 AND ELY MERZBACH2

University of Ottawa and Bar-Ilan University

Using the theory of set-indexed martingales, we develop a general model
for survival analysis with censored data which is parameterized by sets
instead of time points. We define a set-indexed Nelson–Aalen estimator for
the integrated hazard function with the presence of a censoring by a random
set which is a stopping set. We prove that this estimator is asymptotically
unbiased and consistent. A central limit theorem is given. This model can be
applied to cases when censoring occurs in geometrical objects or patterns,
and is a generalization of models with multidimensional failure times.

1. Introduction. The aim of this work is to study random censoring in the
framework of set-indexed survival analysis. Examples in which such situations
occur are many: one such example is the study of survival with liver cirrhosis [2]
in which the basic time is the duration of the trial, but survival depends also on the
age of the patient and on the shape and size of the liver. Other relevant medical
examples concern the development of cancer tumors. In models involving time
to failure, the “time” parameter(s) of interest may include not only chronological
time but also mileage for warranties on cars, cumulative exposure, etc. Another
type of example concerns estimation of windowed spatial processes [3, 4, 12],
which consider statistical problems arising from the observation of a spatial
process of geometrical objects or patterns. Typically, the process is observed
through a bounded observation window which can be considered as a sort of
random censoring. This kind of model has diverse areas of application, including
environmental science (aerial photography of forests) (cf. [22]), medical science
(cf. [10]) and metallurgy and mining.

To our knowledge, there does not exist a literature on the theory of set-indexed
survival analysis. Therefore, using the tools developed in [14], we will present a
first step toward a general model for set-indexed survival analysis in the framework
of martingale theory.

Some results do exist for the two-parameter case; we refer the reader to two
excellent books [2] and [13] and to the references cited therein for a survey of
the known results. Other recent results in this direction may be found in [9], and
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in [15] for function-indexed nonparametric tests; for a survey see also [20]. As
explained in [2], for many years much of the literature concentrated on independent
two-sample tests. The question of dependence is examined more closely in [13],
but not from the point of view of multidimensional martingales. A two-parameter
martingale approach is analysed by Pons in [17], showing that some properties
of the multivariate Nelson–Aalen estimator can be obtained exactly as in the
univariate case. However, Pons’ structure presupposes the filtration to be a product
filtration and requires independence of the coordinates. Her approach will be
shown to be a special case of the set-indexed framework described here.

In this paper, we deal with the following model for set-indexed survival
processes: the processes are indexed by a family A of compact subsets of a locally
compact Hausdorff topological space T equipped with a positive measure λ on the
Borel subsets of T . The two-parameter case, studied in [1, 13, 17–19] is obtained
when T = R2+, A is the class of rectangles {[0, t] : t ∈ R2+} and λ is Lebesgue
measure. In all of the preceding references, it is implicit in the model that all
components of the multivariate survival time are nonnegative. Since we impose
no such restriction, it will be seen that our more general model can also be applied
to spatial data.

In Section 2, we define the main tools of survival analysis in the set-indexed
framework: the point process, the survivor function and the hazard function. We
compute a kind of compensator for the point process and present a Volterra
equation.

In Section 3, we introduce censoring in terms of a stopping set. The model
presented here may be seen as a generalization of [17] and [18]. In certain cases,
the censoring is in fact a “filtering” model [2]. Under an independence assumption,
we shall see that this gives us a multiplicative model.

The theme of Section 4 is estimation. Using martingale methods, we propose a
Nelson–Aalen type estimator for the integrated hazard function and prove that it is
asymptotically unbiased and consistent.

In Section 5, a central limit theorem for the estimator is proved. Statistical
techniques involving the estimator and potential areas of application are discussed
in Section 6.

2. Preliminaries and model specification. The framework will be essentially
the same as in [14] and we refer to this book for the details. Let T be a locally
compact Hausdorff space and λ a measure on B , the Borel sets of T , which is
finite on compact sets. All processes will be indexed by a class A of compact
connected subsets of T , and we assume that the measure λ does not charge the
borders of sets from A.

In what follows, for any class of sets D , the class of finite unions of sets from D
will be denoted by D(u). In the terminology of [14], we assume that A is an
indexing collection:
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DEFINITION 2.1. A nonempty class A of compact, connected subsets of T is
called an indexing collection if it satisfies the following:

(i) ∅ ∈ A, and ∀A ∈ A, A◦ 
= A if A 
= ∅ or T . In addition, there is an
increasing sequence (Bn) of sets in A(u) such that T = ⋃∞

n=1 B
◦
n . [Hence, for

every A ∈ A, there exists n = n(A) such that A ⊆ Bn.]
(ii) A is closed under arbitrary intersections and if A,B ∈ A are nonempty,

then A∩ B is nonempty. If (Ai) is an increasing sequence in A and there exists n

such that Ai ⊆ Bn for every i, then
⋃

i Ai ∈ A. [Such a sequence (Ai) is called
bounded.]

(iii) The σ -algebra generated by A, σ(A) = B , the collection of all Borel sets
of T .

(iv) Separability from above: There exists an increasing sequence of finite
subclasses An = {An

1, . . . ,A
n
kn

} of A closed under intersections and satisfying ∅,
Bn ∈ An(u) [Bn is defined in (i) above] and a sequence of functions gn :A →
An(u)∪ {T } such that:

(a) gn preserves arbitrary intersections and finite unions [i.e., gn(
⋂

A∈A′ A)

= ⋂
A∈A′ gn(A) for any A′ ⊆ A, and if

⋃k
i=1 Ai = ⋃m

j=1 A
′
j , then⋃k

i=1 gn(Ai) =⋃m
j=1 gn(A

′
j )],

(b) for each A ∈ A, A ⊆ (gn(A))◦,
(c) gn(A) ⊆ gm(A) if n ≥ m,
(d) for each A ∈ A, A =⋂

n gn(A),
(e) if A,A′ ∈ A then for every n, gn(A) ∩ A′ ∈ A, and if A′ ∈ An then

gn(A)∩ A′ ∈ An.
(f) gn(∅) = ∅ ∀n.

(v) Every countable intersection of sets in A(u) may be expressed as the
closure of a countable union of sets in A.

NOTE. The symbol ⊂ indicates strict inclusion, and (·) and (·)◦ denote,
respectively, the closure and the interior of a set.

For t ∈ T , define the following sets:

The “past” of t : At = ∩A, A ∈ A, t ∈ A.
The “future” of t : Et = ∩Bc , B ∈ A, t /∈ B .

We assume that Et is closed. By (iii) above it follows that s 
= t if and only
if As 
= At , which in turn implies that At ∩ Et = {t}, since it is easy to see that
s ∈ Et if and only if t ∈ As , ∀ s, t ∈ T . Therefore, there is a natural partial order
induced on T by the indexing collection A: s ≤ t if and only if As ⊆ At . Thus,
At = {s : s ≤ t} and Et = {s : s ≥ t}.

We shall define the semialgebra C to be the class of all subsets of T of the form

C = A \ B, A ∈ A, B ∈ A(u).
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C is closed under intersections and any set in C(u) may be expressed as a finite
disjoint union of sets in C. Note that if B = ⋃k

i=1 Ai ∈ A(u), without loss of
generality we can require that for each i, Ai 
⊆ ⋃

j 
=i Aj . Such a representation
of B ∈ A(u) will be called extremal. If C = A \ B, A ∈ A, B ∈ A(u), then the
representation of C is called extremal if that of B is. Unless otherwise stated, it will
always be assumed that all representations of sets in A(u) and C are extremal. For
each finite subsemilattice Ak , let C�(Ak) denote the left-neighborhoods of Ak;
that is, sets of the form C = A \ ⋃A′∈Ak,A 
⊆A′ A′,A ∈ Ak . Clearly, C�(Ak)

partitions Bk (Bk as defined in Definition 2.1) and by separability from above,
the points of T are separated by the sets A,A ∈ ⋃

k Ak , and so the sequence
(C�(Ak))k is a dissecting system for T .

The following assumption about the structure of C will be required.

ASSUMPTION 2.2. For any B ∈ A(u), if C = A \⋃k
i=1 Ai ∈ C and if A ⊆ B ,

then there exist sets D1, . . . ,Dm ∈ A, Di ⊆ B, i = 1, . . . ,m, such that C =
A \⋃m

i=1 Di is an extremal representation, and if A′ ∈ A, A′ ⊆ B, A′ ∩ C = ∅,
then A′ ⊆⋃m

i=1 Di . This is called a maximal representation of C in B .

Numerous examples of topological spaces T and indexing collections A
satisfying the preceding assumptions may be found in [14].

EXAMPLE 2.3. Our framework generalizes the usual multiparameter setting:
if T = Rd+, then the class A = {[0, t] : t ∈ Rd+} satisfies all the assumptions and in
this instance, the class C(u) consists of all finite unions of disjoint rectangles of
the form (s, t], s, t ∈ Rd+. More generally, we can allow A to consist of all the
lower layers of Rd+: a set A is a lower layer if [0, t] ⊆ A, ∀ t ∈ A. In both cases, it
is easily seen that At = [0, t] and Et = [t,∞).

EXAMPLE 2.4. The following simple but very important generalization of
the preceding example is appropriate for modelling spatial data. We may let T

be any subset of Rd of the form [−a, b], a, b ∈ Rd+ and let A be the class
of lower layers in T , as defined above. Note that the partial order induced by
the sets At = [0, t] is no longer the usual partial order on Rd : we have that
(s1, . . . , sd) = s ≤ t = (t1, . . . , td) if and only if s and t lie in the same quadrant
and |si| ≤ |ti |, i = 1, . . . , d .

EXAMPLE 2.5. A third example (the “history of the world”) models space–
time data. Here, T = B(0, t0) (compact ball of radius t0 in R3), A = {AR(a,b,c,d),t ;
0 ≤ a < b < 2π,−π ≤ c < d ≤ π, t ∈ [0, t0]}, where the set

AR(a,b,c,d),t

:= {
(r cos θ cosτ, r sin θ cos τ, r sin τ ); θ ∈ [a, b], τ ∈ [c, d], r ∈ [0, t]}
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can be interpreted as the history of the region

R(a, b, c, d)= {
(cosθ cos τ, sinθ cos τ, sinτ ); θ ∈ [a, b], τ ∈ [c, d]}

of the earth from the beginning until time t . [Here θ represents the longitude of the
generic point in the region R(a, b, c, d), while τ is the latitude.] Hence, A can be
identified with the history of the world up to time t0.

Now, let (",F ,P ) be any complete probability space. A filtration (indexed
by A) is a class of complete sub-σ -fields of F {FA :A ∈ A} which satisfies the
following conditions:

1. ∀A,B ∈ A, FA ⊆ FB , if A ⊆ B .
2. Monotone outer-continuity: F∩Ai

= ∩FAi
for any decreasing sequence (Ai)

in A.
3. For consistency in what follows, if T /∈ A, define F T = F .

We may associate various σ -algebras with sets in A(u) and C(u). If B ∈ A(u),
then F 0

B = ∨A∈A,A⊆BFA. The σ -algebras {F 0
B :B ∈ A(u)} are complete and

increasing, but not necessarily monotone outer-continuous. Thus, we define for
B ∈ A(u): FB =⋂

n F 0
gn(B). Next, for C ∈ C(u)\A, let G∗

C = ∨B∈A(u),B∩C=∅FB ,
and for A ∈ A, define G∗

A = F∅. We note that {G∗
C} is a decreasing family of

σ -fields: if C ⊆ C′, then G∗
C′ ⊆ G∗

C .

DEFINITION 2.6. A (A-indexed) stochastic process X = {XA :A ∈ A} is a
collection of random variables indexed by A, and is said to be adapted if XA is
FA-measurable, for every A ∈ A. X is said to be integrable if E[| XA |] < ∞.
A process X :A → R is increasing if (almost surely) X can be extended to a
finitely additive process on C , X(∅) = 0 and XC ≥ 0, ∀C ∈ C .

Next, we specify the model. Still assuming that (",F ,P ) is a complete
probability space, let Y :" → T be a T -valued random variable, and denote
by µ = µY its distribution function: µ(B) = P {Y ∈ B}. The survival function
associated with Y is S(t) = µ(Et). [Note, however, that µ(At) 
= 1 − S(t).] We
assume that µ is absolutely continuous with respect to λ and denote by µ′ the
Radon–Nikodym derivative of µ with respect to λ on the Borel sets of T .

Note that the usual multivariate survival model (cf. Example 2.3) requires that
all components of Y be nonnegative. In contrast, our model imposes no such
restriction (cf. Examples 2.4 and 2.5).

We are now in position to define the hazard function h and the integrated hazard
function H of Y :

DEFINITION 2.7. For t ∈ T , the hazard function of Y is h where

h(t) = µ′(t)
S(t)

.
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If S(t) = 0, h(t) is defined to be zero.
The integrated hazard function of Y is H where

H(t) =
∫
At

h(u)λ(du)

and more generally,

HA =
∫
A
h(u)λ(du) for any A ∈ A.

Heuristically,

h(t) = lim
n→∞

(
P (Y ∈ gn(At )|Y ∈ Et)

λ(gn(At) ∩ Et)

)
,

when this limit exists.

PROPOSITION 2.8 (The Volterra equation). For all t ∈ T , S(t) = 1−∫
Et

c S(s)

× h(s)λ(ds).

PROOF.

S(t) = µ(Et)

= 1 −
∫
Et

c
µ(Es)µ(ds)/µ(Es)

= 1 −
∫
Et

c
µ(Es)h(s)λ(ds)

= 1 −
∫
Et

c
S(s)h(s)λ(ds). �

COMMENT. Clearly, µ is determined by S; however, as is well known (cf. [2]),
in general h does not completely determine S (or µ). In R2+ for example,
knowledge of the marginal survival functions is also required. However, it should
be noted that the dependence structure of µ is reflected in the structure of h.

Let N = {NA, A ∈ A} = {I{Y∈A}, A ∈ A} be the single jump process associated
with Y and {F Y

A ,A ∈ A(u)} its minimal filtration: F Y
A = σ {NB :B ∈ A,B ⊆

A}∪ {P0} (P0 is the class of P -null sets). (It is straightforward to show that F Y is
monotone outer-continuous.) The process N can clearly be extended to an additive
process on the more general index sets A(u) and C (and in fact to B).

In what follows, any random process indexed by A will be assumed to be
additive. As in [14], a process M = {MA, A ∈ A} is called a strong martingale if it
is adapted and for any C ∈ C, E[MC | G∗

C] = 0. If the process M is not adapted, it
will be called a pseudo-strong martingale. A process X is called a ∗-compensator
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of the process X if it is increasing (XC ≥ 0 for all C ∈ C ) and the difference
X−X is a pseudo-strong martingale. The ∗-compensator is not necessarily unique
unless some sort of predictability condition is imposed (cf. [14]).

In the next result, we compute a compensator for the single jump process. In the
two-parameter case, it was done first in [1]; see also [9] and for T ⊆ Rd see [14].

PROPOSITION 2.9. The process N defined by

NA =
∫
A∩AY

µ(Eu)
−1µ(du) =

∫
A∩AY

h(u)λ(du) =
∫
A
I{Y∈Eu}h(u)λ(du)

is a ∗-compensator of the process N with respect to its minimal filtration, where
AY (ω) = AY(ω).

PROOF. Let C = A \ Dn be a maximal representation of C ∈ C in Bn (Bn is
as defined in Definition 2.1). (F Y

Dn
) is an increasing sequence of σ -fields and it is

clear by definition that G∗
C is generated by

⋃
n F Y

Dn
. Therefore, it suffices to show

that for every C ∈ C and for every n,

E
[
NC − NC | F Y

Dn

]= 0.

First we observe that

E
[
NC | F Y

Dn

]= I{NDn=0}µ(C)
(
1 − µ(Dn)

)−1
.

Next, note that if u ∈ C, then Eu ⊆ Dc
n, since if Dn = ⋃kn

i=1 An,i (An,i ∈ A),
then u /∈ An,i, i = 1, . . . , kn, and Eu ⊆ ⋂

i A
c
n,i = Dc

n. Now, since C ∩ AY = ∅

if Y ∈ Dn, then

E
[
NC | F Y

Dn

]= E

[∫
C∩AY

(µY (Eu))
−1µ(du)

∣∣F Y
Dn

]

= I{NDn=0}
∫
Dc

n

[∫
C∩Av

(µ(Eu))
−1µ(du)

](
1 − µ(Dn)

)−1
µ(dv)

= I{NDn=0}
(
1 − µ(Dn)

)−1
∫
C

∫
Eu∩Dc

n

µ(dv)
(
µ(Eu)

)−1
µ(du)

= I{NDn=0}µ(C)
(
1 − µ(Dn)

)−1
. �

COMMENT. Proposition 2.9 shows that we have a sort of multiplicative model,
in analogy to the classic model on R+, since NA = ∫

A I{Y∈Eu}h(u)λ(du). Notice
that in general the ∗-compensator is not adapted since the event {Y ∈ Eu} does
not necessarily belong to F Y

Au
. However, N does satisfy a certain predictability

property. We denote by P ∗ the (∗-predictable) σ -field generated on the product
space (" × T,F ⊗ B) by the class of rectangles {FC × C :C ∈ C,FC ∈ G∗

C}.
It is shown at the end of the proof of Proposition 4.1 in the Appendix that
{(ω,u) :Y (ω)∈ Eu} ∈ P ∗.
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3. Set-indexed censoring. In this section, we add censoring to the survival
process. Since in most cases, the censoring is not deterministic, we define the
censoring mechanism in terms of a stopping set ξ .

DEFINITION 3.1. ξ :" → A(u) is a stopping set with respect to a filtration F
if for any A ∈ A, {ω :A ⊆ ξ(ω)} ∈ FA and {ω : ∅ = ξ(ω)} ∈ F∅.

Generally the observation of the random variable Y is “right-censored” or in
our setting is “outer-censored,” that is, Y is observed not on A but only on a subset
of the form A ∩ ξ . Such a model is natural from a geographical point of view; for
example, if one is counting diseased trees from the air, observations can only be
taken in regions not obscured by cloud cover. For the case in which T = [−1,1]2

and A is the class of lower layers, this is illustrated in Figure 1. Those values
of Y which can be observed are indicated with • and those which are obscured
outside of ξ are indicated with ◦. The outer-censored case is the most important
example of incomplete observation; however, there may be other observational
plans of interest where some information is available after the censoring. Such a
concept is called “filtering” in [2]. In such a case, we may assume that we have
an increasing sequence of stopping sets ∅ = η0 ⊆ ξ1 ⊆ η1 ⊆ ξ2 ⊆ η2 · · · ⊆ ηk ⊆ ξk
and that we cannot observe Y if Y ∈⋃

i ηi \ ξi . For the sake of clarity this more
general structure will not be pursued here, but clearly can be analyzed in a similar
manner.

Formally, therefore, given a T -valued random variable Y whose associated
single jump process N is adapted to a filtration F , and an F -stopping set ξ , the
censored jump process Nξ is defined by the “stopped” process

N
ξ
A = NA∩ξ = I{Y∈A∩ξ }, A ∈ A(u).

The fact that ξ is a stopping set ensures that the censored process Nξ is measurable
and adapted (cf. [14], Lemma 1.5.9).

FIG. 1. Censoring by a stopping set ξ in [−1,1]2.
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It will be necessary to assume a type of independence between the censoring
mechanism and the random variable being observed.

DEFINITION 3.2. Let Y be a T -valued random variable and let F Y be the
minimal filtration generated by its associated jump process N . Let F be a filtration
such that F Y

A ⊆ FA ∀A ∈ A(u) and let ξ be an F -stopping time. ξ is:

(i) weakly independent of Y if the ∗-compensator of N with respect to F is
the same as the ∗-compensator with respect to F Y ;

(ii) independent of Y if F Y is independent of σ({A ⊆ ξ} :A ∈ A) and FA =
F Y
A ∨ σ({A′ ⊆ ξ} :A′ ∈ A, A′ ⊆ A), ∀A ∈ A.

It is easily seen that independence implies weak independence. However, the
reverse is not true: if F = F Y , then trivially ξ and Y are weakly independent
but not independent in general. We shall always assume that ξ and Y are weakly
independent.

When it exists, we may define the hazard function of the censored process to be

hξ (t) = lim
n→∞

(
P (Y ∈ gn(At) | Y ∈ Et, ξ 
⊆ Ec

t )

λ(gn(At) ∩ Et)

)
.

When ξ is weakly independent of Y, hξ = h, and the following lemma shows that
the model with censoring remains multiplicative.

PROPOSITION 3.3. If ξ is weakly independent of Y , then the stopped process

N
ξ

is a ∗-compensator of Nξ , where

N
ξ

A = NA∩ξ

=
∫
A∩ξ∩AY

µ(Eu)
−1µ(du)

=
∫
A∩ξ∩AY

h(u)λ(du)

=
∫
A
I{Y∈Eu}I{u∈ξ }h(u)λ(du).

PROOF. Using the same notation as in the proof of Proposition 2.9, it suffices
to show that for every C ∈ C and for every n,

E
[
N

ξ
C − N

ξ

C | FDn

]= 0,

where C = A \ Dn is the maximal representation of C in Bn. By additivity, this is
equivalent to showing that

E
[
NA∩ξ − NA∩ξ | FDn

]= E
[
NA∩Dn∩ξ − NA∩Dn∩ξ | FDn

]
.

This follows by the weak independence of ξ and from the proof of Theorem 3.3.1
of [14], observing that this proof remains valid for pseudo-strong martingales. �
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COMMENT. In two-dimensional survival analysis, censoring is defined in a
more restricted manner: a failure time Y ∈ R2+ may be partially observed, given a
random censoring time τ = (τ1, τ2); that is, we observe Y ∧ τ = (Y1 ∧ τ1, Y2 ∧ τ2)

and I{Yi≤τi }, i = 1,2. Expressing this in terms of sets, letting At = [0, t], AY =
[0, Y ] and ξ = [0, τ ], the counting process of censored times is (cf. [17])

Nξ(t) = N
ξ
At

= I{Y∧τ≤t,Y1≤τ1,Y2≤τ2} = I{Y∈At∩ξ }.
Thus, our framework extends the usual bivariate censoring model.

4. Estimation. The goal is to estimate the integrated (set-indexed) hazard
function H [recall that HA = ∫

A h(t)λ(dt)] using censored data. The pseudo-
strong martingale structure of the multiplicative model allows us to develop an
estimator in analogy to the classical Nelson–Aalen estimator on R+. To be precise,
suppose that a sequence of i.i.d. T -valued random variables (Yi) with the same
distribution as Y is given, as well as a sequence (ξi) of stopping sets. We shall
assume that for every i, j, ξi is an F -stopping time weakly independent of Yj . We
do not assume at this point that the ξi ’s are independent (for example, it is possible
that ξi = ξ, ∀ i). Define the following processes:

Zn(t) =
n∑

i=1

I{Yi∈Et }I{t∈ξi},

N
(n)
A =

∫
A
Zn(t)h(t)λ(dt).

Note that Zn is indexed by T , while N
(n)

is indexed by A and is additive. We
see that Zn can be viewed as the survivor function process. Furthermore, by inde-

pendence and Proposition 3.3, N
(n)

is a ∗-compensator for N(n)ξ , where N(n)ξ

A =∑n
i=1 I{Yi∈A∩ξi}, and the process

M(n)
. = N(n)ξ

. −
∫
.
Zn(t)h(t)λ(dt)

is a pseudo-strong martingale with respect to F . Therefore, exactly as in the
classical case, we have

N(n)ξ (dt) = Zn(t)h(t)λ(dt) + M(n)(dt).

Regarding M(n) as noise, we are led to a set-indexed version of the Nelson–Aalen
estimator for HA:

Ĥ
(n)
A =

∫
A

N(n)ξ (dt)

Zn(t)
= ∑

{i:Yi∈A∩ξi}

(
Zn(Yi)

)−1
.

Define

Jn(t) = I{Zn(t)>0}
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and

H̃
(n)
A =

∫
A
Jn(t)h(t)λ(dt).

Trivially, H̃
(n)
A = HA if P (Jn(t) = 1 ∀ t ∈ A) = 1. We observe that since Et is

closed, N(n)ξ (dt) > 0 only if Jn(t) = 1. Thus,

Ĥ (n) − H̃ (n) =
∫
.

Jn(t)

Zn(t)
M(n)(dt).(1)

Clearly, the asymptotic behavior of the estimator Ĥ (n) depends on the properties
of the pseudo-strong martingale M(n). First, we note that the fact that the censoring
mechanism is a stopping set yields the following important proposition, whose
proof is given in the Appendix.

PROPOSITION 4.1. Ĥ (n) − H̃ (n) is a pseudo-strong martingale.

Next, we will need to determine the covariance structure of
∫
. g(t)M

(n)(dt),
where g is a continuous increasing function on T . [We call a function g :T → R
increasing (resp., decreasing) if it is increasing (decreasing) with respect to the
partial order “less than or equal to”, induced by A on T .] This will follow from
the covariance structure of M(n). This is nontrivial, as the increments of a pseudo-
strong martingale are not necessarily uncorrelated.

COMMENT. For the remainder of the paper, we shall assume that ξ1, ξ2, . . .

are i.i.d. and independent of the Yi ’s.

PROPOSITION 4.2. For C,D ∈ C ,

Cov(M(n)
C ,M

(n)
D )

= n

∫
C∩D

S(t)P (t ∈ ξ)h(t)λ(dt)(2)

+ n

∫∫
I(C,D)

µ(Es ∩ Et)P (s, t ∈ ξ)h(s)h(t)λ(ds)λ(dt),

where I(C,D) = {(c, d)∈ C×D : c ∈ Ac
d ∩Ec

d} = {(c, d) ∈ C×D :d ∈ Ac
c ∩Ec

c }.
PROOF. We use a decomposition similar to that in [17]. For A ∈ A and t ∈ T ,

define

C
(n)
A := N(n)ξ

A − E[N(n)
A

ξ ]√
n

,(3)

Dn(t) := Zn(t) − E[Zn(t)]√
n

.(4)
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We have

n−1/2M(n)(A) = C
(n)
A −

∫
A
Dn(t)h(t)λ(dt).(5)

We observe that

E
[
N

(n)
A

ξ]= n

∫
A
S(t)P (t ∈ ξ)h(t)λ(dt),

E[Zn(t)] = nS(t)P (t ∈ ξ).

For C,D ∈ C ,

Cov
(
C

(n)
C ,C

(n)
D

)

= n−1E

[(
n∑
1

(
I{Yi∈C∩ξi} −

∫
C
S(s)P (s ∈ ξ)h(s)λ(ds)

))

×
(

n∑
1

(
I{Yj∈D∩ξj } −

∫
D
S(t)P (t ∈ ξ)h(t)λ(dt)

))]

= P (Y ∈ C ∩D ∩ ξ)

+
∫
D

∫
C
S(s)S(t)P (s ∈ ξ)P (t ∈ ξ)h(s)h(t)λ(ds)λ(dt)

− P (Y ∈ C ∩ ξ)

∫
D
S(t)P (t ∈ ξ)h(t)λ(dt)

− P (Y ∈ D ∩ ξ)

∫
C
S(s)P (s ∈ ξ)h(s)λ(ds).

The last equality follows by independence of the Yi ’s and ξi’s. Noting that

µ(dt) = S(t)h(t)λ(dt),

it is easy to see that for any C ∈ C ,

P (Y ∈ C ∩ ξ) =
∫
C
P (t ∈ ξ)S(t)h(t)λ(dt)(6)

and so

Cov
(
C

(n)
C ,C

(n)
D

)=
∫
C∩D

P (t ∈ ξ)S(t)h(t)λ(dt)

(7)

−
∫
D

∫
C
S(s)S(t)P (s ∈ ξ)P (t ∈ ξ)h(s)h(t)λ(ds)λ(dt).
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For s, t ∈ T , again using the independence of the Yi ’s and ξi’s,

E[Dn(s)Dn(t)]

= n−1E

[(
n∑
1

(
I{Yi∈Es}I{s∈ξi} − S(s)P (s ∈ ξ)

))

(8)

×
(

n∑
1

(
I{Yj∈Et }I{t∈ξj } − S(t)P (t ∈ ξ)

))]

= µ(Es ∩Et)P (s, t ∈ ξ) − S(s)S(t)P (s ∈ ξ)P (t ∈ ξ),

which immediately implies that

Cov
(∫

C
Dn(s)h(s)λ(ds),

∫
D
Dn(t)h(t)λ(dt)

)

=
∫
D

∫
C
µ(Es ∩ Et)P (s, t ∈ ξ)h(s)h(t)λ(ds)λ(dt)(9)

−
∫
D

∫
C
S(s)S(t)P (s ∈ ξ)P (t ∈ ξ)h(s)h(t)λ(ds)λ(dt).

Next,

Cov
(
C

(n)
C ,

∫
D
Dn(t)h(t)λ(dt)

)

= n−1E

[(
n∑
1

(
I{Yi∈C∩ξi} −

∫
C
S(s)P (s ∈ ξ)h(s)λ(ds)

))

×
(

n∑
1

∫
D

(
I{Yj∈Et }I{t∈ξj }h(t)λ(dt)

−
∫
D
S(t)P (t ∈ ξ)h(t)λ(dt)

))]

= E

[∫
D
I{Y∈C∩Et∩ξ }I{t∈ξ }h(t)λ(dt)

]
(10)

− E

[∫
D
I{Y∈C∩ξ }S(t)P (t ∈ ξ)h(t)λ(dt)

]
(11)

− E

[∫
D

∫
C
I{Y∈Et}I{t∈ξ }P (s ∈ ξ)S(s)h(s)h(t)λ(ds)λ(dt)

]
(12)

+
[∫

D

∫
C
P (s ∈ ξ)P (t ∈ ξ)S(s)S(t)h(s)h(t)λ(ds)λ(dt)

]
.(13)
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In (10), note that {Y ∈ Et ∩ ξ} ⊆ {t ∈ ξ}, and so by (6),

(10) =
∫
D

∫
C∩Et

P (s ∈ ξ)S(s)h(s)λ(ds)h(t)λ(dt)

(14)

=
∫
D

∫
C∩Et

P (s, t ∈ ξ)µ(Es ∩ Et)h(s)h(t)λ(ds)λ(dt),

where the last equality follows since, for s ∈ Et , P (s ∈ ξ) = P (s, t ∈ ξ) and
S(s) = µ(Es) = µ(Es ∩ Et).

Another application of (6) gives

(11) =
∫
D

∫
C
P (s ∈ ξ)P (t ∈ ξ)S(s)S(t)h(s)h(t)λ(ds)λ(dt).(15)

Likewise,

(12) =
∫
D

∫
C
P (s ∈ ξ)P (t ∈ ξ)S(s)S(t)h(s)h(t)λ(ds)λ(dt).(16)

Finally we have that

Cov
(
C

(n)
C ,

∫
D
Dn(t)h(t)λ(dt)

)

=
∫
D

∫
C∩Et

P (s, t ∈ ξ)µ(Es ∩ Et)h(s)λ(ds)h(t)λ(dt)(17)

−
∫
D

∫
C
P (s ∈ ξ)P (t ∈ ξ)S(s)S(t)h(s)h(t)λ(ds)λ(dt).

Recalling the decomposition (5) and using (7), (9) and (17), we obtain

n−1 Cov
(
M

(n)
C ,M

(n)
D

)

= Cov(C(n)
C ,C

(n)
D ) + Cov

(∫
C
Dn(s)h(s)λ(ds),

∫
D
Dn(t)h(t)λ(dt)

)

− Cov
(
C

(n)
C ,

∫
D
Dn(t)h(t)λ(dt)

)
− Cov

(
C

(n)
D ,

∫
C
Dn(s)h(s)λ(ds)

)

=
∫
C∩D

P (t ∈ ξ)S(t)h(t)λ(dt)

+
∫
D

∫
C
µ(Es ∩ Et)P (s, t ∈ ξ)h(s)h(t)λ(ds)λ(dt)

−
∫
D

∫
C∩Et

µ(Es ∩ Et)P (s, t ∈ ξ)h(s)h(t)λ(ds)λ(dt)

−
∫
C

∫
D∩Es

µ(Es ∩ Et)P (s, t ∈ ξ)h(s)h(t)λ(dt)λ(ds)
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=
∫
C∩D

P (t ∈ ξ)S(t)h(t)λ(dt)

+
∫∫

I(C,D)
µ(Es ∩ Et)P (s, t ∈ ξ)h(s)h(t)λ(ds)λ(dt).

The last equality follows from the definition of I(C,D), noting that
∫
C

∫
D∩Es

=∫
D

∫
C∩At

. This completes the proof. �

We must now impose some additional structure on T and the classes Am.

ASSUMPTION 4.3. T is a complete separable metric space with metric d . For
each C ∈ C�(Am), there exist points tC, tC− ∈ T such that C ⊆ AtC ∩EtC− and

lim
m→∞ sup

C∈C�(Am)

sup
t∈C

max
(
d(tC−, t), d(tC, t)

)→ 0.

The points tC, tC− act as upper and lower bounds on the points in C: tC− ≤
t ≤ tC, ∀ t ∈ C. Clearly, this assumption is satisfied by the lower layers of Rd . The
following is a straightforward corollary of Proposition 4.2.

COROLLARY 4.4. Let g be a continuous increasing (or decreasing) function
on T . Then if Assumption 4.3 obtains,

∫
. g(t)M

(n)(dt) is a pseudo-strong
martingale and for C,D ∈ C ,

Cov
(∫

C
g(s)M(n)(ds),

∫
D
g(t)M(n)(dt)

)

= n

[∫
C∩D

g2(t)S(t)P (t ∈ ξ)h(t)λ(dt)(18)

+
∫∫

I(C,D)
g(s)g(t)µ(Es ∩ Et)P (s, t ∈ ξ)h(s)h(t)λ(ds)λ(dt)

]
.

PROOF. First we observe that C�(Am) refines C�(An) when m > n. There-
fore, if D ∈ C�(Am); C ∈ C�(An) and D ⊆ C, we may assume without loss of
generality that tC− ≤ tD− ≤ tD ≤ tC .

We shall assume that g is increasing; the proof for g decreasing is analogous.
We may approximate g from below by the sequence of simple functions (gm),
where

gm(t) = ∑
C∈C�(Am)

g(tC−)IC(t).

It is clear by Assumption 4.3 that gm(t) ↑ g(t) ∀ t . Since M(n)is a difference of
positive measures, by monotone convergence (applied twice),

E

[∫
C
g(t)M(n)(dt)

∣∣∣G∗
C

]
= lim

m→∞E

[∫
C
gm(t)M(n)(dt)

∣∣∣G∗
C

]
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and

Cov
(∫

C
g(t)M(n)(dt),

∫
D
g(t)M(n)(dt)

)

= lim
m→∞ Cov

(∫
C
gm(t)M(n)(dt),

∫
D
gm(t)M(n)(dt)

)
.

Recalling that the σ -algebras G∗
C are decreasing, it is straightforward that∫

. g(t)M
(n)(dt) is a pseudo-strong martingale; for D ∈ C ,

E

[∫
D
gm(t)M(n)(dt)

∣∣∣G∗
D

]

= ∑
C∈C�(Am)

g(tC−)E
[
M

(n)
C∩D | G∗

D

]

= ∑
C∈C�(Am)

g(tC−)E
[
M

(n)
C∩D | G∗

C∩D | G∗
D

]

= 0.

Applying Proposition 4.2,

n−1 Cov
(∫

C
gm(t)M(n)(dt),

∫
D
gm(t)M(n)(dt)

)

= ∑
Ci∈C�(Am)

∑
Cj∈C�(Am)

g(tCi
−)g(tCj

−)Cov
(
M

(n)
Ci∩C,M

(n)
Cj∩D

)

=∑
i

∫
Ci∩C∩D

g2(tCi
−)S(t)P (t ∈ ξ)h(t)λ(dt)

+∑
i

∑
j

∫∫
I(Ci∩C,Cj∩D)

g(tCi
−)g(tCj

−)µ(Es ∩ Et)P (s, t ∈ ξ)(19)

× h(s)h(t)λ(ds)λ(dt)

=
∫
C∩D

g2
m(t)S(t)P (t ∈ ξ)h(t)λ(dt)

+
∫∫

I(C,D)
gm(s)gm(t)µ(Es ∩ Et)P (s, t ∈ ξ)h(s)h(t)λ(ds)λ(dt).

Letting m → ∞ in (19) completes the proof. �

Bias of Ĥ (n). By the pseudo-strong martingale property,

E
[
Ĥ

(n)
A

]= E
[
H̃

(n)
A

]= ∫
A
P (Zn(t) > 0)h(t)λ(dt).
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It follows that the bias of Ĥ (n)
A is

E
[
Ĥ

(n)
A

]− HA =
∫
A
P
(
Zn(t) = 0

)
h(t)λ(dt).

If ξ1, ξ2, . . . are i.i.d. and P (A ⊆ ξ) > 0, then for t ∈ A, P (Zn(t) = 0) → 0 as
n → ∞, and Ĥ

(n)
A is asymptotically unbiased. This will not be the case if each

observation is censored by the same set.

Consistency of Ĥ (n). In what follows, we must assume that inft∈A S(t) > 0 and
P (A ⊆ ξ) > 0. We will need the following lemma, which generalizes Lemma 1
of [16]. A T -indexed random process G is increasing (resp., decreasing) if a.s.
each of its sample paths is increasing (decreasing).

LEMMA 4.5. If Assumption 4.3 obtains and (Gn(t) : t ∈ T )n is a sequence
of increasing (decreasing) processes converging in probability pointwise to a
continuous function g, then for each A ∈ A,

sup
t∈A

| Gn(t) − g(t) |→P 0.

PROOF. Without loss of generality, we may assume in what follows that
A ⊆ Bm, ∀m (cf. Definition 2.1). Since B1 is compact, g is uniformly continuous
on A. Therefore, given ε > 0, there exists mε such that for all m ≥ mε ,

sup
C∈C�(Am)

|g(tC)− g(tC−)| < ε.

It is easy to see that

sup
t∈A

|Gn(t) − g(t)| ≤ sup
C∈C�(Am),C⊆B1

|Gn(tC) − Gn(tC−)|

+ sup
C∈C�(Am),C⊆B1

|Gn(tC) − g(tC)|

+ sup
C∈C�(Am),C⊆B1

|g(tC) − g(tC−)|.

As n → ∞, the right-hand side above converges in probability to
2 supC∈C�(Am),C⊆B1

|g(tC) − g(tC−)|, which can be made arbitrarily small for
m sufficiently large. Therefore, supt∈A |Gn(t) − g(t)| →P 0. �

We return to the consistency of Ĥ (n)
A .

THEOREM 4.6. Let A ∈ A. Assume that inft∈A S(t) = inft∈A µ(Et) > 0, that
S is continuous and that the stopping sets ξ1, ξ2, . . . are i.i.d. and independent of
the Yi’s. If P (A ⊆ ξ) > 0 and P (t ∈ ξ) is continuous in t , then Ĥ

(n)
A is a consistent

estimator of HA.



SET-INDEXED SURVIVAL ANALYSIS 961

PROOF. First note that limn Jn(t) = 1 a.s. ∀ t ∈ A. Therefore,

Ĥ
(n)
A − HA = (

Ĥ
(n)
A − H̃

(n)
A

)+ (
H̃

(n)
A − HA

)
,

and the second term on the right-hand side converges to 0 in probability as n → ∞.
It remains to prove that (Ĥ (n)

A − H̃
(n)
A ) →P 0,

Ĥ
(n)
A − H̃

(n)
A =

∫
A

Jn(t)

Zn(t)
M(n)(dt)

=
∫
A

Jn(t)

Zn(t)
N(n)ξ (dt) −

∫
A
Jn(t)h(t)λ(dt)

= 1

n

∫
A

(
Jn(t)

Zn(t)/n
− Jn(t)

S(t)P (t ∈ ξ)

)
N(n)ξ (dt)(20)

+
∫
A

Jn(t)

nS(t)P (t ∈ ξ)
M(n)(dt)(21)

+
∫
A
Jn(t)

(
Zn(t)/n

S(t)P (t ∈ ξ)
− 1

)
h(t)λ(dt).(22)

We observe that

(20) = 1

n

n∑
i=1

I{Yi∈A∩ξ }Jn(t)
((

Zn(Yi)

n

)−1

− (
S(Yi)P (Yi ∈ ξ)

)−1
)

≤ sup
t∈A

∣∣(Zn(t)/n
)−1 − (

S(t)P (t ∈ ξ)
)−1∣∣

and

(22) ≤ sup
t∈A

∣∣∣∣Zn(t)

n
− S(t)P (t ∈ ξ)

∣∣∣∣
∫
A

1

S(t)P (t ∈ ξ)
h(t)λ(dt).

By the strong law of large numbers, Zn(t)/n → S(t)P (t ∈ ξ) almost surely, and
by applying Lemma 4.5 it follows that both (20) and (22) converge in probability
to 0 as n → ∞.

It remains to consider (21). Let gn(t) = (nS(t)P (t ∈ ξ))−1 and note that gn is
increasing and bounded on A,

(21) =
∫
A
gn(t)M

(n)(dt) +
∫
A
(Jn(t) − 1)gn(t)M(n)(dt).(23)

The second integral in (23) converges to 0 a.s. since Jn(t) → 1 a.s. as n → ∞. By
Corollary 4.4,

E

[(∫
A
gn(t)M

(n)(dt)

)2]

= 1

n

∫
A

h(t)

S(t)P (t ∈ ξ)
λ(dt)
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+ 1

n

∫ ∫
I(A,A)

µ(Es ∩ Et)P (s, t ∈ ξ)h(s)h(t)

S(s)S(t)P (s ∈ ξ)P (t ∈ ξ)
λ(ds)λ(dt)

→ 0.

Therefore, (21) converges in probability to 0 as n → ∞, and so Ĥ
(n)
A is consis-

tent. �

COMMENT. In [2], there is a thorough discussion of how the Nelson–Aalen
estimator for survival data on R+ may be interpreted as a nonparametric maximum
likelihood estimator, rather than a method of moments estimator based on a
martingale estimating equation. However, the same authors also point out that
the question of a NPMLE estimator becomes much more complicated with
multiparameter data. Whether or not the estimator proposed here can be regarded
as a NPMLE under a suitable likelihood structure is an important open question.

5. A central limit theorem. In this section we will prove a central limit
theorem for the finite-dimensional distributions (fdd) of n1/2(Ĥ (n) − H̃ (n)). As
these processes are indexed by A, it is unclear whether a functional CLT exists on
some appropriate function space defined on A. A priori, this would require that
the limiting Gaussian process have a regular version with all sample paths in the
function space. Clearly, the class A cannot be too large: if A consists of the lower
layers, then the sample paths of the limiting process will be very badly behaved,
and we cannot hope for a functional CLT. We will comment further on this point
at the end of the section.

Throughout this section we shall assume that Assumption 4.3 holds, that S and
P (· ∈ ξ) are strictly positive continuous functions on T , and that for every A ∈ A,
inft∈A S(t) > 0 and P (A ⊆ ξ) > 0. We continue to assume that the space (T , d) is a
complete separable metric space. Additionally, we will need to suppose that we can
define an appropriate function space D(T ) on T closed under linear combinations,
products and quotients (when defined) which contains all continuous functions and
functions of the form I{t∈B} for B ∈ A(u), and which is equipped with a metric dD

making supt∈A continuous on compact sets A ⊆ T . Finally, we must also assume
that uniform convergence on every A ∈ A implies convergence in dD . This is the
case if T = Rd or Rd+.

As the normalized sum of i.i.d. D(T )-valued random variables, the sequence
(Dn(·)) [as defined in (4)] converges in finite-dimensional distribution to a
Gaussian process on T whose covariance structure is as defined in (8). We must
assume that in fact (Dn(·)) converges in D(T ) and that the limiting Gaussian
process has a continuous version; again, this is the case if T = Rd or Rd+.

THEOREM 5.1. Under the assumptions above,

n1/2(Ĥ (n) − H̃ (n)) →fdd G,
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where G is a mean-zero Gaussian process on A with covariance structure defined
as follows: for C,D ∈ C ,

Cov(GC,GD)

=
∫
C∩D

(
S(t)P (t ∈ ξ)

)−1
h(t)λ(dt)(24)

+
∫∫

I(C,D)

µ(Es ∩ Et)P (s, t ∈ ξ)

S(s)S(t)P (s ∈ ξ)P (t ∈ ξ)
h(s)h(t)λ(ds)λ(dt).

PROOF. The general method of proof is similar to that of [17]. Recalling (1),
for any A ∈ A,

n1/2(Ĥ (n)
A − H̃

(n)
A

)=
∫
A

Jn(t)

Zn(t)/n

M(n)(dt)√
n

=
∫
A
Jn(t)

(
n

Zn(t)
− 1

S(t)P (t ∈ ξ)

)
M(n)(dt)√

n
(25)

+
∫
A

Jn(t) − 1

S(t)P (t ∈ ξ)

M(n)(dt)√
n

(26)

+
∫
A

1

S(t)P (t ∈ ξ)

M(n)(dt)√
n

.(27)

We shall show that for any A ∈ A, both (25) and (26) converge in probability to 0
as n → ∞. The CLT then follows since∫

.

1

S(t)P (t ∈ ξ)

M(n)(dt)√
n

is the normalized sum of n i.i.d. processes; the covariance structure is given
by (18).

It remains to show that (25) and (26) converge in probability to 0 as n → ∞.
Since Jn(t) converges a.s. to 1, this is immediate for (26). Next, recalling (5),

(25) =
∫
A
Jn(t)

(
Zn(t) − nS(t)P (t ∈ ξ)

Zn(t)S(t)P (t ∈ ξ)

)(
Dn(t)h(t)λ(dt) − C(n)(dt)

)

= 1√
n

∫
A

Jn(t)D
2
n(t)

(Zn(t)/n)S(t)P (t ∈ ξ)
h(t)λ(dt)(28)

−
∫
A

Jn(t)Dn(t)

(Zn(t)/n)S(t)P (t ∈ ξ)

C(n)(dt)√
n

.(29)
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Since h(t)λ(dt) = (S(t))−1µ(dt),

|(28)| = 1√
n

∫
A

Jn(t)D
2
n(t)

(Zn(t)/n)(S(t))2P (t ∈ ξ)
µ(dt)

≤ 1√
n

sup
t∈A

(
D2

n(t)
)

sup
t∈A

(
n

Zn(t)

)
sup
t∈A

(
1

(S(t))2P (t ∈ ξ)

)
µ(A).(30)

Since P (t ∈ ξ) ≥ P (A ⊆ ξ), ∀ t ∈ A, supt∈A(((S(t))
2P (t ∈ ξ))−1) is bounded.

By assumption, Dn converges in D(T ) to a continuous Gaussian process; by
the continuous mapping theorem, supt∈A(D

2
n(t)) converges in distribution to the

square of the (a.s. finite) sup of the limiting process. We recall that n/Zn(t)

converges uniformly in probability to (S(t)P (t ∈ ξ))−1 on each A ∈ A; this im-
plies convergence in D(T ), and so supt∈A n/Zn(t) converges to supt∈A(S(t)P (t ∈
ξ))−1 which is finite. By joint tightness, (30) converges in probability to 0.

The last step in the proof is to show that (29) converges in probability to 0. By
the same sort of argument as in the preceding paragraph and since Jn(t) → 1 a.s.
for each t ∈ T , (Jn(·)Dn(·)/(Zn(·)/n)) is tight and converges weakly in D(t) to
a continuous limit. Let M(T ) denote the space of locally finite measures on T

equipped with the topology of vague convergence. It is well known that M(T )

is a complete separable metric space since T is. By the law of large numbers,

N(n)ξ

. /n →fdd
∫
. S(t)P (t ∈ ξ)h(t)λ(dt) and so this sequence converges weakly

in M(T ). We now have that the sequence
(
Jn(·)Dn(·)
Zn(·)/n ,

N(n)ξ (·)
n

)
n

is ( jointly) tight in D(T ) × M(T ).
Fix A ∈ A. Let x ∈ D(T ), y ∈ M(T ) and define

q(x, y) :=
∫
A

x(t)

S(t)P (t ∈ ξ)

(
y(dt) − S(t)P (t ∈ ξ)h(t)λ(dt)

)
.(31)

Since

C(n)

√
n

= N(n)ξ

n
−
∫
.
S(t)P (t ∈ ξ)h(t)λ(dt),

if q is continuous at points (x, y) ∈ D(T ) × M(T ) when x is continuous, then
(29) converges in probability to 0 as required.

The final step is the proof that q is continuous. Suppose that xn → x in D(T )

and yn → y in M(T ). Letting ρ(·) = ∫
. S(t)P (t ∈ ξ)h(t)λ(dt),

|q(xn, yn) − q(x, y)| ≤
∣∣∣∣
∫
A

xn(t)

S(t)P (t ∈ ξ)

(
yn(dt) − y(dt)

)∣∣∣∣(32)

+
∣∣∣∣
∫
A

xn(t) − x(t)

S(t)P (t ∈ ξ)

(
y(dt) − ρ(dt)

)∣∣∣∣.(33)
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Since supt∈A is continuous on D(T ),

(33) ≤ supt∈A |xn(t) − x(t)|
inft∈A(S(t)P (t ∈ ξ))

(
y(A) + ρ(A)

)→ 0.

Assume without loss of generality that A ∈ Am ∀m and fix ε > 0. When
x is continuous, by Assumption 4.3 and uniform continuity on A, there exists a
partition {C1, . . . ,Ck} (Ci ∈ C ∀ i) of A such that

max
1≤i≤k

sup
s,t∈Ci

∣∣∣∣ x(s)

S(s)P (s ∈ ξ)
− x(t)

S(t)P (t ∈ ξ)

∣∣∣∣< ε

2
.

Again applying continuity of supt∈A on D(T ), it follows that for every n

sufficiently large,

max
1≤i≤k

sup
s,t∈Ci

∣∣∣∣ xn(s)

S(s)P (s ∈ ξ)
− x(t)

S(t)P (t ∈ ξ)

∣∣∣∣< ε.

Choose t1, . . . , tk such that ti ∈ Ci, i = 1, . . . , k. Then assuming n is sufficiently
large,

(32) ≤
k∑

i=1

∣∣∣∣
∫
Ci

(
xn(t)

S(t)P (t ∈ ξ)
− x(ti)

S(ti )P (ti ∈ ξ)

)(
yn(dt) − y(dt)

)∣∣∣∣
+

k∑
i=1

∣∣∣∣
∫
Ci

x(ti)

S(ti )P (ti ∈ ξ)

(
yn(dt) − y(dt)

)∣∣∣∣
≤ ε

(
yn(A) + y(A)

)+ k∑
i=1

x(ti)

S(ti )P (ti ∈ ξ)
|yn(Ci)− y(Ci)|

→ 2εy(A) as n → ∞.

Since ε is arbitrary, this completes the proof. �

COMMENT. The question of whether or not a functional CLT exists was
raised at the beginning of this section. An appropriate function space D(A) is
introduced and studied in [14], and tightness conditions are given. In particular,
D(A) is a generalization of the usual Skorokhod function space D[0,∞) with the
J2 topology. In the case in which T = [a, b]d , the limiting Gaussian process will
not have regular sample paths over the lower layers, and so in this case we will
have only convergence of finite dimensional distributions. However, if we restrict
our attention to the class of rectangles [0, t], then (cf. [17]) we will have functional
convergence in the preceding theorem. It should be noted that we may continue to
assume that the process is censored by a lower layer. We conjecture that functional
convergence would hold also hold over a Vapnik–Červonenkis class of sets.
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6. Applications. This article has focussed on developing the theoretical basis
for survival analysis with a very general censoring mechanism. As pointed out in
the Introduction, our general model can be readily applied to spatial data as well
as biological data, providing a wealth of new applications for survival analysis
techniques. In this section, we will indicate various specific directions for future
research.

We shall begin by commenting on various potential uses of the Nelson–Aalen
estimator. Clearly, as in the one-dimensional case, it can be used graphically for
model checking. More generally, the Nelson–Aalen estimator can be used to test
a hypothesis about the hazard function of a single population or to compare the
hazards of several independent populations.

In the case in which T = [a, b]d (cf. Example 2.4), as previously noted
the integrated hazard does not determine the survival function S; the lower
dimensional integrated hazard functions and marginal survival functions are
needed as well. Therefore, as described in [2], since we can construct the
one-dimensional marginal survival functions from the one-dimensional marginal
integrated hazards, we can use Nelson–Aalen estimators iteratively to construct
a plug-in (Volterra) estimator of the survival function.

As well, if T = [a, b]d , since the hazard function contains information about the
dependence structure of µ, a test of independence of (Y1, . . . , Yd) may be based
on the Nelson–Aalen estimator (cf. [17]). This follows by noting that when the
components of Y are independent, the cumulative hazard is simply the product of
the marginal hazards.

All of these statistical applications will be developed in detail in a future
publication.

We now describe a few of the real life situations in which we foresee
applications of this theory.

1. Forestry statistics [22]. Image-analysis methods (remote sensing, digital
aerial photographs, spectometer imaging) are used for the construction of tree
position maps based on blurred and noisy images of forests. In statistical
modelling, two essential random processes in forest development are particularly
important: mortality and regeneration. A forest stand is the result of former land
use, complex ecological processes and practical forestry. Then, the corresponding
spatial point pattern is an important source of information in the plant population.
Natural patterns of trees often show clumping or clustering in their starting phase,
caused by environmental heterogeneity, seed dispersion and competition with
other species. Typically, during the evolution of a forest, there exists a tendency
towards regularity. Due to several external causes, the shape and the size of the
pictures are generally random and therefore can be considered as stopping sets.
So the description of this model is constituted of multivariate censored data. Here
the model is spatial spreading, but it may be also spatio-temporal: T = R2 × R+.
Adding coordinates, we may suppose that the origin belongs to each photopraph.
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For the exploratory analysis of such spatial patterns, the image is observed
within a bounded but variable window, which becomes bigger and bigger. The
set of all the windows may be assumed to be the indexing collection A, and the
randomness of the shape of the picture is denoted by the stopping set ξ : on the
complement of ξ , the image is obscured. The censored jump process,

Nξ = {Nξ
A, A ∈ A} =

(
n∑

i=1

I{Yi∈A∩ξi}, A ∈ A

)
,

is defined by counting the number of data points Y1, . . . , Yn in the regions
{A ∩ ξi, A ∈ A}, i = 1, . . . , n. In this model, it is reasonable to assume that
the censoring mechanism is independent of the variables Y1, Y2, . . . , Yn, and
Assumption 4.3 trivially holds. Therefore the results of this paper can be applied.
Following Theorems 4.6 and 5.1, we get a consistent estimator of the integrated
hazard function HA which satisfies a central limit theorem.

2. Medical and biological sciences [2, 10]. Using the same methods, the
censored survival model can be applied in a similar way to other examples in
the medical and biological sciences. One such example would be monitoring
the spatial and temporal spread of an epidemic when data is not available in
certain regions and time periods. Set-indexed survival analysis could also aid in
the diagnosis of tumors when imaging or biopsy techniques are suspected to be
faulty, in which case censoring could occur.

3. Geology and archeology. In geological and archeological problems, the data
points generally lie in a three-dimensional space and here too, random censoring
may occur through constraints in excavation. Thus, set-indexed techniques could
aid in the analysis of ore samples or in the search for ancient coins, for example.

4. Material science and technology. Applications arise in the study of the
locations of point defects on a surface of a silicon wafer when one can observe only
a certain portion of the wafer. A similar problem well adapted to our framework is
the statistical study of silver particles on a polished steel plate [22].

APPENDIX

PROOF OF PROPOSITION 4.1. We recall that C�(Ak) partitions Bk (Bk as in
Definition 2.1) and that the sequence (C�(Ak))k forms a dissecting system for T .

Since

Ĥ (n) − H̃ (n) =
∫
.

Jn(t)

Zn(t)
M(n)(dt),

it must be shown that for every C ∈ C and F ∈ G∗
C ,∫

F

∫
C

Jn(ω, t)

Zn(ω, t)
M(n)(ω, dt)P (dω)= 0.(34)
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M(n)(ω, dt)P (dω) is a difference of positive measures on "×T , each of which
is bounded above by n. For notational convenience in what follows, we shall be
suppressing dependence on n, which is always assumed to be fixed.

Next, we observe that J (t)
Z(t)

is a finite linear combination of random variables of
the form

n∏
1

ai(t)bi(t),

where ai(t) is either I{Yi∈Et } or I{Yi∈Ec
t } and bi(t) is either I{t∈ξi} or I{t∈ξ c

i }.
Therefore, (34) is true if for every C ∈ C and F ∈ G∗

C ,

∫
F

∫
C

n∏
1

ai(t)bi(t)M(ω,dt)P (dω) = 0.(35)

For Bm as defined in Definition 2.1, we have that

I{t∈ξi} = lim
m→∞ I{t∈ξi∩Bm} and I{Yi∈Ec

t } = lim
m→∞ I{Yi∈Ec

t ∩Bm}.

Hence, by dominated convergence, (35) follows if for every m,

∫
F

∫
C

n∏
1

am
i (t)bmi (t)M(ω,dt)P (dω) = 0,(36)

where am
i (t) = 1 − I{Yi∈Ec

t ∩Bm} or I{Yi∈Ec
t ∩Bm}, and bmi (t) = I{t∈ξi∩Bm} or 1 −

I{t∈ξi∩Bm}, as appropriate.
For the remainder of the proof we may assume that m is fixed, and so once

again for notational convenience, we may suppress dependence on m. Also, by
suitably augmenting the finite subsemilattices Ak , we may assume without loss of
generality that C is a (finite) union of sets from C�(Ak) for every k.

Let ξ be a stopping set and B = Bm. By Lemma 1.5.6 of [14], (gk(ξ ∩ B))k is
(for each ω) a decreasing sequence of stopping sets, each taking on finitely many
values, and

⋂
k gk(ξ ∩ B) = ξ ∩ B . Thus,

I{t∈ξi∩B} = lim
k

I{t∈gk(ξi∩B)}.

Now, as in Lemma 2.1.5 of [14],

{(ω, t) : t ∈ gk(ξ ∩ B)} = ⋃
Ck,h∈C�(Ak),Ck,h⊆B

Fk,h ×Ck,h,

where Fk,h ∈ G∗
Ck,h

. Therefore, for each (ω, t),

I{t∈ξi∩B} = lim
k

∑
Ck,h∈C�(Ak),Ck,h⊆B

IFk,h×Ck,h
.(37)
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We shall show that

{(ω, t) :Yi(ω) ∈ Ec
t ∩ B} =⋃

k

⋃
Ck,h∈C�(Ak)

Gk,h × Ck,h,(38)

where Gk,h ∈ G∗
Ck,h

, and that this is an increasing union in k. Since the sets (Ck,h)h

are disjoint, for each (ω, t) it follows that

I{Yi∈Ec
t ∩B} = lim

k

∑
Ck,h∈C�(Ak)

IGk,h×Ck,h
.(39)

Using (37) and (39) it is straightforward to see that
∏n

1 ai(t)bi(t) is a finite linear
combination of random variables of the form

lim
k→∞

∑
Ck,h∈C�(Ak),Ck,h⊆B

IHk,h×Ck,h
,

where Hk,h ∈ G∗
Ck,h

. By dominated convergence,

∫
F

∫
C

n∏
1

ai(t)bi(t)M(ω,dt)P (dω)

= lim
k→∞

∑
Ck,h∈C�(Ak),Ck,h⊆B

∫
F

∫
C
IHk,h×Ck,h

M(ω,dt)P (dω)

= lim
k→∞

∑
Ck,h∈C�(Ak),Ck,h⊆B

∫
Hk,h∩F

∫
Ck,h∩C

M(ω,dt)P (dω)

= lim
k→∞

∑
Ck,h∈C�(Ak),Ck,h⊆C

∫
Hk,h∩F

MCk,h
dP

= 0.

The last equality follows since {G∗
C} is a decreasing family and so Hk,h ∩ F ∈ G∗

Ck,h

when Ck,h ⊆ C. This proves (36), and the proof of the lemma will be complete
once we have verified (38).

Consider {Yi ∈ Ec
t ∩ B}: by definition Ec

t ∩ B = ∪t /∈A(A ∩ B). By separability
from above, t /∈ A if and only if there exists k such that t /∈ gk(A), and so

Ec
t ∩ B =⋃

k

( ⋃
A∈Ak,t /∈A

A∩ B

)
.

Clearly, the above union is increasing in k, since the classes Ak are increasing.
Recalling that the class of left-neighborhoods C�(Ak) partitions Bk , it is easy to
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see by the definition of a left-neighborhood that if t ∈ C = D \⋃A′∈Ak,D 
⊆A′ A′ ∈
C�(Ak), then{

Yi ∈ ⋃
A∈Ak,t /∈A

A∩ B

}
=
{
Yi ∈ ⋃

A′∈Ak,D 
⊆A′
A′ ∩ B

}
∈ G∗

C.

It is now straightforward that (38) follows, completing the proof. �

Acknowledgments. The authors express their appreciation to an anonymous
Associate Editor for a number of thought-provoking and insightful comments. The
second author thanks the first author for her hospitality.

REFERENCES

[1] AL HUSSAINI, A. and ELLIOTT, R. J. (1985). Filtrations for the two-parameter jump process.
J. Multivariate Anal. 16 118–139.

[2] ANDERSEN, P. K., BORGAN, O., GILL, R. D. and KEIDING, N. (1993). Statistical Models
Based on Counting Processes. Springer, New York.

[3] BADDELEY, A. J. (1998). Spatial sampling and censoring. In Stochastic Geometry: Likelihood
and Computation (O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshout,
eds.) 37–78. Chapman and Hall, London.

[4] BADDELEY, A. J. and GILL, R. D. (1997). Kaplan–Meier estimators of distance distributions
for spatial point processes. Ann. Statist. 25 263–292.

[5] CAMPBELL, G. (1982). Asymptotic properties of several nonparametric multivariate distrib-
ution function estimators under random censoring. In Survival Analysis (J. Crowley and
R. A. Johnson, eds.) 243–256. IMS, Hayward, CA.

[6] DABROWSKA, D. M. (1988). Kaplan–Meier estimate on the plane. Ann. Statist. 16 1475–1489.
[7] DABROWSKA, D. M. (1989). Kaplan–Meier estimate on the plane: Weak convergence, LIL,

and the bootstrap. J. Multivariate Anal. 29 308–325.
[8] DAVIDSEN, M. and JACOBSEN, M. (1991). Weak convergence of two-sided stochastic

integrals, with applications to models for left-truncated survival data. In Statistical
Inference in Stochastic Processes (N. U. Prabhu and I. V. Basawa, eds.) 167–182. Dekker,
New York.

[9] DE GIOSA, M. and MININNI, R. (1999). An application of the intensity-based inference for
planar point processes to bivariate survival analysis. Preprint, Univ. Bari, Italy.

[10] DURRETT, R. (1995). Spatial epidemic models, In Epidemic Models: Their Structure and
Relation to Data (D. Mollison, ed.) 187–201. Cambridge Univ. Press.

[11] GEYER, C. and MOLLER, J. (1994). Simulation and likelihood inference for spatial point
processes. Scand. J. Statist. 21 359–373.

[12] HANSEN, M. B., BADDELEY, A. J. and GILL, R. D. (1999). First contact distributions for
spatial patterns: Regularity and estimation. Adv. Appl. Probab. 31 15–33.

[13] HOUGAARD, P. (2000). Analysis of Multivariate Survival Data. Springer, New York.
[14] IVANOFF, G. and MERZBACH, E. (2000). Set-indexed Martingales. CRC Press, Boca Raton,

FL.
[15] LIN, C. Y. and KOSOROK, M. R. (1999). A general class of function-indexed nonparametric

tests for survival analysis. Ann. Statist. 27 1722–1744.
[16] MCLEISH, D. L. (1978). An extended martingale invariance principle. Ann. Probab. 6 144–

150.



SET-INDEXED SURVIVAL ANALYSIS 971

[17] PONS, O. (1986). A test of independence between two censored survival times. Scand. J.
Statist. 13 173–185.

[18] PONS, O. (1989). Nonparametric model and Cox model for bivariate survival data. Rap. Tech.
de biometrie 89-02 INRA, Lab. de biometrie, Jouy-en-Josas, France.

[19] PONS, O. and DE TURKHEIM, E. (1991). Tests of independence for bivariate censored data
based on the empirical joint hazard function. Scand. J. Statist. 18 21–37.

[20] PRENTICE, R. L. (2000). Nonparametric estimation of the bivariate survivor function:
Research synthesis and proposals for new estimators. Preprint, Fred Hutchinson Cancer
Center, Seattle, WA.

[21] RATHBUN, S. L. and CRESSIE, N. (1994). Asymptotic properties of estimators for the
parameters of spatial inhomogeneous Poisson point processes. Adv. Appl. Probab. 26
122–154.

[22] STOYAN, D. and PENTTINEN, A. (2000). Recent applications of point process methods in
forestry statistics. Statist. Sci. 15 61–78.

[23] TSAI, W. Y. and CROWLEY, J. (1998). A note on nonparametric estimators of the bivariate
survival function under univariate censoring. Biometrika 85 573–580.

DEPARTMENT OF MATHEMATICS AND STATISTICS

UNIVERSITY OF OTTAWA

P.O. BOX 450, STN. A
OTTAWA, ONTARIO K1N 6N5
CANADA

E-MAIL: givanoff@science.uottawa.ca

DEPARTMENT OF MATHEMATICS

BAR-ILAN UNIVERSITY

52900 RAMAT GAN

ISRAEL

E-MAIL: merzbach@macs.biu.ac.il


